Проинтегрировать дифференциальное уравнение клеро онлайн

Калькулятор Обыкновенных Дифференциальных Уравнений (ОДУ) и Систем (СОДУ)

Порядок производной указывается штрихами — y»’ или числом после одного штриха — y’5

Ввод распознает различные синонимы функций, как asin , arsin , arcsin

Знак умножения и скобки расставляются дополнительно — запись 2sinx сходна 2*sin(x)

Список математических функций и констант :

• ln(x) — натуральный логарифм

• sh(x) — гиперболический синус

• ch(x) — гиперболический косинус

• th(x) — гиперболический тангенс

• cth(x) — гиперболический котангенс

• sch(x) — гиперболический секанс

• csch(x) — гиперболический косеканс

• arsh(x) — обратный гиперболический синус

• arch(x) — обратный гиперболический косинус

• arth(x) — обратный гиперболический тангенс

• arcth(x) — обратный гиперболический котангенс

• arsch(x) — обратный гиперболический секанс

• arcsch(x) — обратный гиперболический косеканс

Дифференциальные уравнения по-шагам

Результат

Примеры дифференциальных уравнений

  • Простейшие дифференциальные ур-ния 1-порядка
  • Дифференциальные ур-ния с разделяющимися переменными
  • Линейные неоднородные дифференциальные ур-ния 1-го порядка
  • Линейные однородные дифференциальные ур-ния 2-го порядка
  • Уравнения в полных дифференциалах
  • Решение дифференциального уравнения заменой
  • Смена y(x) на x в уравнении
  • Другие

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Уравнение Клеро

Вы будете перенаправлены на Автор24

Дифференциальные уравнения первого порядка, не разрешенные относительно производной.

В общем виде дифференциальные уравнения первого порядка, не разрешенные относительно производной, записываются как $F\left(x,y,y’\right)=0$.

Основной метод решения таких дифференциальных уравнений состоит в том, чтобы выполнить некоторые преобразования, приводящие к уравнениям, разрешенным относительно производной. В дальнейшем могут применяться любые из известных методов, соответствующие тому, что в результате получилось: или уравнение с разделяющимися переменными, или однородное уравнение, или линейное уравнение и т.п.

Решить дифференциальное уравнение $y’^ <3>-y’^ <2>\cdot x+2\cdot y’=2\cdot x$.

Данное дифференциальное уравнение не разрешено относительно производной, поэтому известные методы для его решения применить не удается.

Поэтому выполняем следующие преобразования:

  • все слагаемые переносим в одну сторону $y’^ <3>-y’^ <2>\cdot x+2\cdot y’-2\cdot x=0$;
  • выражение слева разлагаем на множители $\left(y’^ <2>+2\right)\cdot \left(y’-x\right)=0$;
  • так как $y’^ <2>+2\ne 0$, то исходное уравнение эквивалентно $y’-x=0$.

Получено дифференциальное уравнение, допускающее непосредственное интегрирование: $\frac =x$.

Отсюда: $y=\int x\cdot dx $; $y=\frac > <2>+C$.

Решить дифференциальное уравнение

\[y’^ <2>-y’\cdot y+\cos x\cdot \left(y’-y\right)=0.\]

Данное дифференциальное уравнение не разрешено относительно производной, поэтому выполняем преобразования:

\[y’\cdot \left(y’-y\right)+\cos x\cdot \left(y’-y\right)=0;\] \[\left(y’-y\right)\cdot \left(y’+\cos x\right)=0.\]

Таким образом, данное дифференциальное уравнение эквивалентно двум другим: $y’-y=0$ и $y’+\cos x=0$.

Первое дифференциальное уравнение $y’-y=0$ решается посредством разделения переменных:

Второе дифференциальное уравнение $y’+\cos x=0$ допускает непосредственное интегрирование: $\frac =-\cos x$, откуда $y=-\sin x+C$.

Метод введения параметра

В ряде случаев дифференциальное уравнение вида $F\left(x,y,y’\right)=0$ не удается разрешить относительно производной. Но вполне возможно, что оно разрешимо или относительно $y$, или относительно $x$. Тогда мы получаем дифференциальное уравнение общего вида $y=u\left(x,y’\right)$ или $x=v\left(y,y’\right)$. Некоторые из дифференциальных уравнений подобного вида можно решить методом введения параметра.

