Простейшее уравнение с одной неизвестной

Уравнение с одним неизвестным

Уравнение вида ax = b, где x — неизвестное, a и b — числа, называется уравнением с одним неизвестным или линейным уравнением.

Число a называется коэффициентом при неизвестном, а число bсвободным членом.

Если в уравнении ax = b коэффициент не равен нулю (a ≠ 0), то, разделив обе части уравнения на a, получим . Значит, уравнение ax = b, в котором a ≠ 0, имеет единственный корень .

Если в уравнении ax = b коэффициент равен нулю (a = 0), а свободный член не равен нулю (b ≠ 0), то уравнение не имеет корней, так как равенство 0x = b, где b ≠ 0, не является верным ни при каком значении x.

Если в уравнении ax = b и коэффициент, и свободный член равны нулю (a = 0 и b = 0), то уравнение имеет бесконечное множество корней, так как равенство 0x = 0 верно при любом значении x.

Решение уравнений с одним неизвестным

Все уравнения с одним неизвестным решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения уравнений:

  • освобождение от дробных членов;
  • раскрытие скобок;
  • перенос всех членов, содержащих неизвестное, в одну часть, а известные — в другую (члены с неизвестными, как правило, переносят в левую часть уравнения);
  • сделать приведение подобных членов;
  • разделить обе части уравнения на коэффициент при неизвестном.

Пример 1. Решить уравнение

    Освобождаем уравнение от дробных членов:

20x — 28 — 24 = 9x + 36.

20x — 9x = 36 + 28 + 24.

Выполняем приведение подобных членов:

Делим обе части уравнения на коэффициент при неизвестном (на 11):

Делаем проверку, подставив в данное уравнение вместо x его значение:

Уравнение обратилось в верное равенство, следовательно, корень был найден верно.

Пример 2. Решить уравнение

    Это уравнение проще решить, не раскрывая скобок, поэтому делим обе части уравнения на 5:

Выполняем приведение подобных членов:

  • Делаем проверку, подставив в данное уравнение вместо x его значение:
    5(11 — 2) = 45;
    5 · 9 = 45;
    45 = 45.
  • Обычно все рассуждения при решении уравнения производят устно, а само решение записывается так:

    Математика

    54. Задачи на составление уравнений с одним неизвестным :

    Мы можем применить умение решать уравнение к решению задач. Нижеследующие примеры укажут, как это делать.

    Задача 1 . Продавался дом. У одного покупателя была сумма денег, равная ¾ его стоимости, а у другого — равная 5/6 его стоимости. Если бы они сложились вместе, то у них оказался бы излишек в 7000 руб. Какова стоимость дома?

    Положим, что дом стоит x рублей. Тогда (в согласии с началом задачи) первый покупатель имел (x · ¾) руб. или, что тоже самое, 3x/4 руб., а второй имел 5x/6 руб. Следующая фраза условия задачи, а именно — «если бы они сложились вместе, то у них оказался бы излишек в 7000 руб.» — является уравнением, выраженным словами: надо выразить его теперь не словами, а математическими знаками. Сначала возьмем подобную же фразу в упрощенной форме: «если сложить числа a и b, то полученная сумма даст излишек m против числа c» — эту фразу можно переписать математическими знаками так: a + b = c + m.

    Совершенно так же можно записать и то уравнение, которое имеется в нашей задаче: если сложить числа 3x/4 и 5x/6, то полученная сумма даст излишек 7000 над числом x, или
    3x/4 + 5x/6 = x + 7000.

    Полученное уравнение должно упростить: 1) умножим обе части уравнения на общего знаменателя 12 — получим

    9x + 10x = 12x + 84000

    2) Перенесем неизвестные члены в левую часть:

    9x + 10x – 12x = 84000

    Теперь мы можем дать ответ на задачу:

    Стоимость дома составляла 12000 руб.

    Задача 2 . В понедельник в классе отсутствовало 13 учеников, а во вторник 5 учеников. Отношение числа присутствующих учеников в понедельник к числу присутствующих во вторник равнялось 7/9. Сколько всего учеников было в этом классе?

