Простейшие тригонометрические уравнения уравнение cost a

Урок-презентация «Арккосинус.Решение уравнения cost=a»

Разделы: Математика

Тип урока: изучение нового материала.

  • дидактические: сформировать у учащихся понятие арккосинуса; вывести общую формулу решения уравнения cos t = a; выработать алгоритм решения данного уравнения;
  • развивающие: развитие познавательного интереса, логического мышления, интеллектуальных способностей; формирование математической речи;
  • воспитательные: формировать эстетические навыки при оформлении записей в тетради и самостоятельность мышления у учащихся.

Оборудование: компьютер, мультимедийный проектор, экран, презентация «Арккосинус. Решение уравнения cos t =a» (Приложение 1) .

I. Организационный момент

Объявить тему и цели урока, познакомить учащихся с ходом проведения урока (слайд 1).

II. Актуализация опорных знаний

Повторить способ решения уравнения вида cos t = a, где а – действительное число, с помощью числовой окружности.

Решить уравнения: 1) cos t = ; 2) cos t = 1 (слайд 2).

Используем геометрическую модель – числовую окружность на координатной плоскости.

1) cos t = (слайд 3);

.

.

III. Изучение нового материала

Ввести проблемную ситуацию: любое ли тригонометрическое уравнение вида

cos t = a можно решить с помощью числовой окружности?

1) Предложить учащимся решить уравнение cos t = (слайд 5).

С помощью числовой окружности получим (слайд 6):

где t2 = – t1.

Когда впервые возникла ситуация с решение уравнений такого типа, ученым-математикам пришлось придумать способ её описания на математическом языке. В рассмотрение был введен новый символ arccos а (слайд 7).

Читается: арккосинус а; «arcus» в переводе с латинского значит «дуга» (сравните со словом «арка»). С помощью этого символа числа t1 и t2 записываются следующим образом: t1 = arccos , t2 = – arccos .

Теперь с помощью этого символа корни уравнения cos t = можно записать так: (слайд 8).

Предложить учащимся обобщить полученные знания, ответив на вопрос: «Что же означает arccos ?» (слайд 9).

Вывод: это число (длина дуги), косинус которого равен и которое принадлежит первой четверти числовой окружности.

2) Решить уравнение cos t = – (слайд 10).

С помощью числовой окружности и символа arccos а получим (слайд 11):

.

Предложить учащимся обобщить полученные знания, ответив на вопрос: «Что же означает arccos () ?» (слайд 12).

Вывод: это число (длина дуги), косинус которого равен и которое принадлежит второй четверти числовой окружности.

3) Сформулировать определение арккосинуса в общем виде (слайд 13):

Если │а│≤ 1, то

4) Рассмотреть примеры на вычисление арккосинуса.

Пример 1. Вычислите arccos (слайд 14).

Пусть

Значит, поскольку и Итак, arccos=

Пример 2. Вычислите arccos (слайд 15).

Пример 3. Вычислите arccos 0 (слайд 16).

Пример 4. Вычислите arccos 1 (слайд 17).

5) Сделать общий вывод о решении уравнения cos t = a (слайд 18).

Если │a│≤ 1, то уравнение cost = a имеет решения: .

6) Рассмотреть частные случи.

Выделим формулы для решения следующих уравнений: cos t = 0, cos t =1 , cos t = –1 (слайд 19).

7) Доказать теорему и рассмотреть её применение на практике.

Для любого а [-1;1] выполняется равенство arccos a + arccos (-a) = (слайд 20).

Применение теоремы (слайд 21).

На практике используется: arccos (-a) = — arccos a , где 0 ≤ а ≤ 1.

arccos= — arccos =

IV. Обобщение изученного материала

Составим алгоритм решения простейшего тригонометрического уравнения вида cos t = a:

  • составить общую формулу;
  • вычислить значение arccos a;
  • подставить найденное значение в общую формулу.

Пример 1. Решить уравнение cos t = (слайд 22 – 24).

Пример 2. Решить уравнение cos t = (слайд 25 – 27).

Пример 3. Решить уравнение cos t = (слайд 28).

Пример 4. Решить уравнение cos t = — 1,2 (слайд 29).

V. Подведение итогов урока (слайд 30)

Итак, сегодня на уроке мы ввели понятие арккосинуса; вывели общую формулу решения уравнения cos t = a и выработали алгоритм решения данного уравнения.

