Производная второго порядка уравнения с производными

Дифференциальные уравнения в частных производных с примерами решения и образцами выполнения

Дифференциальным уравнением с частными производными называется уравнение вида
(1)

связывающее независимые переменные x1, х2, … , хn искомую функцию и = и(х1, х2,…, хn) и ее частные производные (наличие хотя бы одной производной обязательно). Здесь ki,k2,… ,кn — неотрицательные целые числа, такие, что к1 + к2 + … + кп = т.

Порядком дифференциального уравнения называется наивысший порядок входящие в уравнение частных производных. Так, если х, у — независимые переменные, и = и(х, у) — искомая функция, то

— дифференциальное уравнение 1-го порядка;

— дифференциальные уравнения 2-го порядка.

Для упрощения записи пользуются также следующими обозначениями:

Пусть имеем дифференциальное уравнение с частными производными (1) порядка т. Обозначим через С m (D) множество функций, непрерывных в области D вместе со всеми производными до порядка m включительно.

Определение:

Решением дифференциального уравнения (1) в некоторой области D изменения независимых переменных x1, x2…xn,. называется всякая функция и = и(х1, х2,…, xп) ∈ С m (D) такая, что подстановка этой функции и ее производных в уравнение (1) обращает последнее в тождество по x1, x2, …., хп в области D.

Пример:

Найти решение и = и(х,у) уравнения

Равенство (2) означает, что искомая функция и не зависит опт х, но может быть любой функцией от у,

u = φ(y). (3)

Таким образом, решение (3) уравнения (2) содержит одну произвольную функцию. Это — общее решение уравнения (2).

Приме:

Найти решение u = u(z, у) уравнения

Положим = о. Тогда уравнение (4) примет вид = 0. Его общим решением будет произвольная функция v = w(у). Поскольку v= приходим к уравнению = w(у). Интегрируя по у (считая х параметром), получим

где g(x) — произвольная функция. Так как w(у) — произвольная функция, то и интеграл от нее также является произвольной функцией; обозначим его через f(у). В результате получим решение уравнения (4) в виде

u(x, y) = f(y) + g(x) (5)

произвольные дифференцируемые функции).

Решение (5) уравнения с частными производными 2-го порядка (4) содержит уже две произвольные функции. Его называют общим решением уравнения (4), так как всякое другое решение уравнения (4) может быть получено из (5) подходящим выбором функций f и g.

Мы видим, таким образом, что уравнения с частными производными имеют целые семейства решений. Однако существуют уравнения с частными производными, множества решений которых весьма узки и, в некоторых случаях, да же пусты.

Пример:

Множество действительных решений уравнения

исчерпывается функцией u(x, y) = const, а уравнение

вовсе не имеет действительных решений.

Мы не ставим пока вопрос об отыскании частных решений. Позже будет выяснено, какие дополнительные условия нужно задать, чтобы с их помощью можно было выделить частное решение, т.е. функцию, удовлетворяющую как дифференциальному уравнению, так и этим дополнительным условиям.

Линейные дифференциальные уравнения с частными производными. Свойства их решений

Уравнение с частными производными называется линейным, если оно линейно относительно искомой функции и всех ее производных, входящих в уравнение; в противном случае уравнение называется нелинейным.

Пример:

— линейное уравнение; уравнения

Линейное дифференциальное уравнение 2-го порядка для функции двух независимых переменных х, у в общем случае имеет вид
(1)

где А(х, у), В(х, у), …, с(х,у), f(x,y) — функции переменных х, у, заданные в некоторой области D плоскости хОу. Если f(x,y) ≡ 0 в D, то уравнение (1) называется однородным, в противном случае — неоднородным.

Обозначив левую часть уравнения (1) через L[u], запишем (1) в виде

L[u] = f(x, у). (2)

Соответствующее однородное уравнение запишется так:

L[u] = 0. (3)

Здесь L — линейный дифференциальный оператор, определенный на линейном пространстве C 2 (D) функций и = и(х, у).

Пользуясь свойством линейности оператора L, легко убедиться в справедливости следующих теорем, выражающих свойства решений линейных однородных дифференциальных уравнений с частными производными.

Теорема:

Если и(х, у) есть решение линейного однородного уравнения (3), то си(х, у), где с — любая постоянная, есть также решение уравнения (3).

Теорема:

Если и1(х, у) и и2(х, у) — решения линейного однородного уравнения (3), то сумма и1(х, у) + и2(x, у) есть также решение этого уравнения.

Следствие:

Если каждая из функций и1(х, у) и и2(х, у), u k(x, у) является решением уравнения (3), то линейная комбинация

где c1, c2 …, сk — произвольные постоянные, также является решением этого уравнения.

