Процесс спиртового брожения глюкозы протекает по уравнению реакции

Процесс брожения глюкозы С6Н12O6 с образованием этилового спирта протекает согласно уравнению: Вычислите объем углекислого газа (н.у.)

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,298
  • гуманитарные 33,622
  • юридические 17,900
  • школьный раздел 607,232
  • разное 16,830

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Реакция брожения глюкозы. Виды, значение и продукт брожения

Брожение глюкозы — одна из основных реакций, с помощью которой возможно приготовление спиртных напитков. Она может осуществляться разными путями, в каждом из которых образуются индивидуальные продукты. Этот процесс играет ключевую роль во многих отраслях нашей жизни, начиная с кулинарии и приготовления винно-водочных изделий и заканчивая реакциями, протекающими в нашем организме.

История

Процессом брожения глюкозы и других сахаров пользовались ещё древние люди. Они ели немного подбродившую пищу. Такая еда была безопаснее, так как содержала спирт, в среде которого гибли многие вредные бактерии. В Древнем Египте и Вавилоне люди уже умели сбраживать многие сахаросодержащие напитки и молоко. Когда людям в конце 18 века удалось лучше изучить этот процесс, его виды и возможности улучшения, очень сильно качественно выросли такие отрасли промышленности, как квасо-, пивоварение и винно-водочная.

Виды брожения

Как ни странно, но этот процесс бывает разным. И различают виды брожения глюкозы по конечным продуктам. Таким образом, существует молочнокислое, спиртовое, лимоннокислое, ацетоновое, маслянокислое и ещё несколько других. Поговорим немного о каждом виде по отдельности. Молочнокислое брожение глюкозы — основной процесс при приготовлении такой продукции, как простокваша, сметана, кефир, творог. Оно также используется для консервации овощей и выполняет ключевую функцию в нашем организме: в условиях недостатка кислорода глюкоза превращается в конечный продукт — молочную кислоту, которая обуславливает боли в мышцах в момент тренировки и немного после неё.

Спиртовое брожение отличается тем, что в качестве конечного продукта образуется этиловый спирт. Оно происходит при помощи микроорганизмов — дрожжей. И играет ключевую роль в кулинарии, так как помимо основного продукта при спиртовом брожении глюкозы выделяется углекислый газ (этим и объясняется пышность дрожжевого теста).

Лимоннокислое брожение происходит, как нетрудно догадаться, с образованием лимонной кислоты. Происходит оно под действием определённого вида грибов и является частью цикла Кребса, который обеспечивает дыхание всех клеток нашего организма.

Ацетоно-бутиловое брожение очень схоже с маслянокислым. В результате него образуются масляная кислота, бутиловый и этиловый спирты, ацетон и углекислый газ. При маслянокислом брожении образуется лишь соответствующая названию кислота и углекислый газ.

Сейчас мы рассмотрим все типы подробнее, а начнём с самого основного — спиртового брожения глюкозы. Будут подробно разобраны все реакции и нюансы их протекания.

Спиртовое брожение

Расскажем немного больше про брожение глюкозы, уравнение которого: С6Н12О6 = 2С2Н5ОН + 2CO2. Что можно узнать из этой реакции? Мы имеем два продукта: этиловый спирт и углекислый газ. За счёт последнего мы и наблюдаем взбухание дрожжевого теста. А за счёт первого имеем возможность получить незабываемый вкус вина и винных напитков. Но на самом деле это лишь упрощённое уравнение. Полная реакция брожения глюкозы сложнее, поэтому давайте разберём это немного глубже.

Существует такой процесс, как гликолиз. Буквально его название переводится как «расщепление сахара». Он происходит в организме, и его побочным продуктом является пировиноградная кислота, а основным — аденозинотрифосфорная кислота (АТФ), которая образуется в ходе этой реакции из другого соединения. Можно сказать, что АТФ является переносчиком энергии в организме, и фактически гликолиз служит для обеспечения нашего тела энергией.

Мы не зря коснулись этого процесса. На самом деле брожение очень схоже с гликолизом, так как первая стадия у них абсолютно одинаковая. Можно даже сказать, что реакция спиртового брожения глюкозы является продолжением гликолиза. Образовавшийся в ходе последнего пируват (ион пировиноградной кислоты) превращается в ацетальдегид (CH3-C(O)H) с выделением в качестве побочного продукта углекислого газа. После этого полученный продукт восстанавливается коферментом NADH, содержащимся в бактериях. Восстановление приводит к образованию этилового спирта.

