Простейшие уравнения и неравенства с модулем

Урок алгебры в 9-м классе (занятие элективного курса) по теме «Решение уравнений и неравенств, содержащих модули»

Презентация к уроку

На занятии изучается методика решения уравнений и неравенств, содержащих модули. Даётся подробная классификация уравнений и неравенств с модулем.

Введение. Определение модуля и его геометрический смысл.

«Модуль» (от лат. modulus-мера) ввёл английский математик Р. Котес (1682–1716). Знак модуля – немецкий математик (в 1841г.) К. Вейерштрасс (1815–1897).

Модуль числа a есть расстояние от нуля до точки a,

Модуль разности двух чисел равен расстоянию между точками числовой прямой, соответствующим этим точкам.

Используя определение модуля и его геометрический смысл, можно решить простейшие уравнения и неравенства с модулем. Простейшие уравнения и неравенства удобно решать с помощью равносильных преобразований: возведение в квадрат и т.д.

Изучение нового материала

Учитель даёт систематизацию материала, классификацию уравнений и неравенств с модулем. Показывает презентацию. Таблица №1

Таблица №1 Классификация уравнений и неравенств с модулем

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ:

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Ничего нового. Мы и так знаем, что x = 1 является решением.

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Выражение под модулем обращается в нуль при . Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Получаем в этом случае:

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) . Тогда:

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Уравнения и неравенства с модулями

СОДЕРЖАНИЕ

  1. Модуль (абсолютная величина) числа
  2. Простейшие уравнения с модулями
  3. Уравнения, использующие свойство неотрицательности модуля
  4. Простейшие неравенства с модулями
  5. Неравенства с модулями, сводящиеся к квадратным неравенствам
  6. Уравнения с модулями, содержащие параметр
  7. Неравенства с модулями, содержащие параметр
  8. Задачи с модулями, связанные с расположением корней квадратного трехчлена в зависимости от параметра

ЗАДАЧИ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

Скачать пособие «Уравнения и неравенства с модулями» (формат pdf, 210кб)

С понятием модуля действительного числа можно ознакомиться в разделе «Абсолютная величина (модуль) действительного числа» нашего справочника.

С понятием квадратного трехчлена, решением квадратных уравнений, разложением квадратного трехчлена на множители можно ознакомиться в разделе «Квадратные уравнения» нашего справочника, а также в нашем учебно-методическом пособии для школьников по математике «Квадратный трехчлен».

Графики парабол и решение квадратных неравенств представлены в разделе «Парабола на координатной плоскости. Решение квадратных неравенств» нашего справочника.

Демонстрационные варианты ЕГЭ и ОГЭ

С демонстрационными вариантами ЕГЭ и ОГЭ по всем предметам, опубликованными на официальном информационном портале Единого Государственного Экзамена, можно ознакомиться на специальной страничке нашего сайта.

Электронный справочник по математике для школьников

При подготовке к ЕГЭ и ОГЭ по математике большую помощь может оказать наш электронный справочник по математике для школьников.

В справочник включены все разделы школьной программы, а также множество сведений для углубленного изучения курса математики.

Каждый раздел нашего справочника содержит не только теоретические сведения, но и решения типовых примеров и задач.


источники:

http://ege-study.ru/ru/ege/materialy/matematika/uravneniya-i-neravenstva-s-modulem/

http://www.resolventa.ru/index.php/modul