В отличие от обыкновенного линейного однородного дифференциального уравнения, имеющего конечное число линейно независимых частных решений, линейная

комбинация которых дает общее решение этого уравнения, уравнение с частными производными может иметь бесконечное множество линейно независимых частных решений.

Пример:

имеет общее решение k = φ(х), так что решениями его будут, например, функции 1,х,…, х n ,… . В соответствии с этим в линейных задачах для уравнений с частными производными нам придется иметь дело не только с линейными комбинациями конечного числа решений, но и с рядами , членами которых являются произведения постоянных Сп на частные решения иn(х, у) дифференциального уравнения.

Возможны случаи, когда функция и(х, у; λ) при всех значениях параметра λ из некоторого интервала (λо, λ1), конечного или бесконечного, является решением уравнения (3). В этом случае говорят, что решения уравнения зависят от непрерывно меняющегося параметра λ. Если теперь взять функцию С(λ) такую, что первые и вторые производные интеграла

по х и по у могут быть получены с помощью дифференцирования под знаком интеграла, то этот интеграл также будет решением уравнения (3). Для линейного неоднородного уравнения

L[u] = f (4)

справедливы следующие предложения.

Теорема:

Если и(х, у) есть решение линейного неоднородного уравнения (4), a v(x, у) — решение соответствующего однородного уравнения (3), то сумма и + v есть решение неоднородного уравнения (4).

Теорема:

Принцип суперпозиции. Если и1(х, у) —решение уравнения L[u] = f1, a u2(x,y) — решение уравнения L[u] = f2, то и1 + u2 — решение уравнения L[u] = f1 + f2.

Классификация линейных дифференциальных уравнений второго порядка с двумя независимыми переменными

Определение:

Линейное дифференциальное уравнение второго порядка

в некоторой области Q на плоскости хОу называется

1) гиперболическим в Ω, если

2) параболическим в Ω, если

3) эллиптическим в Ω, если

Пользуясь этим определением, легко проверить, что уравнения

— гиперболические при всех х и у, уравнение

— параболическое при всех х и у, а уравнение

— эллиптическое при всех х и у. Уравнение

— эллиптическое при у > 0, параболическое на линии у = 0 и гиперболическое в полуплоскости у

с помощью которой уравнение (1) преобразуется к более простому, каноническому виду, своему для каждого типа уравнения.

Уравнение гиперболического типа (∆ > 0) преобразуется к вшу

(два канонических вида уравнений гиперболического типа).

Уравнение параболического типа (∆ ≡ 0) преобразуется к виду

(канонический вид уравнения параболического типа).

Уравнение эллиптического типа (∆

(канонический вид уравнения эллиптического типа). Здесь F и Ф — некоторые функции, зависящие от искомой функции и, ее первых производных и независимых переменных ξ, η. Вид функций F и Ф определяется исходным уравнением (1).

В некоторых случаях каноническая форма уравнения позволяет найти общее решение исходного уравнения.

Как правило, приведениеуравнения(1) к каноническому виду путем замены независимых переменных имеет локальный характер, т. е. осуществимо лишь в некоторой достаточно малой окрестности рассматриваемой точки Mo(xo, уo).

Когда число п независимых переменных больше двух, также различают уравнения гиперболического, параболического и эллиптического типов. Например, при п = 4 простейшая каноническая форма таких уравнений имеет вид

Здесь и = и(х, у, z, t).

Замечание:

В общем случае, когда число независимых переменных больше двух, приведение линейною уравнения с переменными коэффициентами

к каноническому виду возможно только в данной точке и невозможно в любой сколь угодно малой окрестности этой точки.

Мы ограничимся рассмотрением линейных дифференциальных уравнений 2-го порядка. К таким уравнениям приводит большое количество различных физических задач.

Так, колебательные процессы различной природы (колебания струн, мембран, акустические колебания газа в трубах, электромагнитные колебания и т. д.) описываются уравнениями гиперболического типа. Простейшим из таких уравнений является уравнение колебаний струны (одномерное волновое уравнение): (2)

Здесь х — пространственная координата, t — время, где Т — натяжение струны, р — ее линейная плотность.

Процессы теплопроводности и диффузии приводят к уравнениям параболического типа. В одномерном случае простейшее уравнение теплопроводности имеет вид
(3)

Здесь где р — плотность среды, с — удельная теплоемкость, k — коэффициент теплопроводности.