Таким образом, реакция брожения глюкозы до этилового спирта выглядит так:

NADH служит катализатором реакции, а ион NAD + играет ключевую роль на ранней стадии гликолиза, и, образуясь в конце спиртового брожения, возвращается в процесс.

Перейдём к следующей разновидности исследуемого типа реакций.

Молочнокислое брожение глюкозы

От спиртового этот вид отличается тем, что происходит не под влиянием дрожжей, а с помощью молочнокислых бактерий. Поэтому мы имеем совершенно разные продукты. Молочнокислое брожение также происходит в наших мышцах при высоких нагрузках и недостатке кислорода.

Различают два вида этого процесса. Первый — гомоферментативное брожение. Если вы хоть раз слышали приставку «гомо», то наверняка понимаете, что она означает. Гомоферментативное брожение — это процесс с участием одного фермента. На первой стадии происходит гликолиз и образуется пировиоградная кислота. Затем полученный пируват (в растворе эта кислота может существовать только в виде ионов) подвергается гидрированию при помощи NADH + H и лактатдегидрогеназы. В результате продуктом восстановления является молочная кислота, которая составляет около 90% от всех получившихся в ходе реакции продуктов. Это соединение, однако, тоже может образовываться в виде двух разных изомеров: D и L. Эти типы отличаются тем, что являются зеркальными отражениями друг друга и, вследствие этого, по-разному воздействуют на наш организм. То, какой изомер будет образовываться в большей степени, определяет строение лактатдегидрогеназы.

Перейдём ко второму типу молочнокислого брожения — гетероферментативному. В этом процессе участвуют несколько ферментов, и он идёт по более сложному пути. Из-за этого в ходе реакции образуется больше различных продуктов: кроме молочной кислоты, мы можем найти там уксусную кислоту и этиловый спирт.

Вот мы и рассмотрели молочнокислое брожение. Это процесс, благодаря которому мы можем наслаждаться вкусом творога, простокваши, ряженки и кефира. Подведём итоги и запишем в общем виде реакцию молочнокислого брожения глюкозы: C6H12O6 = 2 C3H6O3 . Конечно, это упрощённая схема процесса гомоферментативного брожения, так как даже схема гетероферментативного процесса будет очень сложной. Химики до сих пор изучают молочное брожение глюкозы и выясняют полные его механизмы, поэтому нам ещё есть куда стремиться.

Лимоннокислое брожение

Реакции этого вида брожения происходят, как и при спиртовом, под действием грибов определённого штамма. Полный механизм этой реакции ещё не до конца изучен, и мы можем полагаться только на некоторые упрощения. Однако есть предположения, что начальная стадия процесса представляет собой гликолиз. Потом пировиноградная кислота превращается по очереди в различные кислоты и доходит до лимонной. Вследствие такого механизма в реакционной среде накапливаются другие кислоты — продукты неполного окисления глюкозы.

Этот процесс происходит под влиянием кислорода, и в общем виде его можно записать следующим уравнением: 2С6Н12O6 +3О2 = 2С6Н8О7 + 4Н2О. До того как этот вид брожения открыли, люди добывали лимонную кислоту исключительно выжимкой плодов соответствующего дерева. Однако в лимоне этой кислоты не более 15%, поэтому этот способ оказался нецелесообразен, и после открытия этой реакции всю кислоту начали получать методом брожения.

Маслянокислое брожение

Перейдём к следующему типу. Этот вид брожения происходит под действием маслянокислых бактерий. Они широко распространены, а процесс, который они вызывают, играет ключевую роль в биологически важных циклах. С помощью этих бактерий и происходит разложение мёртвых организмов. Масляная кислота, образующаяся в ходе реакций, привлекает своим запахом падальщиков.

Этот вид брожения используется в промышленности. Как нетрудно догадаться, им получают масляную кислоту. Её сложные эфиры широко используются в парфюмерии и имеют приятный запах, в отличие от неё самой. Однако не всегда маслянокислое брожение приносит пользу. Оно может вызывать порчу овощей, консервов, молока и других продуктов. Но это может произойти, если только в продукт попали маслянокислые бактерии.

Разберём механизм маслянокислого брожения глюкозы. Реакция его выглядит так: C6H12O6 → CH3CH2CH2COOH + 2CO2↑ + 2H2. В результате также образуется энергия, которая обеспечивает жизнедеятельность маслянокислых бактерий.

