Пространство решений однородной системы линейных уравнений размерность

21. Пространство решений системы линейных однородных уравнений

Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

(30)

Так как столбец свободных членов в матрице А1 этой системы состоит только из нулей, то rang A = rang A1, т. е. система линейных однородных уравнений всегда совместна. В частности она всегда имеет нулевое решение. Рассмотрим множество всех возможных решений системы (30).

Пусть A =(A1, A2, … , An) и B =(B1, B2, … , Bn) – Любые два из них. Их можно рассматривать, как векторы в арифметическом n-мерном пространстве над полем Р. Пусть L – любой элемент поля Р. Тогда A +B = (A1 + B1, A2 + B2, … , An + Bn ), L×A = (LA1, LA2, … , LAn). Подставим компоненты этих векторов в произвольное S-е уравнение системы (30). Получим Итак, если A и B – Любые два решения системы (30) и L – любой элемент поля Р, то A +B И L×A тоже являются решением этой системы. Но тогда из теоремы 14 следует

Теорема 27. Множество решений системы линейных однородных уравнений с N Переменными есть линейное подпространство арифметического пространства Аn .

Теорема 28. Размерность пространства решений системы линейных однородных уравнений равна Nr, Где N – Число неизвестных, r – ранг матрицы системы.

Доказательство. Пусть L – пространство решений системы (30). Тогда L Ì Аn . Пусть A = (A1, A2, … Ar, Ar+1, … , An) – произвольное решение системы. Пусть (Ar+1, … , An) – набор свободных неизвестных, соответствующий этому решению. Множество всех возможных наборов свободных неизвестных есть арифметическое (Nr)-мерное пространство Аn–r . Зададим отображение J: L ® Аn–r по правилу

Покажем, что J – изоморфизм (определение 24). Для этого нужно проверить три условия.

1. Покажем, что J – взаимнооднозначное отображение. Решению A = (A1, A2, … Ar, Ar+1, … , An) соответствует только один набор (Ar+1, … , An), следовательно, J – Однозначное отображение. Обратно, если задать элемент (Ar+1, … , An) из Аn–r , то по теореме Крамера найдётся только один набор (A1, A2, … Ar ) искомых неизвестных, т. е. каждый элемент J(A) из Аn–r соответствует единственному элементу из L .

Итак, пространство решений системы линейных однородных уравнений изоморфно арифметическому (Nr)-мерному пространству. Следовательно, размерность L равна (Nr).

Определение 29. Базис пространства решений системы линейных однородных уравнений называется её Фундаментальной системой решений.

Так как при изоморфизме базис пространства Аn–r соответствует базису пространства L , То для того. чтобы найти фундаментальную систему решений для системы (30), достаточно выбрать (Nr) линейно независимых наборов свободных неизвестных и для каждого из них найти решение данной системы.

Следствие. Если А1, а2, …, аN–r фундаментальная система решений системы линейных однородных уравнений (30) и С1, С2, … , СN–r – произвольные элементы поля Р, то С1А1 + С2А2 + … + СN–r АN–r – общее решение этой системы.

Пространство решений системы линейных однородных уравнений

Пространство решений системы линейных однородных уравнений

Пусть дана система (30) линейных однородных уравнений с коэффициентами из поля Р.

(30)

Так как столбец свободных членов в матрице А1 этой системы состоит только из нулей, то rang A = rang A1, т. е. система линейных однородных уравнений всегда совместна. В частности она всегда имеет нулевое решение. Рассмотрим множество всех возможных решений системы (30).

Пусть a =(a1, a2, … , an) и b =(b1, b2, … , bn) – любые два из них. Их можно рассматривать, как векторы в арифметическом n-мерном пространстве над полем Р. Пусть l – любой элемент поля Р. Тогда a +b = (a1 + b1, a2 + b2, … , an + bn ), l×a = (la1, la2, … , lan). Подставим компоненты этих векторов в произвольное s-е уравнение системы (30). Получим Итак, если a и b – любые два решения системы (30) и l – любой элемент поля Р, то a +b и l×a тоже являются решением этой системы. Но тогда из теоремы 14 следует

Теорема 27. Множество решений системы линейных однородных уравнений с n переменными есть линейное подпространство арифметического пространства Аn .

