Произвольная система линейных уравнений имеет единственное решение если

Произвольная система линейных уравнений имеет единственное решение если

Решение произвольных систем

Пусть дана система m линейных уравнений с n неизвестными:

(1)

В матричной форме система (1) имеет вид

где А = — матрица коэффициентов системы;

Х = — матрица-столбец переменных;

В = — матрица-столбец свободных членов.

Решением системы (1) называется всякий вектор , координаты которого обращают каждое уравнение системы в верное равенство.

Система уравнений, имеющая хотя бы одно решение, называется совместной. Система уравнений называется несовместной, если она не имеет ни одного решения.

Система уравнений называется определенной, если она имеет единственное решение, и неопределенной, если она имеет более одного решения.

Две системы называются эквивалентными, если множества их решений совпадают.

Теорема 1. (теорема Кронекера — Капелли ). Система (1) совместна тогда и только тогда, когда ранг матрицы системы равен рангу расширенной матрицы системы:

.

Теорема 2 . Если ранг матрицы совместной системы равен числу неизвестных, то система имеет единственное решение. Если ранг матрицы совместной системы меньше числа неизвестных, то система имеет бесконечно много решений.

Пусть ранг матрицы r ( A )= r n . Переменные называются базисными (основными), если определитель матрицы коэффициентов при них (базисный минор) отличен от нуля. Количество базисных переменных равно r . Другие n — r переменных называются свободными ( неосновными ). Выражение базисных переменных через свободные называется общим решением системы. Из него можно получить бесконечное множество частных решений, придавая свободным переменным произвольные значения.

Решение системы (1), в котором свободные переменные имеют нулевые значения, называется базисным решением. Число различных базисных решений не превосходит .

Метод последовательного исключения неизвестных

Метод Гаусса — это универсальный метод исследования и решения произвольных систем линейных уравнений. Он состоит в приведении системы к диагональному виду путем последовательного исключения неизвестных с помощью элементарных преобразований, не нарушающих эквивалентности систем. Переменная считается исключенной, если она содержится только в одном уравнении системы с коэффициентом 1.

Элементарными преобразованиями системы являются:

— умножение уравнения на число, отличное от нуля;

— сложение уравнения, умноженного на любое число, с другим уравнением;

— отбрасывание уравнения 0 = 0.

Если при выполнении элементарных преобразований получено уравнение вида 0 = k (где k 0), то система несовместна.

Перейдем теперь к решению систем с различным количеством неизвестных и уравнений. Пусть дана система m линейных уравнений с n неизвестными. Если такая система совместна, то при r n она имеет бесконечное множество решений, каждое из которых может быть получено из общего решения системы.

Для нахождения общего решения нам необходимо выбрать, какие неизвестные мы будем считать основными (базисными). Это могут быть любые r переменных, коэффициенты при которых составляют определитель, отличный от нуля. Затем выбранные основные переменные нужно выразить через свободные. Для этого с помощью элементарных преобразований необходимо расширенную матрицу системы привести к такому виду, чтобы коэффициенты при базисных переменных образовали так называемые базисные столбцы — столбцы, состоящие из нулей и одной единицы.

Решение систем линейных уравнений методом последовательного исключения неизвестных можно оформлять в виде таблицы.

Левый столбец таблицы содержит информацию об исключенных (базисных) переменных. Остальные столбцы содержат коэффициенты при неизвестных и свободные члены уравнений.

В исходную таблицу записывают расширенную матрицу системы. Далее приступают к выполнению очередной итерации:

1. Выбирают переменную , которая войдет в число базисных , и уравнение, в котором эта переменная останется. Соответствующие столбец и строку таблицы называют ключевыми. Коэффициент , стоящий на пересечении ключевой строки и ключевого столбца, называют ключевым.

2. Элементы ключевой строки делят на ключевой элемент.

3. Ключевой столбец заполняют нулями.

4. Остальные элементы вычисляют по правилу прямоугольника: составляют прямоугольник, в противоположных вершинах которого находятся ключевой элемент и пересчитываемый элемент; из произведения элементов, стоящих на диагонали прямоугольника с ключевым элементом, вычитают произведение элементов другой диагонали и полученную разность делят на ключевой элемент.

Переход к другому базису

Перейти от одного базиса системы к другому позволяет преобразование однократного замещения: вместо одной из основных переменных в базис вводят одну из свободных переменных. Для этого в столбце свободной переменной выбирают ключевой элемент и выполняют преобразования по указанному выше алгоритму, начиная с п. 2.

Нахождение опорных решений

Опорным решением системы линейных уравнений называется базисное решение, не содержащее отрицательных компонент.

Опорные решения системы находят методом Гаусса при выполнении следующих условий.

1. В исходной системе все свободные члены должны быть неотрицательны: .

2. В число базисных может быть введена только та переменная, в столбце коэффициентов при которой есть хотя бы один положительный элемент.

3. Если при переменной, вводимой в базис, имеются положительные коэффициенты в нескольких уравнениях, то переменная вводится в базис в то уравнение, которому соответствует наименьшее в столбце отношение свободных членов к этим положительным коэффициентам.

Замечание 1 . Если в процессе исключения неизвестных появится уравнение, в котором все коэффициенты неположительны , а свободный член , то система не имеет неотрицательных решений.

Замечание 2 . Если в столбцах коэффициентов при свободных переменных нет ни одного положительного элемента, то переход к новому опорному решению невозможен.