Ацетоно-бутиловое брожение

Этот тип очень схож с маслянокислым. Бродить таким способом может не только глюкоза, но и глицерин, и пировиноградная кислота. Этот процесс можно разделить на две стадии: первая (иногда её называют кислотной) представляет собой фактически маслянокислое брожение. Однако помимо масляной, выделяется ещё и уксусная кислота. В результате брожения глюкозы таким способом мы получаем продукты, которые идут во вторую стадию (ацетонобутиловую). Так как весь этот процесс происходит также под действием бактерий, то при подкислении среды (повышении концентрации кислот) происходит выделение специальных ферментов бактериями. Они индуцируют реакцию превращения продуктов брожения глюкозы в н-бутанол (бутиловый спирт) и ацетон. Помимо этого, может образовываться некоторое количество этанола.

Другие виды брожения

Помимо перечисленных пяти видов этого процесса, существуют ещё несколько. Например, это уксуснокислое брожение. Оно тоже происходит под действием многих бактерий. Этот вид брожения может использоваться в полезных целях при мариновании. Он предохраняет пищу от болезнетворных и опасных бактерий. Ещё различают щелочное или метановое брожение. В отличие от предыдущих типов, этот вид брожения может осуществляться для большинства органических соединений. В результате большого количества сложных реакций, органические вещества расщепляются на метан, водород и углекислый газ.

Биологическая роль

Брожение — самый древний способ добывания энергии живыми организмами. Одни существа производят органические вещества, попутно получая энергию, а другие разрушают эти вещества, тоже получая при этом энергию. На этом построена вся наша жизнь. И в каждом из нас брожение в том или ином виде протекает. Как мы уже говорили выше, молочнокислое брожение происходит в мышцах при интенсивной тренировке.

Что ещё почитать?

Если вас заинтересовала биохимия этого очень интересного процесса, стоит начать со школьных учебников по химии и биологии. Во многих вузовских учебниках изложен настолько подробный материал, что после их прочтения вы сможете стать просто экспертом в этой области.

Заключение

Вот мы и подошли к концу. Разобрали все виды брожения глюкозы и общие принципы протекания этих процессов, которые играют очень важную роль как в функционировании живых организмов, так и в нашей промышленности. Вполне возможно, что в будущем мы откроем ещё несколько видов этого древнего процесса и научимся использовать их на пользу себе, как сделали с уже известными нам.

Спиртовое брожение

В 1836 г. французский ученый Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей. Химическое уравнение спиртового брожения: C6H12O6 → 2C2H5OH + 2CO2 было дано французскими химиками А. Лавуазье (1789 г.) и Ж. Гей-Люссаком (1815 г.). Л. Пастер пришёл к выводу (1857 г.), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях («брожение — это жизнь без воздуха»). В противовес этому немецкий ученый Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожения впервые (1871 г.) указала русский врач-биохимик . Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта и CO2. При нагревании до 50°C и выше сок утрачивал бродильные свойства. Все это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик обнаружил (1905 г.), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожения. Исследования отечественных биохимиков , , и немецких биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная кислота участвует в важнейших этапах спиртового брожения. Этот вид брожения имеет наибольшее народнохозяйственное значение.

Спиртовое брожение есть процесс разложения сахара на спирт и углекислый газ. Оно протекает под действием микро­организмов в виде следующей реакции:

С6Н12О6 = 2С2Н5ОН + 2СО2 + 27 ккал

сахар этиловый углекислый

Кроме этилового спирта и углекислого газа, при этом полу­чаются также побочные продукты: уксусный альдегид, глице­рин, сивушные масла (бутиловый, изобутиловый, амиловый и изоамиловыйг спирты), уксусная и янтарная кислоты и др.

Спиртовое брожение углеводов вызывается дрожжами, от­дельными представителями мукоровых грибов и некоторыми бактериями. Однако грибы и бактерии вырабатывают спирта значительно меньше, чем дрожжи.

Спиртовое брожение используется человеком с глубокой древности при изготовлении вина, пива, браги и др. Причина же брожения стала известна лишь в середине XIX в., после того, как Пастер установил, что разложение сахара на спирт и угле­кислый газ связано с дыханием дрожжей в анаэробных усло­виях.

Сбраживание сахара представляет собой сложный биохими­ческий процесс, поэтому приведенное выше уравнение выражает его лишь в общем суммарном виде.

