Простейшие тригонометрические уравнения с одз

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Репетитор по математике

Меня зовут Виктор Андреевич, — я репетитор по математике . Последние десять лет я занимаюсь только преподаванием. Я не «натаскиваю» своих учеников. Моя цель — помочь ребенку понять предмет, научить его мыслить, а не применять шаблоны, передать свои знания, а не просто «добиться результата».

Предусмотрен дистанционный формат занятий (через Skype или Zoom). На первом же уроке оцениваем уровень подготовки ребенка. Если ребенка устраивает моя подача материала, то принимаем решение о дальнейшем сотрудничестве — составляем расписание и индивидуальный план работы. После каждого занятия дается домашнее задание — оно всегда обязательно для выполнения. [в личном кабинете родители могут контролировать успеваемость ребенка]

Стоимость занятий

Набор на 2020/2021 учебный год открыт. Предусмотрен дистанционный формат.

Видеокурсы подготовки к ЕГЭ-2021

Решения авторские, то есть мои (автор ютуб-канала mrMathlesson — Виктор Осипов). На видео подробно разобраны все задания.

Теория представлена в виде лекционного курса, для понимания методик, которые используются при решении заданий.

Группа Вконтакте

В группу выкладываются самые свежие решения и разборы задач. Подпишитесь, чтобы быть в курсе и получать помощь от других участников.

Преимущества

Педагогический стаж

Сейчас существует много сайтов, где вам подберут репетитора по цене/опыту/возрасту, в зависимости от желаний. Но большинство анкет там принадлежат либо студентам, либо школьным учителям. Для них репетиторство — дополнительный временный заработок, из этого формируется отношение к деятельности. У студентов нет опыта и желания совершенствоваться, у школьных учителей — нет времени и сил после основной деятельности. Я занимаюсь только репетиторством с 2010 года. Все свои силы и знания трачу на совершенствование только в этой области.

Собственная методика

За время работы я накопил огромное количество материала для подготовки к итоговым экзаменам. Ребенку не будет даваться неадаптированная школьная программа. С каждым я разберу поэтапно специфичные примеры, темы, способы решений, необходимые для успешной сдачи ЕГЭ и ОГЭ. При этом это не будет «натаскиванием» на решение конкретных задач, но полноценная структурированная подготовка. Естественно, если таковые найдутся, устраню «пробелы» и в школьной программе.

Гарантированный результат

За время моей работы не было ни одного случая, где не прослеживалась бы четкая тенденция к улучшению знаний у ученика. Ни один откровенно не «завалил» экзамен. Каждый вырос в «понимании» математики в сравнении со своим первоначальным уровнем. Естественно, я не могу гарантировать, что двоечник за полгода подготовится на твердую «пять». Но могу с уверенностью сказать, что я подготовлю ребенка на его максимально возможный уровень за то время, что осталось до экзамена.

Индивидуальная работа

Все дети разные, поэтому способ и форма объяснения корректируются в зависимости от уровня понимания ребенком предмета. Индивидуальная работа с каждым учеником — каждому даются отдельные задания, теоретический материал.

Простейшие тригонометрические уравнения

п.1. Решение простейших тригонометрических уравнений

Про аркфункции (обратные тригонометрические функции) и их свойства – см. §9-11 данного справочника.
Обобщим результаты решения простейших уравнений, полученные в этих параграфах.

УравнениеОДЗРешение
$$ sinx=a $$$$ -1\leq a\leq 1 $$\begin x=(-1)^k arcsin a+\pi k\Leftrightarrow\\ \Leftrightarrow \left[ \begin x_1=arcsin a+2\pi k\\ x_2=\pi-arcsin a+2\pi k \end \right. \end
$$ cosx=a $$$$ -1\leq a\leq 1 $$\begin x=\pm arccos a+2\pi k \end
$$ tgx=a $$$$ a\in\mathbb $$\begin x=arctga+\pi k \end
$$ ctgx=a $$$$ a\in\mathbb $$\begin x=arcctga+\pi k\Leftrightarrow\\ \Leftrightarrow x=arctg\frac1a+\pi k \end