Теорема 28. Размерность пространства решений системы линейных однородных уравнений равна nr, где n – число неизвестных, r – ранг матрицы системы.

Доказательство. Пусть L – пространство решений системы (30). Тогда L Ì Аn . Пусть a = (a1, a2, … ar, ar+1, … , an) – произвольное решение системы. Пусть (ar+1, … , an) – набор свободных неизвестных, соответствующий этому решению. Множество всех возможных наборов свободных неизвестных есть арифметическое (nr)-мерное пространство Аn–r . Зададим отображение j: L ® Аn–r по правилу

Покажем, что j – изоморфизм (определение 24). Для этого нужно проверить три условия.

1. Покажем, что j – взаимнооднозначное отображение. Решению a = (a1, a2, … ar, ar+1, … , an) соответствует только один набор (ar+1, … , an), следовательно, j – однозначное отображение. Обратно, если задать элемент (ar+1, … , an) из Аn–r , то по теореме Крамера найдётся только один набор (a1, a2, … ar ) искомых неизвестных, т. е. каждый элемент j(a) из Аn–r соответствует единственному элементу из L .

Итак, пространство решений системы линейных однородных уравнений изоморфно арифметическому (nr)-мерному пространству. Следовательно, размерность L равна (nr).

Определение 29. Базис пространства решений системы линейных однородных уравнений называется её фундаментальной системой решений.

Так как при изоморфизме базис пространства Аn–r соответствует базису пространства L, то для того. чтобы найти фундаментальную систему решений для системы (30), достаточно выбрать (nr) линейно независимых наборов свободных неизвестных и для каждого из них найти решение данной системы.

Следствие. Если а1, а2, …, аn–r фундаментальная система решений системы линейных однородных уравнений (30) и С1, С2, … , Сn–r – произвольные элементы поля Р, то С1а1 + С2а2 + … + Сn–r аn–r – общее решение этой системы.

Связь решений однородной и неоднородной систем линейных уравнений

Пусть (25) произвольная система линейных неоднородных уравнений с коэффициентами из поля Р. Если в этой системе все свободные члены заменить нулями, то полученная система линейных однородных уравнений называется соответствующей однородной системой (это система (30)). Решения систем (25) и (30) удовлетворяют следующим свойствам:

(30)

10. Сумма решений данной неоднородной и соответствующей однородной системы линейных уравнений есть решение данной неоднородной системы. Пусть а – частное решение системы (25) и с – частное решение системы (30). Рассмотрим вектор (а + с).

20. Разность двух решений неоднородной системы линейных уравнений есть решение соответствующей однородной системы.

30. Если а – фиксированное частное решение системы (25), а с пробегает все решения системы (30), то (а + с) пробегает все решения системы (25).

Согласно 10, при любом с вектор (а + с) будет решением системы (25). Если d – любое решение системы (25), то, согласно 20, разность (d а) будет решением системы (30). Обозначив (d а) = с, получим d = (а + с).

Теорема 29. Если а – частное решение линейной неоднородной системы уравнений и а1, а2, …, аn–r – фундаментальная система решений соответствующей однородной системы уравнений, то общее решение данной неоднородной системы имеет вид

(Иными словами, общее решение системы линейных неоднородных уравнений равно сумме частного решения этой системы и общего решения соответствующей однородной системы.)

Доказательство является следствием предыдущих свойств.

Задание подпространств конечномерного линейного пространства с помощью систем линейных уравнений

Пусть дано n-мерное линейное пространство L и пусть в нём зафиксирован базис е = (е1, е2, … , еn ). Пусть М – линейное подпространство в L .

Определение 30. Будем говорить, что система линейных уравнений задаёт подпространство М, если этой системе удовлетворяют координаты всех векторов из М и не удовлетворяют координаты никаких других векторов.

Из свойств решений однородной системы линейных уравнений следует, что любая однородная линейная система уравнений ранга r с n переменными задаёт в любом n-мерном пространстве Ln (если в нём зафиксирован базис) (n–r )-мерное линейное подпространство.

Справедливо и обратное утверждение. А именно, имеет место следующая теорема.