Дрожжи в зависимости от условий брожения образуют раз­ные количества продуктов брожения, среди них могут преобла­дать либо этиловый спирт и углекислота, либо глицерин и уксусная кислота. Причем сбраживают они не все сахара, а только моносахариды (например, глюкозу) и дисахариды (на­пример, мальтозу). Полисахариды (крахмал) дрожжи сбражи­вать не способны, так как они не имеют нужного для расщеп­ления полисахаридов фермента (амилазы).

Брожение зависит не только от условий, в которых оно про­текает, но также от вида и расы применяющихся дрожжей. К числу этих условий относятся концентрация сахара, кислот­ность среды, температура и количество накопившегося спирта.

Наиболее благоприятная концентрация сахара в сбраживае­мом субстрате для большинства дрожжей составляет около 15%, при более высоких концентрациях брожение замедляется, а затем прекращается вовсе. Однако некоторые дрожжи могут вызывать брожение и при содержании в среде сахара свыше 60%. При концентрации сахара в субстрате в количестве менее 10% брожение протекает очень вяло.

Нормальной для спиртового брожения является кислая сре­да с рН, равным 4 или 4,5.

В щелочной среде брожение протекает с образованием гли­церина и уксусной кислоты.

Наилучшая температура брожения находится в пределах 28-32°С. При более высоких температурах брожение замедляет­ся, а при 50°С оно прекращается. Понижение температуры снижает энергию брожения, хотя полностью оно не останавли­вается даже при 0°С.

На практике процессы брожения ведут при температуре в пределах 20-28°С при верховом брожении и в пределах 5-10°С при низовом брожении.

Верховое брожение протекает очень энергично, с образова­нием на поверхности субстрата большого количества пены и с бурным выделением углекислого газа, потоками которого дрожжи выносятся в верхние слои субстрата. Дрожжи, вызы­вающие такое брожение, называются верховыми дрожжа­ми. После окончания брожения они оседают на дно бродильных сосудов.

Низовое брожение, вызываемое низовыми дрожжами, идет значительно спокойнее, с образованием небольшого коли­чества пены. Углекислый газ выделяется постепенно и дрожжи остаются в нижнем слое сбраживаемого субстрата.

Верховые дрожжи применяют для получения спирта и пекар­ских дрожжей, низовые — для производства вина и пива. Для получения вина и пива иногда используют и верховые дрожжи.

Образующийся в процессе брожения спирт оказывает вред­ное воздействие на дрожжи. При накоплении в субстрате спирта более 16% к объему самого субстрата брожение прекращается, а угнетающее действие образовавшегося спирта начинает про­являться уже при концентрации 2-5%. Некоторые же расы специально приученных дрожжей способны выдерживать весь­ма высокие концентрации спирта — до 20-25%.

Спиртовое брожение нормально протекает в анаэробных условиях, создающихся в процессе самого брожения. Но по­скольку дрожжи являются факультативными анаэробами, они могут разлагать сахар и в аэробных условиях с образованием углекислого газа и воды. Замечено, что в условиях хорошей аэрации дрожжи усиленно размножаются. Поэтому при произ­водстве пекарских дрожжей бродящий субстрат продувают воздухом.

Для промышленного получения спирта в качестве сырья ис­пользуют крахмалосодержащие продукты — картофель, зерно­вые культуры, а также отходы сахарного производства. В связи с тем, что дрожжи не способны сбраживать крахмал, его пред­варительно осахаривают с помощью солода, содержащего фер­мент амилазу. Солод получают из проросших зерен ячменя. В настоящее время для осахаривания применяют также гриб­ной солод (грибы рода аспергиллус), который во многих отно­шениях является выгоднее ячменного солода. В результате осахаривания крахмала образуется дисахарид мальтоза — со­лодовый сахар.

