Простейшие показательные и логарифмические уравнения и неравенство

Алгебра и начала математического анализа. 11 класс

Конспект урока

Алгебра и начала математического анализа, 11 класс Урок №44. Показательные и логарифмические уравнения и неравенства.

Перечень вопросов, рассматриваемых в теме

1) показательные уравнения и неравенства;

2) логарифмические уравнения и неравенства;

3) системы уравнений.

Глоссарий по теме

Показательными называются уравнения и неравенства, у которых переменная содержится в показатели степени.

Логарифмические уравнения и неравенства — это уравнения и неравенства, в которых переменная величина находится под знаком логарифма.

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Вы уже умеете решать все виды уравнений и неравенств. Наша задача обобщить изученное, привести знания в систему. Начнем с показательных уравнений.

a х =b. где a>0, a≠1

Если b>0, уравнение имеет один корень: x=loga b. График функции y=a x пересекает прямую y=b в одной точке.

Если b≤0 корней нет. График функции y=a x не пересекает прямую y=b.

При решении неравенств, обращаем внимание на основание. Если а>0, знак неравенства сохраняется. Если а 0, a≠1.

Логарифмическое уравнение logax=b имеет один положительный корень x=a b при любом значении b.

График функции пересекает прямую y=b в одной точке.

Уравнение имеет один положительный корень x=a b при любом b. График функции у= logax пересекает прямую y=b в одной точке.

При решении логарифмических неравенств обращаем внимание на область допустимых значений. Затем с учетом ОДЗ и значения решаем неравенство.

Теперь рассмотрим методы решения. Основных приема два: приведение к одинаковому знаменателю и замена переменной.

1 прием. Как в показательном, так и в логарифмическом уравняем основания. Затем сравним показатели или числа, стоящие под знаком логарифма.

2 прием. Замена переменных.

Находим корни и делаем обратную замену. При решении неравенств применяем те же самые приемы.

При решении логарифмических уравнений, возможно появление посторонних корней. Причина их появления — расширение области определения исходного уравнения. Поэтому проверка корней логарифмического уравнения осуществляется либо по области определения, либо непосредственной подстановкой найденных корней в исходное логарифмическое уравнение.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Решить уравнение:

При х= -2 выражение lg(x-1) не имеет смысла, т.е. х=-2 посторонний корень. Ответ: х=2.

Пример 2. Найти значение выражения (х+у). x

Найдем область определения: х>0, у>0.

  1. lg(xy)=lg100 ↔ xy=100 ↔ 2xy=200
  2. сложим два уравнения: х 2 +2ху+у 2 =425+200=625 ↔ (х+у) 2 =625

Простейшие показательные и логарифмические уравнения и неравенства
презентация урока для интерактивной доски по алгебре (10 класс)

Простейшие показательные и логарифмические уравнения и неравенства

Скачать:

ВложениеРазмер
Простейшие показательные и логарифмические уравнения и неравенства-10класс1.24 МБ

Предварительный просмотр:

Подписи к слайдам:

Простейшие показательные и логарифмические уравнения и неравенства Выполнила: Есаян А.А. Учитель математики МАОУ СОШ №20

Цель урока: Обобщение и систематизация знаний, умений и навыков по теме: «Простейшие показательные и логарифмические уравнения и неравенства».

План: Простейшие показательные уравнения Простейшие логарифмические уравнения Простейшие показательные неравенства Простейшие логарифмические неравенства Тест

Дайте определение простейшего показательного уравнения Ответ 1. Простейшие показательные уравнения

Уравнение вида , где , называется простейшим показательным уравнением .

Что является решением уравнения ? Ответ

При уравнение не имеет решений При уравнение имеет единственный корень

Решите уравнения 1. Ответ: 2. Ответ: 3. Ответ:

Назовите вид простейшего логарифмического уравнения Ответ 2. Простейшие логарифмические уравнения

Уравнение вида , где , , называется простейшим логарифмическим уравнением .

Что является решением уравнения ? Ответ :

Р ешите уравнения 1. Ответ: 2. Ответ: 3. Ответ:

3. Простейшие показательные неравенства

Назовите виды простейших показательных неравенств Какие значения принимает a ?