    Положим, что всего в классе числилось x учеников. Тогда в понедельник присутствовало (x – 13) учеников, а во вторник (x – 5) учеников. Фраза «отношение числа присутствующих учеников в понедельник к числу присутствующих во вторник равнялась 7/9» является уравнением, выраженным словами, и может быть переписана математическими знаками:

    (x – 13) / (x – 5) = 7/9.

    Решим это уравнение:

    9(x – 13) = 7(x – 5) или 9x – 117 = 7x – 35.

    Отсюда получим: 2x = 82 и x = 41.
    Итак, в этом классе числились 41 ученик.

    Задача 3 . Найти дробь, знаменатель которой на 3 больше числителя и которая обращается в 4/5, если из ее числителя и знаменателя вычесть по 1.

    Эта задача несколько отличается от предыдущих. В ней требуется «найти дробь», но нельзя было бы начать решение задачи так, как это делали в 1-ый и 2-ой задаче: положим, что искомая дробь равна x. Нельзя было бы так начать потому, что в задаче речь идет отдельно о числителе и отдельно о знаменателе: приходится вычитать 1 отдельно из числителя и отдельно из знаменателя. Поэтому надо так обозначить дробь, чтобы были видны и ее числитель и ее знаменатель. Так как сказано, что знаменатель на 3 больше числителя, то можно обозначить буквою x или числителя или знаменателя, — тогда легко найти выражение для другого члена дроби и для самой дроби.

    Вот решение задачи.

    Положим, что числитель искомой дроби равен x. Тогда ее знаменатель равен x + 3, и искомая дробь равна x/(x+3). Фраза, «которая (т. е. дробь) обращается в 4/5, если из ее числителя и знаменателя вычесть по 1», является уравнением и может быть написана математически:
    (x – 1) / (x + 3 – 1) = 4/5 или (x – 1) / (x + 2) = 4/5.

    5(x – 1) = 4(x + 2); 5x – 5 = 4x + 8; 5x – 4x = 5 + 8; x = 13.

    Тогда знаменатель дроби равен 16 и искомая дробь 13/16.

    Задача 4 . Один брат старше другого на 14 лет, а через 6 лет он будет в 2 раза старше. Сколько лет каждому брату?

    Здесь надо дать два ответа: сколько лет младшему брату и сколько лет старшему, но решать задачу можно при помощи уравнения с 1 неизвестным, так как сказано, что старший брат на 14 лет старше младшего. Решим задачу так:

    Положим, что младшему брату x лет; тогда старшему (x + 14) лет.

    Через 6 лет будет младшему брату (x + 6) лет, а старшему (x + 14 + 6) лет или (x + 20) лет.

    Сказано, что старший будет тогда (через 6 лет) в 2 раза старше младшего, т. е. число x + 20 должно быть в 2 раза больше x + 6, а это можно записать в виде

    (x + 20) / (x + 6) = 2 или x + 20 = 2 (x + 6) или (x + 20) / 2 = x + 6.

    Наиболее естественная запись — первая: узнавать, во сколько раз одно число больше другого, надо делением; нам надо узнать, во сколько раз число (x + 20) больше числа (x + 6) — для этого надо (x + 20) разделить на (x + 6), и нам сказать ответ « в два раза». Поэтому пишем, что от этого деления получится число 2, т. е. (x + 20) / (x + 6) = 2.

    Вторая запись может быть объяснена так: нам сказано, что число (x + 20) должно быть в 2 раза больше числа (x + 6). Чтобы сравнять эти числа, надо, следовательно, меньшее из них, т. е. x + 6, умножить на 2. Тогда x + 20 = 2(x + 6).

    Тогда запись объясняется так: чтобы сравнять числа x + 20 и x + 6, надо большее из них уменьшить в 2 раза, и тогда (x + 20) / 2 = x + 6.

    Если мы возьмем 1-ую запись

    и умножим обе части уравнения на x + 6, то получим

    т. е. вторую запись. Легко также из 3-ей записи получить 2-ую или 1-ую и т. д.

    Во всяком случае, после освобождения уравнения от дробей, получим

    и легко решим уравнение:

    x + 20 = 2x + 12; 20 – 12 = 2x – x; 8 = x или x = 8.

