Промежутки возрастания и убывания функции по уравнению

Интервалы возрастания и убывания функции

Исследование функции с помощью производной

Определение : Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0) .
Точки минимума и максимума функции называются точками экстремума данной функции, а значения функции в этих точках – экстремумами функции.
Точками экстремума могут служить только критические точки I рода, т.е. точки, принадлежащие области определения функции, в которых производная f′(x) обращается в нуль или терпит разрыв.

Правило нахождения экстремумов функции y=f(x) с помощью первой производной

  1. Найти производную функции f′(x) .
  2. Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв.
  3. Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции f(x) . Если на промежутке f′(x) , то на этом промежутке функция убывает; если на промежутке f′(x)>0 , то на этом промежутке функция возрастает.
  4. Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.
  5. Вычислить значения функции в точках минимума и максимума.

С помощью приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции.

Пример №1 : Найти промежутки монотонности и экстремумы функции: f(x)=x 3 –3x 2 .
Решение: Найдем первую производную функции f′(x)=3x 2 –6x.
Найдем критические точки по первой производной, решив уравнение 3x 2 –6x=0; 3x(x-2)=0 ;x = 0, x = 2

Исследуем поведение первой производной в критических точках и на промежутках между ними.

x(-∞, 0)0(0, 2)2(2, +∞)
f′(x)+00+
f(x)возрастаетmaxубываетminвозрастает

f(0) = 0 3 – 3*0 2 = 0
f(2) = 2 3 – 3*2 2 = -4
Ответ: Функция возрастает при x∈(-∞ ; 0)∪(2; +∞); функция убывает при x∈(0;2);
точка минимума функции (2;-4); точка максимума функции (0;0).

Правило нахождения экстремумов функции y=f(x) с помощью второй производной

  1. Найти производную f′(x) .
  2. Найти стационарные точки данной функции, т.е. точки, в которых f′(x)=0 .
  3. Найти вторую производную f″(x) .
  4. Исследовать знак второй производной в каждой из стационарных точек. Если при этом вторая производная окажется отрицательной, то функция в такой точке имеет максимум, а если положительной, то – минимум. Если же вторая производная равна нулю, то экстремум функции надо искать с помощью первой производной.
  5. Вычислить значения функции в точках экстремума.

Отсюда следует, что дважды дифференцируемая функция f(x) выпукла на отрезке [a, b], если вторая производная f»(x) ≥ 0 при всех х [a, b].

Все вычисления можно проделать в онлайн режиме.

Пример №2 . Исследовать на экстремум с помощью второй производной функцию: f(x) = x 2 – 2x — 3.
Решение: Находим производную: f′(x) = 2x — 2.
Решая уравнение f′(x) = 0, получим стационарную точку х =1. Найдем теперь вторую производную: f″(x) = 2.
Так как вторая производная в стационарной точке положительна, f″(1) = 2 > 0, то при x = 1 функция имеет минимум: fmin = f(1) = -4.
Ответ: Точка минимума имеет координаты (1; -4).

Возрастание и убывание функции на интервале, экстремумы

Чтобы определить характер функции и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Функция y = f ( x ) будет возрастать на интервале x , когда при любых x 1 ∈ X и x 2 ∈ X , x 2 > x 1 неравенство f ( x 2 ) > f ( x 1 ) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Функция y = f ( x ) считается убывающей на интервале x , когда при любых x 1 ∈ X , x 2 ∈ X , x 2 > x 1 равенство f ( x 2 ) > f ( x 1 ) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть ( a ; b ) , где х = а , х = b , точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x .

Основные свойства элементарных функций типа y = sin x – определенность и непрерывность при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале — π 2 ; π 2 , тогда возрастание на отрезке имеет вид — π 2 ; π 2 .

Точки экстремума, экстремумы функции

Точка х 0 называется точкой максимума для функции y = f ( x ) , когда для всех значений x неравенство f ( x 0 ) ≥ f ( x ) является справедливым. Максимум функции – это значение функции в точке, причем обозначается y m a x .

Точка х 0 называется точкой минимума для функции y = f ( x ) , когда для всех значений x неравенство f ( x 0 ) ≤ f ( x ) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида y m i n .

Окрестностями точки х 0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [ a ; b ] . Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х = b .

