Процесс спиртового брожения отражает уравнение

Спиртовое брожение

Спиртовым брожением называется процесс превраще­ния микроорганизмами сахара в этиловый спирт и углекислый газ:Превращениебезазотистых органических веществ

Возбудителями спиртового брожения являются дрож­жи. Спиртовое брожение могут вызвать некоторые мицели-альные грибы, однако при этом образуется значительно меньше спирта (5—7%). Брожение с образованием спирта и углекислого газа вызывают и некоторые бактерии, но по количественному соотношению между конечными и побоч­ными продуктами, а также характеру побочных продуктов бактериальное спиртовое брожение отличается от броже­ния, вызываемого дрожжами.

Связь спиртового брожения с жизнедеятельностью дрож­жей была отмечена еще в начале XIX в., но окончательно установлена Л. Пастером в 1857 г.

Большое значение в изучении спиртового брожения имело открытие «бесклеточного» брожения — соком из дрож­жей, не содержащим дрожжевых клеток. На основании это­го был сделан вывод, что в дрожжевом соке содержится какое-то активное вещество — фермент, которое еще Бух-нер предложил назвать зимазой. Дальнейшие исследования показали, что зимаза является комплексом ферментов.

Химизм спиртового брожения. Приведенное выше уравнение спиртового брожения выражает его лишь в общем суммарном виде. Спиртовое брожение для дрожжей является процессом получения энергии в анаэробных усло­виях.

В гл. 2 указывалось, что любое брожение протекает как бы в две стадии: первая — окислительная — включает пре­вращение глюкозы до пировппоградпон кислоты с образова­нием двух молекул восстановленного НАД • Н2— промежу­точного акцептора водорода:

а во второй стадии — восстановительный — НАД • Н2 передает водород конечному акцептору, который превращается в основной конечный продукт брожения.

Дрожжи обладают ферментом пируватдекарбоксплазон, который катализирует реакцию декарбоксилированпя ппро-виноградной кислоты с отщеплением СО2 и образованием уксусного альдегида:

Углекислый газ является одним из конечных продуктов спиртового брожения. Уксусный альдегид играет роль ко­нечного акцептора водорода. Вступая во взаимодействие с НАД • Н2 он при участии фермента алькогольдегидрогеназы восстанавливается в этиловый спирт, а НАД • Н2 регенери­руется (окисляется) в НАД:

Реакция восстановления уксусного альдегида в этило­вый спирт завершает спиртовое брожение.

С энергетической точки зрения брожение — процесс малоэкономичный; выше указывалось, что при сбражива-нии грамм-молекулы глюкозы синтезируется всего 2 моля АТФ. Недостаток выделяющейся при брожении энергии дрожжи возмещают за счет переработки большого количества сахара.

Наряду с главными продуктами брожения в небольшом количестве образуются побочные продукты: глицерин (1- 3%), уксусный альдегид, уксусная и янтарная кислоты, си­вушные масла — смесь высших спиртов (изоамилового, изо-бутилового, амилового, н-пропилового и др.) и некоторые другие вещества.

Образование дрожжами высших спиртов связано с азот­ным и углеводным обменами дрожжевых клеток. Высшие спирты участвуют в формировании аромата и вкуса напит­ков спиртового брожения.

Общие условия спиртового брожения. На развитие дрожжей и ход брожения влияют многие факторы: хими­ческий состав среды, ее концентрация и кислотность, тем­пература и др.

Не все сахара сбраживаются дрожжами. Большинство дрожжей способны сбраживать моносахариды, а из дисахаридов — преимущественно сахарозу и мальтозу. Пентозы могут использовать лишь некоторые виды дрожжей.

Крахмал дрожжи не сбраживают, так как они не име­ют амилолитических ферментов.

Наиболее благоприятная концентрация сахара в среде для большинства дрожжей от 10 до 15%. При повышении концентрации сахара энергия брожения 1 снижается, а при 30—35% брожение обычно почти прекращается, хотя в при­роде встречаются дрожжи, способные вызвать медленное брожение сахара даже при концентрации его до 60% и выше.

Хорошим источником азота для большинства дрожжей являются аммонийные соли; используются также аминокис­лоты и пептиды.