Рассмотрим пример дифференциального уравнения вида $x=f\left(y’\right)$.

Решается введением параметра $\frac =p$.

В результате имеем решение данного дифференциального уравнения в параметрической форме, задаваемое следующими выражениями:

Готовые работы на аналогичную тему

Решить дифференциальное уравнение $8\cdot y’^ <3>=27\cdot x$.

Здесь мы имеем дифференциальное уравнение вида $x=f\left(y’\right)$, не разрешенное относительно производной.

Вводим параметр $\frac =p$ и записываем уравнение в виде $x=\frac<8> <27>\cdot p^ <3>$.

Здесь $f\left(p\right)=\frac<8> <27>\cdot p^ <3>$, откуда $\frac =\frac<8> <27>\cdot 3\cdot p^ <2>=\frac<8> <9>\cdot p^ <2>$.

Таким образом, решение данного дифференциального уравнения в параметрической форме задается следующими выражениями:

Отсюда получаем: $\left\<\begin <27>\cdot p^ <3>> \\ <9>\cdot \frac<1> <4>\cdot p^ <4>+C> \end\right. $ или $\left\<\begin <27>\cdot p^ <3>> \\ <9>\cdot p^ <4>+C> \end\right. $ — решение данного дифференциального уравнения в параметрической форме.

Параметр $p$ из этой системы уравнений можно исключить:

из $x=\frac<8> <27>\cdot p^ <3>$ получаем $p^ <3>=\frac<27> <8>\cdot x$ или $p=\frac<3> <2>\cdot x^<\frac<1> <3>> $;

подставляем в $y=\frac<2> <9>\cdot p^ <4>+C$ и получаем $y=\frac<2> <9>\cdot \left(\frac<3> <2>\cdot x^<\frac<1> <3>> \right)^ <4>+C$ или $y=\frac<9> <8>\cdot x^<\frac<4> <3>> +C$.

Таким образом, получено общее решение $y=\frac<9> <8>\cdot x^<\frac<4> <3>> +C$ данного дифференциального уравнения $8\cdot y’^ <3>=27\cdot x$ в явной форме.

Решение уравнения Клеро

Уравнение Клеро имеет вид $y=x\cdot y’+\psi \left(y’\right)$ и относится к более сложным видам дифференциальных уранений, не разрешенных относительно производной.

Введим параметр $\frac =p$, в результате чего имеем $y=x\cdot p+\psi \left(p\right)$.

После дифференцирования и простых преобразований получаем уравнение $\frac \cdot \left(x+\psi ‘\left(p\right)\right)=0$, которое распадается на два дифференциальных уравнения $\frac =0$ и $x+\psi ‘\left(p\right)=0$.

Из этого уравнения следует $p=C$. Отсюда получаем общее решение дифференциального уравнения Клеро $y=x\cdot C+\psi \left(C\right)$. Иначе говоря, общее решение можно получить из данного уравнения $y=x\cdot y’+\psi \left(y’\right)$ формальной заменой $y’$ на $C$.

Уравнение $x+\psi ‘\left(p\right)=0$.

Это уравнение дает особое решение в параметрической форме:

Оно представляет собой огибающую семейства кривых общего решения.

Решить дифференциальное уравнение $y=x\cdot y’+y’$.

Имеем уравнение Клеро, в котором $\psi \left(y’\right)=y’$.

Вводим параметр $\frac =p$ и получаем $y=x\cdot p+p$, где $\psi \left(p\right)=p$.

Формально заменив в данном дифференциальном уравнении $y’$ на $C$, получим его общее решение $y=x\cdot C+C$ или $y=C\cdot \left(x+1\right)$.

Находим особое решение.

Так как $\psi \left(p\right)=p$ и $\frac =1$, то особое решение в параметрической форме преобразуется к виду: $\left\<\begin \\ \end\right. $. Это значит, что особые решения для данного дифференциального уравнения отсутствуют.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 19 01 2022


источники:

http://mrexam.ru/differentialequation

http://spravochnick.ru/matematika/differencialnye_uravneniya/uravnenie_klero/