Частные случаи, для которых запись результата отличается от общей формулы:

a=0a=-1a=1
$$ sinx=a $$$$ x=\pi k $$$$ -\frac\pi2+2\pi k $$$$ \frac\pi2+2\pi k $$
$$ cosx=a $$$$ x=\frac\pi2+\pi k $$\begin \pi+2\pi k \end\begin 2\pi k \end
\begin sinx=\frac<\sqrt<2>><2>\\ x=(-1)^k arcsin\frac<\sqrt<2>><2>+\pi k=(-1)^k\frac\pi4+\pi k\Leftrightarrow \left[ \begin x_1=\frac\pi4+2\pi k\\ x_2=\frac<3\pi><4>+2\pi k \end \right. \end
\begin ctgx=3\\ x=arcctg3+\pi k\Leftrightarrow x=arctg\frac13+\pi k \end

п.2. Решение уравнений с квадратом тригонометрической функции

К простейшим также можно отнести уравнения вида:

УравнениеОДЗРешение
$$ sin^2x=a $$$$ 0\leq a\leq 1 $$\begin x=\pm arcsin\sqrt+\pi k \end
$$ cos^2x=a $$$$ 0\leq a\leq 1 $$\begin x=\pm arccos\sqrt+\pi k \end
$$ tg^2x=a $$$$ a\geq 0 $$\begin x=\pm arctg\sqrt+\pi k \end
$$ ctg^2x=a $$$$ a\geq 0 $$\begin x=\pm arcctg\sqrt+\pi k \end
\begin cos^x=\frac14\\ x=\pm arccos\frac12+\pi k=\pm\frac\pi3+\pi k \end \begin tg^2x=1\\ x=\pm arctg1+\pi k=\pm\frac\pi4+\pi k \end

п.3. Различные формы записи решений

Как известно, в тригонометрии все функции связаны между собой базовыми отношениями (см. §12 данного справочника). Если нам известна одна из функций, мы можем без труда найти все остальные. Преобразования в уравнениях приводят к тому, что решение может быть записано через любую из этих функций.
Кроме того, понижение степени или универсальная подстановка (см. §15 данного справочника) приводят к увеличению или уменьшению исходного угла в 2 раза, и ответ может оказаться очень непохожим на решения, полученные другими способами для того же уравнения.

Решим уравнение \(sin^2x=0,64\)
Для квадрата синуса решение имеет вид: \begin x=\pm arcsin\sqrt<0,64>+\pi k=\\ =\pm arcsin0,8+\pi k \end На числовой окружности этому решению соответствуют 4 базовых точки, которые можно представить по-разному: \begin x=\pm arcsin0,8+\pi k=\\ =\pm arccos0,6+\pi k=\\ =\pm arctg\frac43+\pi k \end

Если решать уравнение с помощью формулы понижения степени, получаем: \begin sin^2x=\frac<1-cos2x><2>=0,64\Rightarrow 1-cos2x=1,28\Rightarrow cos2x=-0,28\Rightarrow\\ \Rightarrow 2x=\pm arccos(-0,28)+2\pi k\Rightarrow x=\pm\frac12 arccos(-0,28)+\pi k \end Если же решать уравнение с помощью универсальной подстановки: \begin sin^2x=\left(\frac<2tg\frac<2>><1+tg^2\frac<2>>\right)^2=0,64\Rightarrow\frac<2tg\frac<2>><1+tg^2\frac<2>>=\pm 0,8\Rightarrow 1+tg^2\frac<2>=\pm 2,5tg\frac<2>\Rightarrow\\ \left[ \begin tg^2\frac<2>+2,5tg\frac<2>+1=0\\ tg^2\frac<2>-2,5tg\frac<2>+1=0 \end \right. \Rightarrow \left[ \begin \left(tg\frac<2>+2\right)\left(tg\frac<2>+\frac12\right)=0\\ \left(tg\frac<2>-2\right)\left(tg\frac<2>-\frac12\right)=0 \end \right. \Rightarrow \left[ \begin tg\frac<2>=\pm 2\\ tg\frac<2>=\pm\frac12 \end \right. \Rightarrow\\ \Rightarrow \left[ \begin x=\pm arctg2+2\pi k\\ x=\pm 2arctg\frac12+2\pi k \end \right. \end Таким образом, решая одно и то же уравнение, мы получаем очень разные по виду ответы. Однако, при проверке, все полученные множества решений совпадают.