Подготовленный к брожению жидкий сахаристый субстрат, называемый затором, подкисляют, а затем в него вводят дрож­жи. Вырабатываемый дрожжами фермент мальтаза переводит солодовый сахар в моносахарид — глюкозу, а последняя с по­мощью фермента зимазы, также выделяемого дрожжами, расщепляется на спирт и углекислый газ. В дальнейшем многие исследователи детально изучили ферментативную природу и механизм спиртового брожения. Первая реакция превращения глюкозы при спиртовом брожении — присоединение к глюкозе под влиянием фермента глюкокиназы остатка фосфорной кислоты от аденозинтрифосфорной кислоты. При этом образуются аденозиндифосфорная кислота (АДФ) и глюкозо-6-фосфорная кислота. Последняя под действием фермента глюкозофосфати-зомеразы превращается в фруктозо-6-фосфорную кислоту, которая, получая от новой молекулы АТФ (при участии фермента фосфофруктокиназы) еще один остаток фосфорной кислоты, превращается в фруктозо-1,6-дифосфорную кислоту. Под влиянием фермента кетозо-1-фосфатальдолазы фруктозо-1,6-дифосфорная кислота расщепляется на глицеринальдегидфосфорную и диоксиацетонфосфорную кислоты, которые могут превращаться друг в друга под действием фермента триозофосфатизомеразы. Глицеринальдегидфосфорная кислота, присоединяя молекулу неорганической фосфорной кислоты и окисляясь под действием фермента дегидрогеназы фосфоглицеринальдегида, активной группой которого у дрожжей является никотинамидадениндинуклеотид (НАД), превращается в 1,3-дифосфоглицериновую кислоту. Молекула диоксиацетонфосфорной кислоты под действием триозофосфатизомеразы даёт вторую молекулу глицеринальдегидфосфорной кислоты, также подвергающуюся окислению до 1,3-дифосфоглицериновой кислоты; последняя, отдавая АДФ (под действием фермента фосфоглицераткиназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеро-мутазы превращается в 2-фосфоглицериновую кислоту, а она под влиянием фермента фосфопируват-гидратазы — в фосфоенол-пировиноградную кислоту. Последняя при участии фермента пируваткиназы передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула фенолпировиноградной кислоты, которая весьма нестойка и переходит в пировиноградную кислоту. Эта кислота при участии имеющегося в дрожжах фермента пируватдекарбоксилазы расщепляется на уксусный альдегид и двуокись углерода. Уксусный альдегид, реагируя с образовавшейся при окислении глицеринальдегидфосфорной кислоты восстановленной формой икотинамидадениндинуклеотида (НАД-Н), при участии фермента алкогольдегидрогеназы превращается в этиловый спирт. Суммарно уравнение спиртового брожения может быть представлено в следующем виде:

C6H12O6 + 2H3PO4 + 2АДФ → 2CH3CH2OH + 2CO2 + 2АТФ

Таким образом, при сбраживании 1 моля глюкозы образуются 2 моля этилового спирта, 2 моля CO2, а также в результате фосфорилирования 2 молей АДФ образуются 2 моля АТФ. Термодинамические расчёты показывают, что при спиртовом брожение превращение 1 моля глюкозы может сопровождаться уменьшением свободной энергии примерно на 210 кДж (50 000 кал), т. е. энергия, аккумулированная в 1 моле этилового спирта, на 210 кДж (50 000 кал) меньше энергии 1 моля глюкозы. При образовании 1 моля АТФ (макроэргических — богатых энергией фосфатных соединений) используется 42 кДж (10 000 кал). Следовательно, значительная часть энергии, освобождающейся при спиртовом брожении, запасается в виде АТФ, обеспечивающей разнообразные энергетические потребности дрожжевых клеток. Такое же биологическое значение имеет процесс брожения и у других микроорганизмов. При полном сгорании 1 моля глюкозы (с образованием CO2 и H2O) изменение свободной энергии достигает 2,87 МДж (686 000 кал). Иначе говоря, дрожжевая клетка использует лишь 7% энергии глюкозы. Это показывает малую эффективность анаэробных процессов по сравнению с процессами, идущими в присутствии кислорода. При наличии кислорода спиртовое брожение угнетается или прекращается и дрожжи получают энергию для жизнедеятельности в процессе дыхания. Наблюдается тесная связь между брожением и дыханием микроорганизмов, растений и животных. Ферменты, участвующие в спиртовом брожении, имеются также в тканях животных и растений. Во многих случаях первые этапы расщепления сахаров, вплоть до образования пировиноградной кислоты, — общие для брожения и дыхания. Большое значение процесс анаэробного распада глюкозы имеет и при сокращении мышц, первые этапы этого процесса также сходны с начальными реакциями спиртового брожения. Сбраживание углеводов (глюкозы, ферментативных гидролизатов крахмала, кислотных гидролизатов древесины) используется во многих отраслях промышленности: для получения этилового спирта, глицерина и других технических и пищевых продуктов. На спиртовом брожении основаны приготовление теста в хлебопекарной промышленности, виноделие и пивоварение. В спиртовом производстве применяют такие расы дрожжей, которые способны быстро и полно сбраживать сахар и устой­чивы к спирту. Для производства пива чаще всего используют ячмень, из которого получают солод, а из солода приготавливают сусло-сахаристую жидкость, подвергаемую брожению.