Решим неравенство графическим методом При При

Аналогично решается неравенство

При При При При

Решите неравенства 1. Ответ: 2. Ответ: 3. Ответ: 4. Ответ:

1 . Т.к. 2>1 , то функция — возрастает. Ответ:

2 . Т.к. , то . Ответ:

3 . Т.к. , то неравенство не имеет решений. Ответ: нет решений.

4 . Т.к. 11 >1 , то функция — возрастает. Ответ:

4. Простейшие логарифмические неравенства

Какие виды простейших логарифмических неравенств Вы знаете? При каких условиях неравенства имеют решения?

Решим неравенства и графическим методом

Решите неравенства 1. Ответ: 2. Ответ:

1. Т.к. 2 >1 , то функция — возрастает. X>32 Ответ:

2. Т.к. , то функция убывает. Ответ:

Выберите промежуток, которому принадлежит корень уравнения

Отвечайте на следующий вопрос! Молодцы!

2. Чему равно произведение корней уравнения ?

Отвечайте на следующий вопрос! Молодцы!

3. Выберите промежуток, который является решением неравенства

Отвечайте на следующий вопрос! Молодцы!

4. Выберите промежуток, являющийся решением неравенства

Тестирование завершено! Молодцы!

Презентацию подготовили: Быкова С.В. Кузнецова О.А. Кокорина Л.Н.

Литература Никольский С. М., Потапов М. К., Решетников Н. Н., Шевкин А. В. Алгебра и начала анализа : Учебник для 10-11 кл. М.: Просвещение, 2002.

По теме: методические разработки, презентации и конспекты

Применение нестандартных способов при решении показательных и логарифмических уравнений и неравенств.

Разработка урока по теме «Применение нестандартных способов при решении показательных и логарифмических уравнений .

Решение показательных и логарифмических уравнений и неравенств

— Урок с использованием ИКТ (используется авторский мультимедийный продукт)9-11 кл. .-Тема. Решение логарифмических и показательных неравенств. 11 класс.Тип. Урок повторения, систематизации и обобщени.

Система устных работ по теме «Показательные и логарифмические уравнения и неравенства»

Активная умственная деятельность учащихся при получении новых знаний, их закреплении и трансформации в новые области не возможна без устных упражнений.При работе с устными упражнениями рассматриваются.

Обобщающий урок по теме:»Решение показательных и логарифмических уравнений и неравенств» в 10 — 11 классе

Ребятам нравится практичесое приложение данного материала, спор двух очень сложных для решения и понимания функций (показательной и логарифмической).Решение большого количества различных заданий дает .

Показательные и логарифмические уравнения и неравенства.

Целями урока являются: повторение свойств показательной и логарифмической функций, отработка навыков решения показательных и логарифмических уравнений и неравенств, а также проверка умения учащихся ре.

Крупноблочное изучение тем : «Показательная логарифмическая функция», «Решение показательных и логарифмических уравнений и неравенств»

Данная методическая разработка поможеть учителю в планировании учебной деятельности.

Контрольная работа по алгебре 10 класс за 1 полугодие «Логарифмические выражения, показательные и логарифмические уравнения и неравенства»

В работе содержится материал из Открытого банка заданий ЕГЭ.

Неравенства. Метод замены множителя (метод рационализации)

Полезный прием для решения сложных неравенств на ЕГЭ по математике – метод рационализации неравенства. Другое название — метод замены множителя. Это один из тех секретов, о которых ученику рассказывает репетитор. В учебниках о таком не написано.

Суть метода в том, чтобы от неравенства, содержащего в качестве множителей сложные показательные или логарифмические выражения, перейти к равносильному ему более простому рациональному неравенству.

Давайте для начала вспомним, что такое равносильные уравнения (или неравенства) В школьной программе этот важный вопрос почти не обсуждается. Поэтому запишем определение.

Равносильными называются уравнения, множества решений которых совпадают.

Заметим, что внешне уравнения могут быть и не похожи друг на друга.

Например, уравнения ( x − 3) 2 = 0 и x − 3 = 0 равносильны. Число 3 является единственным решением и того, и другого.

Уравнения и также равносильны. Оба они не имеют решений. Другими словами, множество решений каждого из них – пусто.

Уравнения и не являются равносильными. Решением первого уравнения является только x = 5. Решения второго – два числа: x = 5 и x = 1. Получается, что возведение обеих частей уравнения в квадрат в общем случае приводит к уравнению, неравносильному исходному.

Аналогичное определение – для неравенств.