п.4. Примеры

Пример 1. Решите уравнение обычным способом и с помощью универсальной подстановки. Сравните полученные ответы и множества решений. Сделайте вывод.
a) \(sin x=\frac<\sqrt<3>><2>\)

Обычный способ: \begin x=(-1)^k arcsin\frac<\sqrt<3>><2>+\pi k=(-1)^k\frac\pi3 +\pi k \Leftrightarrow\\ \Leftrightarrow \left[ \begin x=\frac\pi3+2\pi k\\ x=\frac<2\pi><3>+2\pi k \end \right. \end 2 базовых точки на числовой окружности.

Универсальная подстановка: \begin sinx=\frac<2tg\frac<2>><1+tg^2\frac<2>>\Rightarrow 1+tg^2\frac<2>=\frac<2tg\frac<2>><\sqrt<3>/2>\Rightarrow tg^2\frac<2>-\frac<4><\sqrt<3>>tg\frac<2>+1=0\\ D=\left(-\frac<4><\sqrt<3>>\right)^2-4=\frac<16><3>-4=\frac43,\ \ tg\frac<2>=\frac<\frac<4><\sqrt<3>>\pm\frac<2><\sqrt<3>>><2>\Rightarrow \left[ \begin tg\frac<2>=\frac<1><\sqrt<3>>\\ tg\frac<2>=\sqrt <3>\end \right. \\ \left[ \begin \frac<2>=\frac\pi6+\pi k\\ \frac<2>=\frac\pi3+\pi k \end \right. \Rightarrow \left[ \begin x=\frac\pi3+2\pi k\\ x=\frac<2\pi><3>+2\pi k \end \right. \Leftrightarrow x=(-1)^k\frac\pi3+\pi k \end Ответы и множества решений совпадают.
Ответ: \((-1)^k\frac\pi3+\pi k\)

Обычный способ: \begin 2x=\pm arccos\frac12+2\pi k\Rightarrow\\ x=\pm\frac12\left(arccos\frac12+2\pi k\right)=\\ =\pm\frac12\cdot\frac\pi3+\pi k=\pm\frac\pi6+\pi k \end 4 базовых точки на числовой окружности.

Универсальная подстановка: \begin cos2x=\frac<1-tg^2x><1+tg^2x>=\frac12\Rightarrow 2(1-tg^2x)=1+tg^2x\Rightarrow 3tg^2x=1\Rightarrow tgx=\pm\frac<1><\sqrt<3>>\\ x=\pm\frac\pi6+\pi k \end Ответы и множества решений совпадают.
Ответ: \(\pm\frac\pi6+\pi k\)

в) \(sin\left(\frac<2>+\frac\pi3\right)=1\)
Обычный способ: \begin \frac<2>+\frac\pi3=\frac\pi2+2\pi k\Rightarrow \frac<2>=\frac\pi2-\frac\pi3+2\pi k=\frac\pi6+2\pi k\Rightarrow x=\frac\pi 3+4\pi k \end Одна базовая точка на числовой окружности с периодом \(4\pi\).
Универсальная подстановка: \begin sin\left(\frac<2>+\frac\pi3\right)=\frac<2tg\frac<\frac<2>+\frac\pi3><2>><1+tg^2\frac<\frac<2>+\frac\pi3><2>>=1\Rightarrow tg^2\left(\frac<4>+\frac\pi6\right)-2tg\left(\frac<4>+\frac\pi6\right)-2tg\left(\frac<4>+\frac\pi6\right)+1=0\Rightarrow\\ \left(tg\left(\frac<4>+\frac\pi6\right)-1\right)^2=0\Rightarrow tg\left(\frac<4>+\frac\pi6\right)=1\Rightarrow \frac<4>+\frac\pi6=\frac<\pi><4>+\pi k\Rightarrow\\ \Rightarrow \frac<4>=\frac\pi4-\frac\pi6+\pi k\Rightarrow \frac<4>=\frac<\pi><12>+\pi k\Rightarrow x=\frac\pi3+4\pi k \end Ответы и множества решений совпадают.
Ответ: \(\frac\pi3+4\pi k\)