Вкусовые особенности пива зависят от качества сырья, тех­нологии и применяемых дрожжей. Низовые дрожжи, используемые в пивоварении, ведут мед­ленное брожение, не вызывают значительного помутнения сусла, а по окончании брожения образуют на дне плотный оса­док. Среди низовых дрожжей имеются сильнобродящие и слабобродящие дрожжи.

В виноделии до последнего времени дрожжи не играли той преимущественной роли, которая падает на их долю в произ­водстве пива. Основная масса вина получалась путем само­сбраживания сусла с помощью случайных дрожжей, находя­щихся на ягодах винограда. Применение чистых культур в виноделии дает возможность быстрее и полнее осуществить сбраживание виноградного сусла и получить вино с хорошим букетом. Отдельные расы винных дрожжей при сбраживании вино­градного сусла способны накапливать до 10-14% спирта. Каждый винодельческий район имеет расы дрожжей, специфи­ческие для данной местности, поэтому сорт получаемого вина определяется не только сортом винограда и технологией, но и биологическими особенностями используемых дрожжей.

Чистые культуры дрожжей обязательно применяются при изготовлении шипучих вин.

При производстве плодово-ягодных вин для каждого вида плодов или ягод подбирают соответствующие расы винных дрожжей, что позволяет получать сорта вин высокого качества.

Для получения хлебного теста используют пекарские дрож­жи, обладающие хорошей подъемной силой и способностью быстро размножаться. Образующиеся в процессе брожения спирт и углекислый газ разрыхляют и поднимают тесто, а по­бочные продукты брожения придают хлебу особый вкус и аромат.

В производстве хлеба применяют прессованные и жидкие дрожжи, а также закваски. Прессованные дрожжи являются скоропортящимся продуктом и потому должны храниться при низких температурах. Примесь в прессованных дрожжах диких дрожжей и бактерий свидетельствует о их низком ка­честве.

Жидкие дрожжи изготавливаются непосредственно на хлебо­заводах. В отличие от прессованных дрожжей они содержат и молочнокислые бактерии. Вырабатывая молочную кислоту, молочнокислые бактерии препятствуют развитию в тесте карто­фельной палочки, вызывающей тягучую болезнь хлеба.

Закваски представляют собой тесто, оставляемое от предыдущей выпечки. Их используют для разрыхления ржа­ного теста. Закваски содержат дрожжи и молочнокислые бак­терии.

В среду культурных дрожжей, которые применяются в про­изводстве, могут попадать посторонние микроорганизмы, вызывающие порчу продуктов. Так, дикие дрожжи нередко яв­ляются вредителями производства вина и пива. Они изменяют вкус и запах этих продуктов, вызывают их помутнение. Осо­бенно опасны пленчатые дрожжи микодерма. Развиваясь в вине и пиве, они окисляют спирт до углекислоты и воды и придают напиткам неприятный вкус.

Микодерма причиняет вред также при производстве пекар­ских дрожжей. Процесс получения пекарских дрожжей ведут с продуванием субстрата воздухом, так как это способ­ствует их быстрому размножению. Микодерма в таких усло­виях развивается быстрее, чем настоящие дрожжи. Поскольку микодерма не обладает способностью поднимать тесто, то при­сутствие ее в культурных дрожжах резко снижает их пекарские свойства.

Вредителями бродильных производств являются также не­которые виды молочнокислых бактерий, вызывающие помутне­ние вина и пива. Отдельные представители шаровидных бакте­рий (педиококки) способны придавать пиву особый привкус и мутность, а иногда ослизнять его. Уксуснокислые бактерии мо­гут вызвать порчу вина в результате окисления спирта в уксус­ную кислоту.

Молочнокислые бактерии подразделяют на 2 группы – гомоферментативные и гетероферментативные. Гомоферментативные бактерии (например, Lactobacillus delbrьckii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением:

Гетероферментативные бактерии (например, Bacterium lactis aerogenes) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических веществ — диацетила, эфиров и т. д.