Нормально брожение протекает в кислой среде при рН, равной 4-5. В щелочной среде направление брожения из­меняется в сторону увеличения выхода глицерина.

Наибольшая скорость брожения наблюдается при тем­пературе около 30°С, а при 45-5О°С оно прекращается, так как дрожжи отмирают. При снижении температуры бро­жение замедляется, но полностью не прекращается даже при температурах, близких к 0°С.

По характеру брожения дрожжи подразделяют на верховые и низовые.

Брожение, вызываемое верховыми дрожжами, проте­кает бурно и быстро при температуре 20-28°С. На поверхности бродящей жидкости образуется много пены, и под действием выделяющегося углекислого газа дрожжи выносятся в верхние слои субстрата. По окончании брожения дрожжи оседают на дно бродильных сосудов рыхлым слоем.

Брожение, вызываемое низовыми дрожжами, протекает спокойнее и медленнее, особенно если оно протекает при сравнительно низких температурах — 4-10°С. Газ выделяется постепенно, пены образуется меньше, дрожжи не вы­носятся на поверхность сбраживаемой среды и быстро осе­дают на дно бродильных емкостей.

Этиловый спирт, накапливающийся в процессе броже­ния, неблагоприятно влияет на дрожжи. Его угнетающее действие проявляется уже при концентрации 2-5% в зависимости от вида и расы дрожжей. В большинстве случаев брожение прекращается при 12—14% (объемных) спирта. Не­которые расы дрожжей более спиртоустойчивы и образуют 16—18% спирта. Получены расы, продуцирующие до 20% спирта.

Спиртовое брожение протекает нормально в анаэробных условиях, при этом дрожжи почти не размножаются. В среде, богатой кислородом, дрожжи ведут себя как аэробные организмы и активно размножаются.

Практическое значение спиртового брожения. Процесс спиртового брожения лежит в основе виноделия, пиво­варения, хлебопечения, производства этилового спирта и глицерина. Совместно с молочно-кислым брожением оно ис­пользуется при получении некоторых кисло-молочных продуктов (кумыса, кефира), при квашении овощей. Однако спонтанно (самопроизвольно) возникающее спиртовое бро­жение в сахаросодержащих продуктах (фруктовых соках, сиропах, компотах, варенье и др.) вызывает их порчу — забраживание.

Производство этилового спирта. При производстве эти­лового спирта для пищевых целей используют крахмалосодержащее сырье — картофель, зерно злаков, отходы крах-мало-паточных заводов и сахаросодержащее сырье — ме­лассу (черную патоку) — отход свеклосахарного производства, а также сахарную свеклу. Для получения техническо­го спирта используют гидролизаты древесины и сульфитные щелока — отходы бумажных производств.

Из крахмалосодержащего сырья путем разваривания готовят затор, который подвергают осахариванию. Источни­ком осахаривающих (амилолитических) ферментов служит солодовое молоко, изготовляемое из проросших зерен яч­меня, или грибной солод — ферментный препарат из грибов рода Азрег^Шиз.

В зерновом и грибном солоде, кроме амилаз, содержатся протеолитические ферменты, вызывающие частичное превращение белков затора в растворимые азотсодержащие вещества. В результате получается жидкий сахаристый субстрат, называемый суслом, содержащий помимо сахара и другие питательные вещества для дрожжей.

При использовании мелиссы, сульфитных щелоков и гидролизатов древесины для улучшения питательной цен­ности в них вносят источники фосфора и азота. Мелласу, кроме того, разводят водой для снижения в ней концентра­ции сахара, солей и других веществ и подкисляют серной

кислотой. Подготовленные сахаристые заторы подвергают брожению.

Применяемые дрожжи предварительно выращивают в аэробных условиях на стерильных питательных сахарсодержащих заторах, подкисленных серной кислотой или заква­шенных мелочно-кислыми бактериями (обычно палочкой Дельбрюка).

В производстве спирта, как и в других, основанных на спиртовом брожении производствах, подбирают специаль­ные расы дрожжей, обладающие необходимыми для данно­го производства свойствами.