Наконец, установившиеся процессы, когда искомая функция не зависит от времени, определяются уравнениями эллиптического типа, типичным представителем которых является уравнение Лапласа
(4)

Непосредственной проверкой убеждаемся в том, что решением уравнения (2) является всякая функция и(х, t) вида

Можно показать, что решениями уравнения (3) являются функции вида

произвольные постоянные, А — числовой параметр). Интегрируя решение и(х, t; λ) = уравнения (3) по параметру λ в пределах от — ∞ до + ∞ , получим так называемое фундаментальное решение U(x, t) = уравнения теплопроводности.

Наконец, нетрудно убедиться, что действительнозначные функции Рn(х,у) и Qn(x, у), определяемые из соотношения

являются решениями уравнения Лапласа (4) для п = 0, 1, 2…..Этот последний результат есть частный, случай общего утверждения, что и действительная и мнимая части аналитической функции

f(z) = u(x, у) + iv(x, у)

комплексного переменного z = х + iy являются решениями уравнения Лапласа (4).

В силу линейности уравнения (4) ряды

тоже будут решениями уравнения (4), если они сходятся равномерно, как и ряды, полученные из них двукратным почленным дифференцированием по каждому из аргументов х, у.

Таким образом, для простейшей — канонической — формы уравнений гиперболического, параболического и эллиптического типов мы располагаем о решениях этих уравнений некоторой информацией.

Постановка основных задач для линейных дифференциальных уравнений второго порядка

Для полного описания того или иного физического процесса мало иметь только дифференциальное уравнение процесса, надо еще задать начальное состояние этого процесса (начальные условия) и режим на границе S той области Ω, в которой процесс происходит (граничные условия). Это обусловлено неединственностью решения дифференциальных уравнений.

Пример:

Общее решение уравнения

имеет вид и(х, у) = f(x) + g(y), где f(x) и g(y) — произвольные дифференцируемые функции. Поэтому чтобы выделить решение, описывающее данный физический процесс, необходимо задать дополнительные условия.

Различают три основных типа задач для дифференциальных уравнений с частными производными (число независимых переменных равно п):

а) задача Коши для уравнений гиперболического и параболического типов: задаются начальные условия, область Ω совпадает со всем пространством R n , граничные условия отсутствуют;

б) краевая задача для уравнений эллиптического типа: задаются граничные условия на границе S области Ω, начальные условия отсутствуют;

в) смешанная задача для уравнений гиперболического и параболического типов: задаются начальные и граничные условия, Ω ≠ R n

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Примеры решения производных с ответами

Простое объяснение принципов решения производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения производных

Для вычисления производных вам потребуется таблица производных. Кроме того, существуют формулы для нахождения сложных производных.

Процесс нахождения производный называется дифференцированием.

  1. 0, c \neq 1″ title=»Rendered by QuickLaTeX.com» height=»20″ width=»219″ style=»vertical-align: -5px;» />
  2. 0, c \neq 1″ title=»Rendered by QuickLaTeX.com» height=»20″ width=»180″ style=»vertical-align: -5px;» />

– производная суммы (разницы).

– производная произведения.

– производная частного.

Нужна помощь в написании работы?

Мы — биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Примеры решений производных

Задача

Найти производную функции

Решение

Заданная функция является сложной и её производная равна произведению производной от косинуса на производную от его аргумента:

Ответ

Задание

Найти производную функции

Решение

Обозначим , где . Тогда, согласно правила вычисления производной сложной функции, получим:

Ответ

Задача

Найти производную функции при .

Решение

.
.

Ответ

.

Задача

Найти производную функции .

Решение

.
После приведения подобных членов получаем:
.

Ответ

Задача

Найти производную функции .

Решение

В этом примере квадратный корень извлекается из суммы . Поэтому сначала вычисляем производную от квадратного корня, а затем умножаем ее на производную от подкоренного выражения:
.

Ответ

.

Задача

Найти производную функции .

Решение

Применяя правила дифференцирования дробей, получаем:

.
Применяя правила дифференцирования котангенса, получаем:
.
Учитывая, что и , после упрощения получим:
.

Ответ

.

Задача

Найти производную функции .

Решение

Применяя правила дифференцирования дробей, получаем:
.

Ответ

.

Задача

Найти производную функции .

Решение

Применяя правила дифференцирования дробей, получаем:
.

Ответ

.

Задача

Найти производную функции .

Решение

Дифференцирование можно произвести в два этапа: вначале продифференцировать степень функции арксинус, а затем произвести дифференцирование самого арксинуса, перемножив результаты:
.

Ответ

.

Задача

Найти производную функции .

Решение

По правилам дифференцирования показательной функции с основанием , производная этой функции равна произведению самой функции на производную функции, являющейся показателем степени:
.

Ответ

.

Производные различных порядков

Вы будете перенаправлены на Автор24

Производные различных порядков — производные первого и высших порядков.