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Пусть задана функция y = f ( x ) , которая дифференцируема в ε окрестности точки x 0 , причем имеет непрерывность в заданной точке x 0 . Отсюда получаем, что

  • когда f ‘ ( x ) > 0 с x ∈ ( x 0 — ε ; x 0 ) и f ‘ ( x ) 0 при x ∈ ( x 0 ; x 0 + ε ) , тогда x 0 является точкой максимума;
  • когда f ‘ ( x ) 0 с x ∈ ( x 0 — ε ; x 0 ) и f ‘ ( x ) > 0 при x ∈ ( x 0 ; x 0 + ε ) , тогда x 0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком, то есть с + на — , значит, точка называется максимумом;
  • когда функция непрерывна в точке x 0 , тогда имеет производную с меняющимся знаком с — на + , значит, точка называется минимумом.

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Найти точки максимума и минимума заданной функции y = 2 ( x + 1 ) 2 x — 2 .

Область определения данной функции – это все действительные числа кроме х = 2 . Для начала найдем производную функции и получим:

y ‘ = 2 x + 1 2 x — 2 ‘ = 2 · x + 1 2 ‘ · ( x — 2 ) — ( x + 1 ) 2 · ( x — 2 ) ‘ ( x — 2 ) 2 = = 2 · 2 · ( x + 1 ) · ( x + 1 ) ‘ · ( x — 2 ) — ( x + 1 ) 2 · 1 ( x — 2 ) 2 = 2 · 2 · ( x + 1 ) · ( x — 2 ) — ( x + 2 ) 2 ( x — 2 ) 2 = = 2 · ( x + 1 ) · ( x — 5 ) ( x — 2 ) 2

Отсюда видим, что нули функции – это х = — 1 , х = 5 , х = 2 , то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х = — 2 , х = 0 , х = 3 , х = 6 .

y ‘ ( — 2 ) = 2 · ( x + 1 ) · ( x — 5 ) ( x — 2 ) 2 x = — 2 = 2 · ( — 2 + 1 ) · ( — 2 — 5 ) ( — 2 — 2 ) 2 = 2 · 7 16 = 7 8 > 0 , значит, интервал — ∞ ; — 1 имеет положительную производную. Аналогичным образом получаем, что

y ‘ ( 0 ) = 2 · ( 0 + 1 ) · 0 — 5 0 — 2 2 = 2 · — 5 4 = — 5 2 0 y ‘ ( 3 ) = 2 · ( 3 + 1 ) · ( 3 — 5 ) ( 3 — 2 ) 2 = 2 · — 8 1 = — 16 0 y ‘ ( 6 ) = 2 · ( 6 + 1 ) · ( 6 — 5 ) ( 6 — 2 ) 2 = 2 · 7 16 = 7 8 > 0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х = — 1 функция будет непрерывна, значит, производная изменит знак с + на — . По первому признаку имеем, что х = — 1 является точкой максимума, значит получаем

y m a x = y ( — 1 ) = 2 · ( x + 1 ) 2 x — 2 x = — 1 = 2 · ( — 1 + 1 ) 2 — 1 — 2 = 0

Точка х = 5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

y m i n = y ( 5 ) = 2 · ( x + 1 ) 2 x — 2 x = 5 = 2 · ( 5 + 1 ) 2 5 — 2 = 24

Ответ: y m a x = y ( — 1 ) = 0 , y m i n = y ( 5 ) = 24 .

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x 0 , этим и упрощает вычисление.

Найти точки максимума и минимума функции y = 1 6 x 3 = 2 x 2 + 22 3 x — 8 .

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

— 1 6 x 3 — 2 x 2 — 22 3 x — 8 , x 0 1 6 x 3 — 2 x 2 + 22 3 x — 8 , x ≥ 0

После чего необходимо найти производную:

y ‘ = 1 6 x 3 — 2 x 2 — 22 3 x — 8 ‘ , x 0 1 6 x 3 — 2 x 2 + 22 3 x — 8 ‘ , x > 0 y ‘ = — 1 2 x 2 — 4 x — 22 3 , x 0 1 2 x 2 — 4 x + 22 3 , x > 0