г*) \(tg\left(3x+\frac\pi3\right)=0\)
Обычный способ: \begin 3x+\frac\pi3=arctg0+\pi k=\pi k\Rightarrow 3x=-\frac\pi3+\pi k\Rightarrow x=-\frac\pi9+\frac<\pi k> <3>\end Универсальная подстановка: \begin tg\left(3x+\frac\pi3\right)=\frac<2tg\frac<3x+\frac\pi3><2>><1-tg^2\frac<3x+\frac\pi3><2>>=0\Rightarrow tg\frac<3x+\frac\pi3><2>=0\Rightarrow\frac<3x+\frac\pi3><2>=\pi k\Rightarrow\\ \Rightarrow 3x+\frac\pi3=2\pi k=3x=-\frac\pi3+2\pi k\Rightarrow=-\frac\pi9+\frac<2\pi> <3>\end При использовании универсальной подстановки потеряна половина корней (период увеличился в 2 раза). Это связано с тем, что мы отбросили еще одно решение: \(tg\frac<3x+\frac\pi3><2>\rightarrow\infty\) — значение тангенса у асимптот. Действительно, в этом случае дробь стремится к 0, что удовлетворяет уравнению. Получаем: \begin \frac<3x+\frac\pi3><2>=\frac\pi2+\pi k\Rightarrow 3x+\frac\pi3=\pi+2\pi k\Rightarrow 3x=\frac<2\pi><3>+2\pi k\Rightarrow x=\frac<2\pi><9>+\frac<2\pi k> <3>\end Таким образом, мы получили два семейства решений: \begin \left[ \begin x=-\frac\pi9+\frac<2\pi k><3>\\ x=\frac<2\pi><9>+\frac<2\pi> <3>\end \right. \end Представим последовательности решений в градусах, подставляя возрастающие значения \(k\): \begin \left[ \begin x=-20^<\circ>+120^<\circ>k=\left\<. -20^<\circ>,100^<\circ>,220^<\circ>. \right\>\\ x=40^<\circ>+120^<\circ>k=\left\<. 40^<\circ>,160^<\circ>,280^<\circ>. \right\> \end \right. \end Теперь представим полученное обычным способом решение в градусах: $$ x=-\frac\pi9+\frac<\pi k><3>=-20^<\circ>+60^<\circ>k=\left\<. -20^<\circ>,40^<\circ>,100^<\circ>,160^<\circ>,220^<\circ>,280^<\circ>. \right\> $$ Получаем, что: \begin \left[ \begin x=-\frac\pi9+\frac<2\pi k><3>\\ x=\frac<2\pi><9>+\frac<2\pi> <3>\end \right. \Leftrightarrow x=-\frac\pi9+\frac<\pi k> <3>\end Ответы и множества решений после учета значений у асимптот совпадают.
Ответ: \(-\frac\pi9+\frac<\pi k><3>\)

Вывод: при использовании универсальной подстановки нужно быть аккуратным и помнить о возможности потерять корни. Семейство бесконечных решений для тангенса \(\frac<2>=\frac\pi2+\pi k\), т.е. \(x=\pi+2pi k\) нужно проверять как возможное решение для исходного уравнения отдельно.

При использовании универсальной подстановки можно потерять часть корней исходного тригонометрического уравнения.
Поэтому вместе с универсальной подстановкой проверяется также дополнительное возможное решение для бесконечного тангенса половинного угла: \(x=\pi+2\pi k\). \begin f(sin(x), cos(x). )=0\Leftrightarrow\\ \left[ \begin f\left(tg\left(\frac<2>\right)\right)=0\\ (?) x=\pi+2\pi k \end \right. \end где слева – исходное уравнение, а справа – универсальная подстановка и дополнительное возможное (не обязательное) семейство решений.