Равносильными называются неравенства, множества решений которых совпадают.
Например, неравенства 0″ src=»https://latex.codecogs.com/png.latex?(x-1)(x-3)%3E0″ /> и 0″ src=»https://latex.codecogs.com/png.latex?%5Cfrac%3Cx-1%3E%3Cx-3%3E%3E0″ /> равносильны – ведь множества их решений совпадают. В этом легко убедиться с помощью метода интервалов.

Неравенства log_<2>5″ src=»https://latex.codecogs.com/png.latex?log_%3C2%3Ex%3Elog_%3C2%3E5″ /> и 5″ src=»https://latex.codecogs.com/gif.latex?x%3E&space;5″ /> также равносильны при 0″ src=»https://latex.codecogs.com/gif.latex?x%3E&space;0″ />. Заметим, что внешне эти неравенства не похожи – одно из них логарифмическое, другое алгебраическое.

Другими словами, при x > 0 неравенства 0″ src=»https://latex.codecogs.com/png.latex?log_%3C2%3Ex-log_%3C2%3E5%3E0″ /> и 0″ src=»https://latex.codecogs.com/png.latex?x-5%3E0″ /> имеют одинаковые решения. Если какое-либо число x > 0 является решением одного из них, то оно будет и решением второго.

А это значит, что при любом x > 0 выражение будет иметь такой же знак, как и выражение x − 5. Следовательно, если в какое-либо сложное неравенство входит в качестве множителя выражение то при выполнении условия x > 0 его можно заменить на более простое x − 5 и получить неравенство, равносильное исходному.

Вот ключевой момент. На этом и основан метод рационализации – замены множителей, содержащих сложные логарифмические или показательные выражения, на более простые алгебраические множители.

Например, выражение вида , где f и g – функции от x, a – число, можно заменить на более простое ( f − g) ( a − 1) – конечно, при условии, что f(x) > 0 и g(x) > 0. Доказательство легко провести самостоятельно.

А сейчас – самое главное: волшебная таблица, позволяющая заменять сложные логарифмические (или показательные) множители в неравенствах на более простые. Эта таблица является ключом к задаче С3. Вот увидите, она выручит вас на ЕГЭ по математике:

Сложный множительНа что заменить
log h f − log h g( h − 1) ( f − g)
log h f − 1( h − 1) ( f − h)
log h f( h − 1) ( f − 1)
h f − h g( h − 1) ( f − g)
h f − 1( h − 1) · f
f h − g h( f − g) · h
f, g — функции от x.
h — функция или число.

Конечно же, все выражения, которые содержат логарифмы, существуют при f, g, h > 0 и h ≠ 1.

Когда на ЕГЭ по математике вы применяете метод рационализации (замены множителя), — обязательно поясните, что вы им воспользовались. И не забудьте доказать соответствующую формулу. Иначе можно потерять балл.

Обратите внимание, что мы говорим о замене множителя в неравенствах вида Знак здесь может быть любой: >, ≥, ≤. Правая часть обязательно должна быть равна нулю. И заменяем мы именно множитель (а не слагаемое, например). Иначе ничего не получится.

Перейдем к практике – к решению задач из вариантов ЕГЭ по математике Профильного уровня.

1.

ОДЗ неравенства:

Применим метод рационализации. В соответствии с нашей таблицей, множитель заменим на (2 − x − 1)( x + 2 − 1). Множитель вида заменим на ( x + 3 − 1)(3 − x − 1). Таким образом, от логарифмического неравенства мы перешли к рациональному:

Решим его методом интервалов:

Ответ:

2.

Заметим, что выражение положительно при x ∈ ОДЗ. Умножим обе части неравенства на это выражение.
Упростим числитель правой части неравенства:


Поделим обе части неравенства на 5 x > 0:

Неравенство уже намного проще, чем исходное. Но основания степеней разные! Чтобы применить метод рационализации, нам придется представить 2 x − 1 в виде степени с основанием 3.

Неравенство примет вид:

Воспользуемся методом замены множителя. Множитель вида h f −h g можно заменить на ( h − 1) ( f − g). Да и логарифм в знаменателе можно заменить на выражение x + 1.

Оценим . Это необходимо сделать, чтобы правильно расставить точки на числовой прямой.

Ответ:

3.