VI. Домашнее задание

Изучить теоретический материал.

Практическая часть (даётся задание в соответствии с используемым учебным пособием).

1. А.Г. Мордкович. Алгебра и начала анализа 10-11. Часть 1. Учебник.

2. А.Г. Мордкович и др. Алгебра и начала анализа, 10-11. Часть 2. Задачник.

3. А.Г. Мордкович, И.М. Смирнова. Математика-10 (для гуманитарных классов).

4. А.Г. Мордкович, П.В. Семенов. Алгебра и начала анализа-10.Часть 1. Учебник (профильный уровень).

РЕШЕНИЕ ПРОСТЕЙШИХ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ

Простейшими тригонометрическими уравнениями называют уравнения

Чтобы рассуждения по нахождению корней этих уравнений были более наглядными, воспользуемся графиками соответствующих функций.

19.1. Уравнение cos x = a

Объяснение и обоснование

  1. Корни уравненияcosx=a.

При |a| > 1 уравнение не имеет корней, поскольку |cos x| ≤ 1 для любого x (прямая y = a на рисунке из пункта 1 таблицы 1 при a > 1 или при a 1 уравнение не имеет корней, поскольку |sin x| ≤ 1 для любого x (прямая y = a на рисунке 1 при a > 1 или при a n arcsin a + 2πn, n Z (3)

2.Частые случаи решения уравнения sin x = a.

Полезно помнить специальные записи корней уравнения при a = 0, a = -1, a = 1, которые можно легко получить, используя как ориентир единичную окружность (рис 2).

Учитывая, что синус равен ординате соответствующей точки единичной окружности, получаем, что sin x = 0 тогда и только тогда, когда соответствующей точкой единичной окружности является точка C или тока D. Тогда

Аналогично sin x = 1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка A, следовательно,

Также sin x = -1 тогда и только тогда, когда соответствующей точкой единичной окружности является точка B, таким образом,

Примеры решения задач

Замечание. Ответ к задаче 1 часто записывают в виде:

19.3. Уравнения tg x = a и ctg x = a

Объяснение и обоснование

1.Корни уравнений tg x = a и ctg x = a

Рассмотрим уравнение tg x = a. На промежутке функция y = tg x возрастает (от -∞ до +∞). Но возрастающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение tg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арктангенса равен: x1 = arctg a и для этого корня tg x = a.

Функция y = tg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения tg x = a:

При a=0 arctg 0 = 0, таким образом, уравнение tg x = 0 имеет корни x = πn (n Z).

Рассмотрим уравнение ctg x = a. На промежутке (0; π) функция y = ctg x убывает (от +∞ до -∞). Но убывающая функция принимает каждое свое значение только в одной точке ее области определения, поэтому уравнение ctg x = a при любом значении a имеет на этом промежутке только один корень, который по определению арккотангенса равен: x1=arсctg a.

Функция y = ctg x периодическая с периодом π, поэтому все остальные корни отличаются от найденного на πn (n Z). Получаем следующую формулу корней уравнения ctg x = a:

таким образом, уравнение ctg x = 0 имеет корни

Примеры решения задач

Вопросы для контроля

  1. Какие уравнения называют простейшими тригонометрическими?
  2. Запишите формулы решения простейших тригонометрических уравнений. В каких случаях нельзя найти корни простейшего тригонометрического уравнения по этим формулам?
  3. Выведите формулы решения простейших тригонометрических уравнений.
  4. Обоснуйте формулы решения простейших тригонометрических уравнений для частных случаев.

Упражнения

Решите уравнение (1-11)

Найдите корни уравнения на заданном промежутке (12-13)

Арккосинус и решение уравнения cos t =a

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На этом уроке мы продолжим изучение арккосинуса и решение типовых уравнений и задач. В начале урока решим нетабличное уравнение и проиллюстрируем решение на числовой окружности и на графике. Далее выведем общую формулу ответа для уравнения cos t = a и рассмотрим некоторые частные случаи решения. Далее мы продолжим решение тригонометрических уравнений, иллюстрируя решения на графике и на круге.


источники:

http://ya-znau.ru/znaniya/zn/280

http://interneturok.ru/lesson/algebra/10-klass/trigonometricheskie-uravneniyab/arkkosinus-i-reshenie-uravneniya-cos-t-a