Точка х = 0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y ‘ x → 0 — 0 = lim y x → 0 — 0 — 1 2 x 2 — 4 x — 22 3 = — 1 2 · ( 0 — 0 ) 2 — 4 · ( 0 — 0 ) — 22 3 = — 22 3 lim y ‘ x → 0 + 0 = lim y x → 0 — 0 1 2 x 2 — 4 x + 22 3 = 1 2 · ( 0 + 0 ) 2 — 4 · ( 0 + 0 ) + 22 3 = + 22 3

Отсюда следует, что функция непрерывна в точке х = 0 , тогда вычисляем

lim y x → 0 — 0 = lim x → 0 — 0 — 1 6 x 3 — 2 x 2 — 22 3 x — 8 = = — 1 6 · ( 0 — 0 ) 3 — 2 · ( 0 — 0 ) 2 — 22 3 · ( 0 — 0 ) — 8 = — 8 lim y x → 0 + 0 = lim x → 0 — 0 1 6 x 3 — 2 x 2 + 22 3 x — 8 = = 1 6 · ( 0 + 0 ) 3 — 2 · ( 0 + 0 ) 2 + 22 3 · ( 0 + 0 ) — 8 = — 8 y ( 0 ) = 1 6 x 3 — 2 x 2 + 22 3 x — 8 x = 0 = 1 6 · 0 3 — 2 · 0 2 + 22 3 · 0 — 8 = — 8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

— 1 2 x 2 — 4 x — 22 3 , x 0 D = ( — 4 ) 2 — 4 · — 1 2 · — 22 3 = 4 3 x 1 = 4 + 4 3 2 · — 1 2 = — 4 — 2 3 3 0 x 2 = 4 — 4 3 2 · — 1 2 = — 4 + 2 3 3 0

1 2 x 2 — 4 x + 22 3 , x > 0 D = ( — 4 ) 2 — 4 · 1 2 · 22 3 = 4 3 x 3 = 4 + 4 3 2 · 1 2 = 4 + 2 3 3 > 0 x 4 = 4 — 4 3 2 · 1 2 = 4 — 2 3 3 > 0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x = — 6 , x = — 4 , x = — 1 , x = 1 , x = 4 , x = 6 . Получим, что

y ‘ ( — 6 ) = — 1 2 x 2 — 4 x — 22 3 x = — 6 = — 1 2 · — 6 2 — 4 · ( — 6 ) — 22 3 = — 4 3 0 y ‘ ( — 4 ) = — 1 2 x 2 — 4 x — 22 3 x = — 4 = — 1 2 · ( — 4 ) 2 — 4 · ( — 4 ) — 22 3 = 2 3 > 0 y ‘ ( — 1 ) = — 1 2 x 2 — 4 x — 22 3 x = — 1 = — 1 2 · ( — 1 ) 2 — 4 · ( — 1 ) — 22 3 = 23 6 0 y ‘ ( 1 ) = 1 2 x 2 — 4 x + 22 3 x = 1 = 1 2 · 1 2 — 4 · 1 + 22 3 = 23 6 > 0 y ‘ ( 4 ) = 1 2 x 2 — 4 x + 22 3 x = 4 = 1 2 · 4 2 — 4 · 4 + 22 3 = — 2 3 0 y ‘ ( 6 ) = 1 2 x 2 — 4 x + 22 3 x = 6 = 1 2 · 6 2 — 4 · 6 + 22 3 = 4 3 > 0

Изображение на прямой имеет вид

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x = — 4 — 2 3 3 , x = 0 , x = 4 + 2 3 3 , тогда отсюда точки максимума имеют значени x = — 4 + 2 3 3 , x = 4 — 2 3 3

Перейдем к вычислению минимумов:

y m i n = y — 4 — 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = — 4 — 2 3 3 = — 8 27 3 y m i n = y ( 0 ) = 1 6 x 3 — 2 2 + 22 3 x — 8 x = 0 = — 8 y m i n = y 4 + 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = 4 + 2 3 3 = — 8 27 3

Произведем вычисления максимумов функции. Получим, что

y m a x = y — 4 + 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = — 4 + 2 3 3 = 8 27 3 y m a x = y 4 — 2 3 3 = 1 6 x 3 — 2 2 + 22 3 x — 8 x = 4 — 2 3 3 = 8 27 3

y m i n = y — 4 — 2 3 3 = — 8 27 3 y m i n = y ( 0 ) = — 8 y m i n = y 4 + 2 3 3 = — 8 27 3 y m a x = y — 4 + 2 3 3 = 8 27 3 y m a x = y 4 — 2 3 3 = 8 27 3

Второй признак экстремума функции

Если задана функция f ‘ ( x 0 ) = 0 , тогда при ее f » ( x 0 ) > 0 получаем, что x 0 является точкой минимума, если f » ( x 0 ) 0 , то точкой максимума. Признак связан с нахождением производной в точке x 0 .