Постараемся упростить это неравенство. Область допустимых значений

0;\\ x+1\neq 0. \end\right.» src=»https://latex.codecogs.com/png.latex?%5Cleft%5C%3C%5Cbegin%3Cmatrix%3E&space;x%3E0;%5C%5C&space;x+1%5Cneq&space;0.&space;%5Cend%3Cmatrix%3E%5Cright.» />Отсюда следует, что x > 0. Это хорошо, потому что при данных значениях x выражение x + 1 строго положительно, следовательно, мы можем умножить на него обе части неравенства. Да и на x 2 тоже можно умножить обе части неравенства, и тогда оно станет проще

Преобразуем числители выражений в левой и правой части и сделаем замену log2 x = t

Теперь обе части неравенства можно сократить на 5 t > 0.


Поскольку , выражение 2 t−1 можно записать как 3 ( t−1)·log32

Заметим, что log32 − 2 t. Решим его:

Итак, t ≥ 1 или t ≤ log32 − 2.
Вернемся к переменной x:

или

Ответ:

4. Еще одна задача из той же серии.

Запишем ОДЗ:

Умножим обе части неравенства на 0″ src=»https://latex.codecogs.com/png.latex?log%5E%3C2%3E_%3C2%3E32x%3E0″ />. Постараемся упростить числители выражений в левой и правой части.

Поделим обе части неравенства на 0.» src=»https://latex.codecogs.com/png.latex?2%5E%3Clog_%3C2%3E(4x)%3E%3E0.» />

Хорошо бы сделать замену. Пусть log2(4 x) = t. Тогда:

Неравенство примет вид:


Мы уже знаем, как представить число 7 в виде степени числа 2:

Применим метод рационализации.

Оценим

Применим в левой части неравенства формулу перехода к другому основанию

Последовательно применим метод замены множителя, то есть метод рационализации.
Напомним, что множитель log h f можно заменить на ( h-1)( f-1), а множитель (log h f — 1) — на ( h — 1)( f — h).

Поскольку 0″ src=»https://latex.codecogs.com/png.latex?(x+5)%5E%3C2%3E%3E0″ /> при x ∈ ОДЗ, а 0″ src=»https://latex.codecogs.com/png.latex?2x%5E%3C2%3E+10x+14%3E0″ /> > 0 при всех x, получим:

Ответ: x ∈ (-5; -3]

Посмотрим, чем поможет метод замены множителя в решении сложного показательного неравенства.

6. Решите неравенство:

Числитель дроби в левой части — однородное выражение, где каждое слагаемое имеет степень 2х. Поделим обе части неравенства на

Поскольку , поделим обе части неравенства на

Применяя метод рационализации, множитель вида заменяем на

Остается решить неравенство методом интервалов. Но как сравнить и ?

Что больше? Давайте представим как логарифм с основанием

7. Теперь логарифмическое неравенство. Обратите внимание, что здесь лучше всего записывать решение в виде цепочки равносильных переходов. И само неравенство, которое мы упрощаем, и область его допустимых значений мы записываем в одну систему. И решаем ее.

Мы объединили в систему и область допустимых значений, и само неравенство. Применим формулу логарифма частного, учитывая, что

Используем также условия

Обратите внимание, как мы применили формулу для логарифма степени. Строго говоря,

Согласно методу замены множителя, выражение заменим

Решить ее легко.

8. А теперь неравенство с ловушкой. Мы надеемся, что вы помните — нельзя извлекать корень из неравенства.

Извлекать корень из неравенства нельзя! Можно перенести все в левую часть неравенства и разложить на множители как разность квадратов:

Применим формулы разности и суммы логарифмов, следя за областью допустимых значений. Все выражения под логарифмами в исходном неравенстве должны быть положительны.

Посмотрим на второе и третье неравенства системы. Поскольку х+5 положительно, то и выражение должно быть положительно.

Заметим, что решения неравенства — это все числа, кроме

По методу рационализации, каждый из множителей вида заменяем на

Просто равносильные преобразования. Выражение положительно всегда — так как в уравнении дискриминант отрицателен. Осталось применить метод интервалов.


источники:

http://nsportal.ru/shkola/algebra/library/2021/02/07/prosteyshie-pokazatelnye-i-logarifmicheskie-uravneniya-i

http://ege-study.ru/ru/ege/materialy/matematika/pokazatelnye-i-logarifmicheskie-neravenstva-chast-2/