Дифференцируя производную первого порядка f`(x) мы получим производную от производной — производную второго порядка.

Производная от производной второго порядка называется производной третьего порядка, а производная n-го порядка называется производной от производной n-1го порядка.

Производная второго порядка обозначается y» или f»(x). Таким образом, дифференцируя функцию, n-раз получим производную вида f n(x).

Формула дифференцирования второго порядка

Производная n-го порядка равна нулю, если степень меньше порядка производной. Например, пятая производная функции y = 5×2 равна нулю

Таблица производных высших порядков

  1. Найдем производную первого порядка сложной функции по формуле произведения: \[\left[f(x)\cdot g(x)\right] <<'>> =f(x)’\cdot g(x)+f(x)\cdot g(x)’\] \[y’=\left[x\cdot \ln (2x+1)\right] <<'>> =x’\cdot \ln (2x+1)+x\cdot \left(\ln (2x+1)\right) <<'>> =1\cdot \ln (2x+1)+x\cdot \left(\ln (2x+1)\right) <<'>> =\] \[y’=\ln (2x+1)+x\cdot \left(\ln (2x+1)\right) <<'>> =\ln (2x+1)+x\cdot \frac<1><2x+1>\cdot (2x+1)’=\] \[=\ln (2x+1)+2x\cdot \frac<1><2x+1>=\ln (2x+1)+\frac<2x><2x+1>\]
  2. Найдем производную второго порядка для выражения \[y»=\left(\ln (2x+1)+\frac<2x><2x+1>\right) <<'>> =\ln (2x+1)’+\left(\frac<2x><2x+1>\right) <<'>> =\frac<1><2x+1>\cdot (2x+1)’+\frac<2x'\cdot (2x+1)-2x\cdot (2x+1)'><\left(2x+1\right)^<2>> =\] \[y»=\frac<2><2x+1>+\frac<2(2x+1)-2x\cdot 2><\left(2x+1\right)^<2>> =\frac<2><2x+1>+\frac<2((2x+1)-2x)><\left(2x+1\right)^<2>> =\frac<2><2x+1>+\frac<2><\left(2x+1\right)^<2>> =\]
  3. Упростим выражение \[y»=\frac<2\left(2x+1\right)><\left(2x+1\right)^<2>> +\frac<2><\left(2x+1\right)^<2>> =\frac<2\left(2x+1\right)+2><\left(2x+1\right)^<2>> =\frac<4x+4><\left(2x+1\right)^<2>> \]

Готовые работы на аналогичную тему

Найти производную четвертого порядка

  1. Найдем производную первого порядка \[y’=\left(x^ <5>-x^ <4>+3x^ <3>\right) <<'>> =5x^ <4>-4x^ <3>+3\cdot 3x^ <2>=5x^ <4>-4x^ <3>+9x^ <2>\]
  2. Найдем производную второго порядка \[y»=\left(5x^ <4>-4x^ <3>+9x^ <2>\right) <<'>> =20x^ <3>-12x^ <2>+18x\]
  3. Найдем производную третьего порядка \[y»’=\left(20x^ <3>-12x^ <2>+18x\right) <<'>> =60x^ <2>-24x+18\]
  4. Найдем производную четвертого порядка \[y»»=\left(60x^ <2>-24x+18\right) <<'>> =120x-24\]

Найти производную четвертого порядка функции

Решение: Самая большая степень составного неизвестного равна 3, что меньше степени производной, а значит производная четвертого порядка равна 0.

Найти производную 13 порядка функции

  1. Найдем производную первого порядка \[y’=sin’x=\cos x=\sin (x+\frac<\pi ><2>)\]
  2. Найдем производную второго порядка \[y»=cos’x=-\sin x=\sin (x+2\frac<\pi ><2>)\]
  3. Найдем производную третьего порядка \[y»’=-sin’x=-\cos x=\sin (x+3\frac<\pi ><2>)\]
  4. Найдем производную четвертого порядка \[y^ <(4)>=-\cos x’=\sin x=\sin (x+4\frac<\pi ><2>)\]

Вычислить производную четвертой степени функции $x^<8>$

Вычисления производим по формуле нахождения производной высшего порядка

\[\left(x^ <8>\right)^ <(4)>=8(8-1)(8-2)(8-4+1)x^ <8-4>=8\cdot 7\cdot 6\cdot 5\cdot x^ <4>=1680x^ <4>\] \[\left(x^ <8>\right)^ <(4)>=1680x^ <4>\]

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 15 12 2021


источники:

http://nauchniestati.ru/spravka/primery-resheniya-proizvodnyh/

http://spravochnick.ru/matematika/proizvodnaya_i_differencial/proizvodnye_razlichnyh_poryadkov/