Найти максимумы и минимумы функции y = 8 x x + 1 .

Для начала находим область определения. Получаем, что

D ( y ) : x ≥ 0 x ≠ — 1 ⇔ x ≥ 0

Необходимо продифференцировать функцию, после чего получим

y ‘ = 8 x x + 1 ‘ = 8 · x ‘ · ( x + 1 ) — x · ( x + 1 ) ‘ ( x + 1 ) 2 = = 8 · 1 2 x · ( x + 1 ) — x · 1 ( x + 1 ) 2 = 4 · x + 1 — 2 x ( x + 1 ) 2 · x = 4 · — x + 1 ( x + 1 ) 2 · x

При х = 1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение при х = 1 . Получаем:

y » = 4 · — x + 1 ( x + 1 ) 2 · x ‘ = = 4 · ( — x + 1 ) ‘ · ( x + 1 ) 2 · x — ( — x + 1 ) · x + 1 2 · x ‘ ( x + 1 ) 4 · x = = 4 · ( — 1 ) · ( x + 1 ) 2 · x — ( — x + 1 ) · x + 1 2 ‘ · x + ( x + 1 ) 2 · x ‘ ( x + 1 ) 4 · x = = 4 · — ( x + 1 ) 2 x — ( — x + 1 ) · 2 x + 1 ( x + 1 ) ‘ x + ( x + 1 ) 2 2 x ( x + 1 ) 4 · x = = — ( x + 1 ) 2 x — ( — x + 1 ) · x + 1 · 2 x + x + 1 2 x ( x + 1 ) 4 · x = = 2 · 3 x 2 — 6 x — 1 x + 1 3 · x 3 ⇒ y » ( 1 ) = 2 · 3 · 1 2 — 6 · 1 — 1 ( 1 + 1 ) 3 · ( 1 ) 3 = 2 · — 4 8 = — 1 0

Значит, использовав 2 достаточное условие экстремума, получаем, что х = 1 является точкой максимума. Иначе запись имеет вид y m a x = y ( 1 ) = 8 1 1 + 1 = 4 .

Ответ: y m a x = y ( 1 ) = 4 ..

Третье достаточное условие экстремума

Функция y = f ( x ) имеет ее производную до n -го порядка в ε окрестности заданной точки x 0 и производную до n + 1 -го порядка в точке x 0 . Тогда f ‘ ( x 0 ) = f » ( x 0 ) = f ‘ ‘ ‘ ( x 0 ) = . . . = f n ( x 0 ) = 0 .

Отсюда следует, что когда n является четным числом, то x 0 считается точкой перегиба, когда n является нечетным числом, то x 0 точка экстремума, причем f ( n + 1 ) ( x 0 ) > 0 , тогда x 0 является точкой минимума, f ( n + 1 ) ( x 0 ) 0 , тогда x 0 является точкой максимума.

Найти точки максимума и минимума функции y y = 1 16 ( x + 1 ) 3 ( x — 3 ) 4 .

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y ‘ = 1 16 x + 1 3 ‘ ( x — 3 ) 4 + ( x + 1 ) 3 x — 3 4 ‘ = = 1 16 ( 3 ( x + 1 ) 2 ( x — 3 ) 4 + ( x + 1 ) 3 4 ( x — 3 ) 3 ) = = 1 16 ( x + 1 ) 2 ( x — 3 ) 3 ( 3 x — 9 + 4 x + 4 ) = 1 16 ( x + 1 ) 2 ( x — 3 ) 3 ( 7 x — 5 )

Данная производная обратится в ноль при x 1 = — 1 , x 2 = 5 7 , x 3 = 3 . То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y » = 1 16 x + 1 2 ( x — 3 ) 3 ( 7 x — 5 ) ‘ = 1 8 ( x + 1 ) ( x — 3 ) 2 ( 21 x 2 — 30 x — 3 ) y » ( — 1 ) = 0 y » 5 7 = — 36864 2401 0 y » ( 3 ) = 0

Значит, что x 2 = 5 7 является точкой максимума. Применив 3 достаточный признак, получаем, что при n = 1 и f ( n + 1 ) 5 7 0 .