Теорема 30. Если в линейном n-мерном пространстве Ln зафиксирован базис, то любое его к-мерное линейное подпространство можно задать системой линейных однородных уравнений с n неизвестными ранга (n – к).

Доказательство. Пусть в Ln зафиксирован базис е = (е1, е2, … , еn ). Пусть – линейное к-мерное подпространство в Ln . Выберем в любой базис а = (а1, а2, … , ак). Пусть В матричной форме а = е × А, где А = .

Так как а – базис, то ранг матрицы А равен к.

Получили параметрические уравнения, определяющие .

После исключения параметров получится система (n – к) линейных однородных уравнений. Векторы а1, а2, … , ак являются её линейно независимыми решениями. Все остальные решения являются их линейными комбинациями.

Следовательно, система векторов (а1, а2, … , ак) будет фундаментальной системой решений полученной системы уравнений и поэтому ранг этой системы уравнений равен (n – к).

Пример. В пространстве L5 зафиксирован базис е = (е1, е2, е3, е4 , е5 ). Найти систему линейных однородных уравнений, задающих L3 = , если а1 = (1, –2, 2, 0, 1), а2 = (0, 4, 7, 0, 1), а3 = (–2, 3, –1, 0, 0).

Решение. Найдём ранг системы векторов (а1, а2, а3 ). Для этого достаточно найти ранг матрицы . Минор . Окаймляющий минор ¹ 0, следовательно, ранг матрицы равен 3, т. е. векторы а1, а2, а3 линейно независимы и подпространство L3 – трёхмерное. Согласно доказанной теоремы, оно может быть задано системой линейных однородных уравнений ранга 2.

d Î L3 Û d = с1а1 + с2а2 + с3а3 . Отсюда d Î L3 Û х1 = с1 – 2с3 , х2 = –2с1 + 4с2 + 3с3 , х3 = 2с1 + 7с2 – с3 , х4 = 0, х5 = с1 + с2. Если из первого второго и пятого уравнений выразить с1, с2 и с3 и подставить их в третье и четвёртое уравнения, то получим следующую систему

Замечание. Очевидно, система, задающая данное подпространство, определяется не единственным образом. К найденным уравнениям можно добавлять новые уравнения, являющиеся их линейными комбинациями.

Решебник.Ру / Кузнецов Л.А. Линейная алгебра. Задача 3

Системы линейных однородных уравнений

Постановка задачи. Найти какой-нибудь базис и определить размерность линейного пространства решений системы

1. Записываем матрицу системы:

и с помощью элементарных преобразований преобразуем матрицу к треугольному виду, т.е. к такому виду, когда все элементы, находящиеся ниже главной диагонали равны нулю. Ранг матрицы системы равен числу линейно независимых строк, т.е., в нашем случае, числу строк, в которых остались ненулевые элементы:

.

Размерность пространства решений равна . Если , то однородная система имеет единственное нулевое решение, если , то система имеет бесчисленное множество решений.

2. Выбираем базисных и свободных переменных. Свободные переменные обозначаем . Затем базисные переменные выражаем через свободные, получив таким образом общее решение однородной системы линейных уравнений.

3. Записываем базис пространства решений системы полагая последовательно одну из свободных переменных равной единице, а остальные нулю. Размерность линейного пространства решений системы равна количеству векторов базиса.

Примечание. К элементарным преобразованиям матрицы относят:

1. умножение (деление) строки на множитель, отличный от нуля;

2. прибавление к какой-либо строке другой строки, умноженной на любое число;

3. перестановка строк местами;

4. преобразования 1–3 для столбцов (в случае решения систем линейных уравнений элементарные преобразования столбцов не используются).

Задача 3. Найти какой-нибудь базис и определить размерность линейного пространства решений системы.

Выписываем матрицу системы и с помощью элементарных преобразований приводим ее к треугольному виду:

Полагаем , тогда

.

Размерность линейного пространства решений равна 3.

:: Рекомендуемая литература. Ремендуем покупать учебную литературу в интернет-магазине Озон


источники:

http://pandia.ru/text/78/155/21977.php

http://www.reshebnik.ru/solutions/10/3