При молочнокислом брожении превращение углеводов, особенно на первых этапах, близко к реакциям спиртового брожения, за исключением декарбоксилирования пировиноградной кислоты, которая восстанавливается до молочной кислоты за счёт водорода, получаемого от НАД-Н. Гомоферментативное молочнокислое брожение используется для получения молочной кислоты, при изготовлении различных кислых молочных продуктов, хлеба и в силосовании кормов в сельском хозяйстве. Гетероферментативное молочнокислое брожение происходит при консервировании различных плодов и овощей путём квашения.

Молочнокислое брожение представляет собой разложение сахара под действием молочнокислых бактерий с образованием молочной кислоты. В общем суммарном виде его можно пред­ставить следующим уравнением:

С6Н12О6 = 2С3Н6О3 + 18 ккал.

Это брожение часто наблюдается в молоке и вызывает его скисание. Отсюда и получили свое название вид брожения, бактерии, вызывающие его, а также основной продукт броже­ния — кислота. Молочнокислые бактерии бывают шаровидной и палочко­видной формы. Они неподвижны, спор не образуют и являются факультативными анаэробами.

Различные виды молочнокислых бактерий в равных условиях продуцируют разное количество кислоты, что объясняется их неодинаковой кислотоустойчивостью. Палочковидные бактерии образуют больше кислоты, чем шаровидные (кокки).

Молочнокислые бактерии способны сбраживать только моно — и дисахариды и совсем не сбраживают крахмал и другие поли­сахариды, так как не выделяют соответствующих ферментов.

Некоторые из этих бактерий вырабатывают антибиотические вещества, действующие против возбудителей кишечных заболе­ваний.

Молочнокислые бактерии широко распространены в природе, они постоянно встречаются в почве, на различных растениях, на плодах и овощах, в молоке и т. д.

Наибольшее значение имеют следующие молочнокислые бак­терии: молочнокислый стрептококк, болгарская, ацидофильная, сырная, дельбрюковская, огуречная, капустная палочки и др.

Молочнокислый стрептококк — соединенные попарно или в короткие цепочки шаровидные бактерии. Лучше всего разви­ваются при температуре 30-35°С, их температурный минимум около 10°С. При брожении накапливают до 1% кислоты. Широко применяются для приготовления молочнокислых продуктов (простокваши, кефира, сметаны, творога и др.).

Болгарская палочка нередко образует длинные цепочки, вы­делена из болгарской простокваши. Представляет собой непо­движную, бесспоровую палочку. Наилучшая для ее развития температура 40-45°С, температурный минимум 20°С. В молоке образует до 3,5% молочной кислоты.

Ацидофильная палочка получена из выделений кишечника грудного ребенка. Имеет температурный оптимум около 40°С, ми­нимальная температура развития 20°С. В молоке накапливает до 2,2% молочной кислоты. Применяется для приготовления молочнокислых продуктов — ацидофилина и ацидофильного мо­лока.

Сырная палочка имеет температурный оптимум около 40°С, используется в сыроделии.

Дельбрюковская палочка представляет собой одиночные или собранные в короткие цепочки клетки, не образующие спор. Температурный оптимум 45°С. Образует в среде до 2,5% кисло­ты. Применяется для промышленного получения молочной кислоты, а также в производстве хлебных заквасок.

Огуречная и капустная палочки развиваются при квашении овощей. Молочнокислое брожение имеет важное промышленное зна­чение. Оно применяется в производстве молочнокислых продук­тов, в хлебопечении, в процессах квашения овощей и силосова­ния кормов, при изготовлении кваса, в производстве молочной кислоты и т. д.

Молочнокислые бактерии относятся к числу постоянных оби­тателей молока и вызывают в нем ряд биохимических процес­сов. Кроме этих бактерий, в молоке могут находиться различные гнилостные бактерии. Количество микроорганизмов и их состав в молоке могут колебаться в значительных пределах. Свеже­выдоенное молоко содержит микроорганизмы, попадающие в него из протоков молочных желез вымени, в которых они оби­тают постоянно.

Нередко гнилостных бактерий в только что выдоенном мо­локе оказывается в несколько раз больше, чем молочнокислых бактерий. Однако развивающиеся молочнокислые бактерии образуют молочную кислоту, которая подавляет жизнедеятель­ность гнилостных бактерий.

Через некоторое время в молоке остаются главным образом молочнокислые бактерии, продолжающие усиленно размно­жаться и накапливать молочную кислоту, под действием кото­рой молоко вскоре свертывается. Полученная таким путем про­стокваша (самоквас) обычно имеет неприятный привкус и запах, так как в ней содержатся продукты жизнедеятельности других микроорганизмов. Употребление в пищу молока-само­кваса опасно для здоровья, так как в нем могут находиться патогенные микроорганизмы, сохранившие жизнеспособность, несмотря на образование молочной кислоты.