Необходимо определить характер точек x 1 = — 1 , x 3 = 3 . Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y ‘ ‘ ‘ = 1 8 ( x + 1 ) ( x — 3 ) 2 ( 21 x 2 — 30 x — 3 ) ‘ = = 1 8 ( x — 3 ) ( 105 x 3 — 225 x 2 — 45 x + 93 ) y ‘ ‘ ‘ ( — 1 ) = 96 ≠ 0 y ‘ ‘ ‘ ( 3 ) = 0

Значит, x 1 = — 1 является точкой перегиба функции, так как при n = 2 и f ( n + 1 ) ( — 1 ) ≠ 0 . Необходимо исследовать точку x 3 = 3 . Для этого находим 4 производную и производим вычисления в этой точке:

y ( 4 ) = 1 8 ( x — 3 ) ( 105 x 3 — 225 x 2 — 45 x + 93 ) ‘ = = 1 2 ( 105 x 3 — 405 x 2 + 315 x + 57 ) y ( 4 ) ( 3 ) = 96 > 0

Из выше решенного делаем вывод, что x 3 = 3 является точкой минимума функции.

Ответ: x 2 = 5 7 является точкой максимума, x 3 = 3 — точкой минимума заданной функции.

Свойства функции. Возрастание и убывание, наибольшее и наименьшее значения, нули, промежутки знакопостоянства.

теория по математике 📈 функции

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом. Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет

Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.

График функции у=k/x выглядит следующим образом: По данному рисунку видно, что нулей функции не существует. Как найти нули функции?

  1. Для того чтобы найти нули функции, которая задана формулой, надо подставить вместо у число нуль и решить полученное уравнение.
  2. Если график функции дан на рисунке, то ищем точки пересечения графика с осью х.

Рассмотрим примеры нахождения нулей функции. Пример №1. Найти нули функции (если они существуют):

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Таким образом, мы нашли нуль функции: х=2

б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. Таким образом, так как у нас два множителя, составляем два уравнения: х + 76 = 0 и х – 95 = 0. Решаем каждое, перенося числа 76 и -95 в правую часть, меняя знаки на противоположные. Получаем х = – 76 и х = 95. Значит, нули функции это числа (-76) и 95.

в) в третьем случае: если вместо у подставить 0, то получится 0 = – 46/х, где для нахождения значения х нужно будет -46 разделить на нуль, что сделать невозможно. Значит, нулей функции в этом случае нет.

Пример №2. Найти нули функции у=f(x) по заданному графику.

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Рассмотрим по нашему рисунку, на какие промежутки разбивается область определения данной функции [-3; 7] ее нулями. По графику видно, что это 4 промежутка: [-3; -1), (-1;4), (4; 6) и (6; 7]. Помним, что значения из области определения смотрим по оси х.

На рисунке синим цветом выделены части графика в промежутках [-3; -1) и (4; 6), которые расположены ниже оси х. Зеленым цветом выделены части графика в промежутках (-1;4) и (6; 7], которые расположены выше оси х.

Значит, что в промежутках [-3; -1) и (4; 6) функция принимает отрицательные значения, а в промежутках (-1;4) и (6; 7] она принимает положительные значения. Это и есть промежутки знакопостоянства.

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Функция принимает положительные значения в промежутках [-2; -1) и (3; 8). Обратите внимание, что эти части на рисунке выделены зеленым цветом.

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

На графике видно, что с увеличением значения х от -3 до 2 значения у тоже увеличиваются. Также с увеличением значения х от 5 до 7 значения у опять увеличиваются. Проще говоря, слева направо график идет вверх (синие линии). То есть в промежутках [-3; 2] и [5; 7] функция у=f(x) является возрастающей.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.


источники:

http://zaochnik.com/spravochnik/matematika/funktsii/vozrastanie-i-ubyvanie-funktsii-na-intervale-ekstr/

http://spadilo.ru/svojstva-funkcii/