учимся
программировать

Программированию нельзя научить, можно только научится

Главная » Уроки по Численным методам » Урок 14. Решение систем линейных уравнений (СЛУ). Теорема Кронекера-Капелли. Решение СЛУ с помощью матричных уравнений

Урок 14. Решение систем линейных уравнений (СЛУ). Теорема Кронекера-Капелли. Решение СЛУ с помощью матричных уравнений

Система линейных уравнений:

(1)

Здесь и (i =1..m, j=1..n) — заданные, а — неизвестные действительные числа.
Матричной записью системы линейных уравнений называется выражение вида:
=, или кратко: = (2),
где:

=

=

столбец свободных членов

Упорядоченная совокупность n вещественных чисел (c1, c2. cn) называется решением системы(1), если в результате подстановки этих чисел вместо соответствующих переменных x1, x2. xn каждое уравнение системы обратится в арифметическое тождество; другими словами, если существует вектор C= (c1, c2. cn)T такой, что AC = B.

СЛУ называется совместной, или разрешимой, если она имеет, по крайней мере, одно решение. Система называется несовместной, или неразрешимой, если она не имеет решений.
Матрица
,
образованная путем приписывания справа к матрице A столбца свободных членов, называется расширенной матрицей системы.

Вопрос о совместности системы (1) решается следующей теоремой.

Теорема Кронекера-Капелли

Теорема Кронекера-Капелли. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг её основной матрицы равен рангу её расширенной матрицы.

Система имеет единственное решение, если ранг равен числу неизвестных, и бесконечное множество решений, если ранг меньше числа неизвестных.

Решить систему — это значит выяснить, совместна она или несовместна. Если система совместна, найти ее общее решение.

Пример. Исследовать систему линейных уравнений

Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований вычислим одновременно ранги обеих матриц.

Далее умножим вторую строку на -2 и сложим с третьей, а затем сложим третью строку с последней. Имеем
.
Ранг матрицы системы =3, так как матрица имеет три ненулевых строки,
а ранг расширенной матрицы =4.
Тогда согласно теореме Кронекера-Капелли система не имеет решений.

Для решения произвольной системы линейных уравнений нужно уметь решать системы, в которых число уравнений равно числу неизвестных, — так называемые системы крамеровского типа:
a11 x1 + a12 x2 +. + a1n xn = b1,
a21 x1 + a22 x2 +. + a2n xn = b2, (3)
. . . . . .
an1 x1 + an1 x2 +. + ann xn = bn.

Системы (3) решаются одним из следующих способов:
1) методом Гаусса, или методом исключения неизвестных;
2) по формулам Крамера;
3) матричным методом.

Матричный метод

Если матрица А системы линейных уравнений невырожденная, т.е. det A=0, то матрица А имеет обратную, и решение системы (3) совпадает с вектором . Иначе говоря, данная система имеет единственное решение. Отыскание решения системы по формуле X=C, C=A-1B называют матричным способом решения системы, или решением по методу обратной матрицы.

Задание 1: Решить систему уравнений матричным способом в Excel

Ход решения:

  1. Сначала надо записать систему в матричном виде и ввести ее на лист Excel:

, здесь ,

  1. Затем надо с помощью Excel найти обратную матрицу для матрицы А.
  2. Далее полученную матрицу нужно умножить на матрицу В.
  3. В результате получим ответ:

Задание 2: Самостоятельно решить матричным способом систему уравнений

Ответ для самопроверки:

Решение систем линейных уравнений

Решение систем линейных уравнений. Теорема Кронекера-Капелли

Пусть дана произвольная система линейных уравнений с неизвестными

Исчерпывающий ответ па вопрос о совместности этой системы дает теорема Кронекера-Капелла.

Теорема 4.1. Система линейных алгебраических уравнений совместна тогда и только тогда, когда ранг расширенной матрицы системы равен рангу основной матрицы.

Примем ее без доказательства.

Правила практического разыскания всех решений совместной системы линейных уравнений вытекают из следующих теорем.

Теорема 4.2. Если ранг совместной системы равен числу неизвестных, то система имеет единственное решение.

Теорема 4.3. Если ранг совместной системы меньше числа неизвестных, то система имеет бесчисленное множество решений.

Правило решения произвольной системы линейных уравнений

  1. Найти ранги основной и расширенной матриц системы. Если , то система несовместна.
  2. Если , система совместна. Найти какой-либо базисный минор порядка г (напоминание: минор, порядок которого определяет ранг матрицы, называется базисным). Взять уравнений, из коэффициентов которых составлен базисный минор (остальные уравнения отбросить). Неизвестные, коэффициенты которых входят в базисный минор, называют главными и оставляют слева, а остальные неизвестных называют свободными и переносят в правые части уравнений.
  3. Найти выражения главных неизвестных через свободные. Получено общее решение системы.
  4. Придавая свободным неизвестным произвольные значения, получим соответствующие значения главных неизвестных. Таким образом можно найти частные решения исходной системы уравнений.

Пример №4.1.

Исследовать на совместность систему

Решение:

Таким образом, , следовательно, система несовместна.

На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:

Другие темы по высшей математике возможно вам они будут полезны:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://saliyna.narod.ru/ChislMetody/Lesson14/Lecture.html

http://lfirmal.com/reshenie-sistem-linejnyih-uravnenij/

=