Пример 2. Решите уравнение обычным способом и с помощью формул понижения степени. Сравните полученные ответы и множества решений. Сделайте вывод.
a) \(sin^2x=\frac34\)

Обычный способ: \begin x=\pm arcsin\sqrt<\frac34>+\pi k=\pm arcsin\frac<\sqrt<3>><2>+\pi k=\pm\frac\pi3+\pi k \end

Формулы понижения степени: \begin sin^2x=\frac<1-cos2x><2>=\frac34\Rightarrow 1-cos2x=\frac32\Rightarrow cos2x=-\frac12\Rightarrow\\ \Rightarrow 2x=\pm arccos\left(-\frac12\right)+2\pi k=\pm\frac<2\pi><3>+2\pi k\Rightarrow x=\pm\frac\pi3+\pi k \end Ответы и множества решений совпадают.
Ответ: \(\pm\frac\pi3+\pi k\)

Обычный способ: \begin 2x=\pm arccos\sqrt<1>+\pi k=\pm 0+\pi k=\pi k\Rightarrow x=\frac<\pi k> <2>\end Формулы понижения степени: \begin cos^2 2x=\frac<1+cos4x><2>=1\Rightarrow 1+cos4x=2\Rightarrow\\ cos4x=1\Rightarrow 4x=0+2\pi k=2\pi k\Rightarrow x=\frac<\pi k> <2>\end

Ответы и множества решений совпадают.
Ответ: \(\frac<\pi k><2>\)

Обычный способ: \begin \frac<2>+\frac\pi3=\pm arcsin\sqrt<\frac14>+\pi k=\pm arcsin\frac12+\pi=\pm\frac\pi6+\pi k\\ \frac<2>=-\frac\pi3\pm\frac\pi6+\pi k= \left[ \begin \frac\pi2+\pi k\\ -\frac\pi6+\pi k \end \right. \Rightarrow x= \left[ \begin -\pi+2\pi k\\ -\frac\pi3+2\pi k \end \right. \end

Формулы понижения степени: \begin sin^2\left(\frac<2>+\frac\pi3\right)=\frac<1-cos\left(2\left(\frac<2>+\frac\pi3\right)\right)><2>=\frac14\Rightarrow 1-cos\left(x+\frac<2\pi><3>\right)=\frac12\Rightarrow\\ \Rightarrow cos\left(x+\frac<2\pi><3>\right)=\frac12\Rightarrow x+\frac<2\pi><3>=\pm arccos\left(\frac12\right)+2\pi k\Rightarrow\\ \Rightarrow x=-\frac<2\pi><3>\pm\frac\pi3+2\pi k= \left[ \begin -\pi+2\pi k\\ -\frac\pi3+2\pi k \end \right. \end Ответы и множества решений совпадают.
Ответ: \(-\pi+2\pi k,\ \ -\frac\pi3+2\pi k\)

Обычный способ: \begin x+\frac\pi4=\pm arctg\sqrt<1>+\pi k=\pm\frac\pi4+\pi k\Rightarrow\\ \Rightarrow x=-\frac\pi4\pm\frac\pi4+\pi k= \left[ \begin -\frac\pi2+\pi k\\ \pi k \end \right. \end

Формулы понижения степени: \begin cos^2\left(x+\frac\pi4\right)=\frac<1><1+\underbrace_<=1>>=\frac12\\ cos^2\left(x+\frac\pi4\right)=\frac<1+cos\left(2\left(x+\frac\pi4\right)\right)><2>=\frac12 \Rightarrow cos\left(2x+\frac\pi2\right)=0\Rightarrow\\ \Rightarrow -sin2x=0\Rightarrow sin2x=0 \Rightarrow 2x=\pi k\Rightarrow x=\frac<\pi k> <2>\end Из чертежа видно, что \begin \left[ \begin -\frac\pi2+\pi k\\ \pi k \end \right. \Leftrightarrow x=\frac<\pi k> <2>\end Оба решения соответствуют 4 базовым точкам на числовой окружности через каждые 90°. Множества решений совпадают. Ответы не совпадают, но являются равнозначными.
Ответ: \(\frac<\pi k><2>\)
Вывод: формулы понижения степени не расширяют и не урезают множество корней исходного уравнения. Полученные ответы либо совпадают, либо нет, но всегда являются равнозначными.


источники:

http://mathlesson.ru/node/8030

http://reshator.com/sprav/algebra/10-11-klass/prostejshie-trigonometricheskie-uravneniya/