При получении молочнокислых продуктов (простокваши, кефира, ацидофилина и др.) в производственных условиях мо­локо предварительно подвергают пастеризации, а затем заква­шивают специальными заквасками, содержащими культуры молочнокислых бактерий. Это дает возможность получать мо­лочнокислые продукты определенного и высокого качества.

Молочнокислое брожение в хлебопечении позволяет предот­вратить развитие вредных бактерий в тесте, вызывающих кар­тофельную болезнь (тягучесть) хлеба, а также способствует улучшению вкусовых свойств хлеба.

Молочная кислота, образующаяся в результате этого бро­жения, придает особый вкус квашеным овощам и препятствует развитию гнилостных бактерий.

При промышленном получении молочной кислоты в качестве сырья используют крахмал, патоку и другие сахаристые мате­риалы. Молочную кислоту применяют в кондитерском производстве и в производстве безалкогольных напитков.

Пропионовокислое брожение представляет собой процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:

3C6H12О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2H2O

3С3Н6О3 = 2С2Н5СООН + СН3СООН + СО2 + Н2О

Брожение вызывается пропионовокислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, опти­мальная температура развития которых около 30°С. Пропионово-кислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.

Следует отметить, что пропионовокислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в резуль­тате жизнедеятельности молочнокислых бактерий, под влиянием пропионовокислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение угле­кислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксус­ная кислоты способствуют образованию специфического сыр­ного вкуса и запаха.

Пропионовокислые бактерии используются также для получения витамина B12.

При маслянокислом брожении происходит процесс разложения сахара под действием бактерий в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода. Оно протекает по уравнению:

С6Н12О6 = С3Н7СООН + 2СО2 + 2Н2 + 20 ккал

В качестве побочных продуктов при этом получаются эти­ловый и бутиловый спирты, уксусная кислота и др. Такое брожение может протекать в молоке и молочных продуктах, придавая им неприятные вкус и запах, характерные для масля­ной кислоты. Маслянокислые бактерии, вызывающие это брожение, пред­ставляют собой перитрихиально жгутованные подвижные, спорообразующие палочки, температурный оптимум их развития находится в пределах 30-40°С. Они являются строгими анаэро­бами и могут размножаться только при полном отсутствии кислорода воздуха или при очень незначительном его содер­жании. Споры, образуемые маслянокислыми бактериями, весьма устойчивы к неблагоприятным воздействиям, выдерживают ки­пячение в течение нескольких минут и погибают только при длительной стерилизации. Располагаются они либо в середине, либо ближе к одному из концов клетки, придавая ей форму ве­ретена или теннисной ракетки.

Маслянокислые бактерии способны сбраживать как простые сахара, так и более сложные углеводы — крахмал, пектиновые вещества и другие, а также глицерин. Эти бактерии широко распространены в природе, находясь в почве, в иле озер, прудов и болот, в скоплениях различных остатков и отбросов, навозе, загрязненной воде, молоке, сыре и т. д. Вызываемое этими бак­териями брожение имеет важное значение в превращениях ве­ществ в природе.

В народном хозяйстве маслянокислое брожение может при­нести большой вред, так как маслянокислые бактерии способ­ны вызывать массовую гибель картофеля и овощей, прогоркание молока и вспучивание сыров, порчу консервов и т. д.

На маслянокислые бактерии подавляюще действует кислая реакция среды, поэтому там, где развиваются молочнокислые бактерии, выделяющие молочную кислоту, жизнедеятельность маслянокислых бактерий приостанавливается. Если же в заква­шенных овощах медленно накапливается молочная кислота, то они могут быть испорчены в результате размножения в них маслянокислых бактерий. Эти бактерии вызывают порчу пасте­ризованного молока, в котором исключено молочнокислое брожение, а также сырого молока при длительном хранении его на холоде, когда деятельность молочнокислых бактерий ослаблена.

Развиваясь во влажной муке, маслянокислые бактерии при­дают ей прогорклый вкус. Маслянокислое брожение находит практическое применение в производстве масляной кислоты, которая широко используется в технике.


источники:

http://fb.ru/article/268301/reaktsiya-brojeniya-glyukozyi-vidyi-znachenie-i-produkt-brojeniya

http://pandia.ru/text/81/113/53101.php