    Итак, младшему брату 8 лет, а старшему 8 + 14 = 22 года.

    Задача 5 . Купили сахару и кофе, всего 28 фунтов; за фунт сахару платили 15 коп., а за фунт кофе 80 коп., за всю же покупку заплатили 12 рублей. Сколько купили сахару и сколько купили кофе?

    Здесь затруднение может быть в том, что в условии задачи даны числа то в копейках, то в рублях. Должно заранее установить, в каких единицах, в рублях или копейках, будет вестись решение. Решим задачу в рублях. Тогда решение таково:

    Положим, что купили x фунтов сахару. Тогда кофе купили (28 – x) фунтов.

    За сахар заплатили (15x) копеек или (3/20)x рублей (так как 15 коп. равны 3/20 рубля), а за кофе заплатили 80(28 – x) коп. или 4/5 (28 – x) руб. (так как 80 коп. = 4/5 рубля).
    Фраза «за всю покупку заплатили 12 руб.» может быть записана:

    3x/20 + 4(28x – x)/5 = 12

    [Если бы решали в копейках, то уравнение было бы 15x + 80(28 – x) = 1200].

    Освободим уравнение от дробей, для чего обе части умножим на 20, — получим:

    3x + 16(28 – x) = 240

    3x + 448 – 16x = 240

    3x – 16x = 240 – 448

    Итак, сахару купили 16 фунтов, а кофе 12 фунтов (28 – 16 = 12).

    Решение простых линейных уравнений

    О чем эта статья:

    Статья находится на проверке у методистов Skysmart.
    Если вы заметили ошибку, сообщите об этом в онлайн-чат
    (в правом нижнем углу экрана).

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

    Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

    Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

    Решить уравнение значит найти все возможные корни или убедиться, что их нет.

    Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Какие бывают виды уравнений

    Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

    Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

    Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

    Что поможет в решении:

    • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
    • если а равно нулю — у уравнения нет корней;
    • если а и b равны нулю, то корень уравнения — любое число.
    Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Числовой коэффициент — число, которое стоит при неизвестной переменной.

    Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

    Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

    Как решать простые уравнения

    Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

    1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

    Для примера рассмотрим простейшее уравнение: x+3=5

    Начнем с того, что в каждом уравнении есть левая и правая часть.

    Перенесем 3 из левой части в правую и меняем знак на противоположный.

    Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

    Решим еще один пример: 6x = 5x + 10.

    Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

    Приведем подобные и завершим решение.

    2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

    Применим правило при решении примера: 4x=8.

    При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

    Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

    Разделим каждую часть на 4. Как это выглядит:

    Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

    Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

      Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

    −4x = 12 | : (−4)
    x = −3

    Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

    Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

    Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

    Алгоритм решения простого линейного уравнения
    1. Раскрываем скобки, если они есть.
    2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
    3. Приводим подобные члены в каждой части уравнения.
    4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

    Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

    Примеры линейных уравнений

    Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

    Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

      Перенести 1 из левой части в правую со знаком минус.

    Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

    Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

    5х − 15 + 2 = 3х − 12 + 2х − 1

    Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

    5х − 3х − 2х = −12 − 1 + 15 − 2

    Приведем подобные члены.

    Ответ: х — любое число.

    Пример 3. Решить: 4х = 1/8.

      Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

    Пример 4. Решить: 4(х + 2) = 6 − 7х.

    1. 4х + 8 = 6 − 7х
    2. 4х + 7х = 6 − 8
    3. 11х = −2
    4. х = −2 : 11
    5. х = −2/11

    Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

    Пример 5. Решить:

    1. 3(3х — 4) = 4 · 7х + 24
    2. 9х — 12 = 28х + 24
    3. 9х — 28х = 24 + 12
    4. -19х = 36
    5. х = 36 : (-19)
    6. х = — 36/19

    Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

    5х — 15 + 2 = 3х — 2 + 2х — 1

    Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

    Приведем подобные члены.

    Ответ: нет решений.

    Пример 7. Решить: 2(х + 3) = 5 − 7х.


    источники:

    http://maths-public.ru/algebra1/equations-tasks

    http://skysmart.ru/articles/mathematic/reshenie-prostyh-linejnyh-uravnenij