Применяют расы верховых дрожжей Saccharomyces cerevisiae, быстро размножающиеся, спиртоустойчивые, с высокой энергией брожения, устойчивые к высокому содер­жанию в среде сухих веществ.

По окончании процесса брожения дрожжи отделяют от сброженного затора (бражки), а спирт отгоняют на специ­альных перегонных аппаратах. Получается спирт-сырец и остается отход производства — барда. Барду используют как питательную среду для выращивания кормовых дрожжей, а спирт-сырец — для технических целей или подвергают очи­стке от примесей, т. е. ректификации. Отработанные дрож­жи выпускают в виде жидких и сухих кормовых дрожжей, а в отдельных производствах — в виде прессованных пекарских.

В процессе сбраживания заторов совместно с культур­ными (производственными) дрожжами могут развиваться попадающие извне (из воздуха, сырья, аппаратуры) посто­ронние микроорганизмы. Специфические условия — кислая реакция заторов, анаэробность, наличие образующегося при брожении спирта — неблагоприятны для развития многих микробов, однако молочно-кислые бактерии и некоторые дикие дрожжи способны развиваться в этих условиях. Они используют питательные вещества среды, угнетают произ­водственные дрожжи продуктами своего обмена, при этом выход спирта снижается.

Использование спиртового брожения в хлебопечении, производстве алкогольных, слабоалкогольных напитков, некоторых кисло-молочных продуктов изложено в гл. 7.

Дата добавления: 2014-12-15 ; просмотров: 16987 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Спиртовое брожение

В 1836 г. французский ученый Каньяр де ла Тур установил, что спиртовое брожение связано с ростом и размножением дрожжей. Химическое уравнение спиртового брожения: C6H12O6 → 2C2H5OH + 2CO2 было дано французскими химиками А. Лавуазье (1789 г.) и Ж. Гей-Люссаком (1815 г.). Л. Пастер пришёл к выводу (1857 г.), что спиртовое брожение могут вызывать только живые дрожжи в анаэробных условиях («брожение — это жизнь без воздуха»). В противовес этому немецкий ученый Ю. Либих упорно настаивал на том, что брожение происходит вне живой клетки. На возможность бесклеточного спиртового брожения впервые (1871 г.) указала русский врач-биохимик . Немецкий химик Э. Бухнер в 1897, отжав под большим давлением дрожжи, растёртые с кварцевым песком, получил бесклеточный сок, сбраживающий сахар с образованием спирта и CO2. При нагревании до 50°C и выше сок утрачивал бродильные свойства. Все это указывало на ферментативную природу активного начала, содержащегося в дрожжевом соке. Русский химик обнаружил (1905 г.), что добавленные к дрожжевому соку фосфаты в несколько раз повышают скорость брожения. Исследования отечественных биохимиков , , и немецких биохимиков К. Нейберга, Г. Эмбдена, О. Мейергофа и др. подтвердили, что фосфорная кислота участвует в важнейших этапах спиртового брожения. Этот вид брожения имеет наибольшее народнохозяйственное значение.

Спиртовое брожение есть процесс разложения сахара на спирт и углекислый газ. Оно протекает под действием микро­организмов в виде следующей реакции:

С6Н12О6 = 2С2Н5ОН + 2СО2 + 27 ккал

сахар этиловый углекислый

Кроме этилового спирта и углекислого газа, при этом полу­чаются также побочные продукты: уксусный альдегид, глице­рин, сивушные масла (бутиловый, изобутиловый, амиловый и изоамиловыйг спирты), уксусная и янтарная кислоты и др.

Спиртовое брожение углеводов вызывается дрожжами, от­дельными представителями мукоровых грибов и некоторыми бактериями. Однако грибы и бактерии вырабатывают спирта значительно меньше, чем дрожжи.

Спиртовое брожение используется человеком с глубокой древности при изготовлении вина, пива, браги и др. Причина же брожения стала известна лишь в середине XIX в., после того, как Пастер установил, что разложение сахара на спирт и угле­кислый газ связано с дыханием дрожжей в анаэробных усло­виях.

Сбраживание сахара представляет собой сложный биохими­ческий процесс, поэтому приведенное выше уравнение выражает его лишь в общем суммарном виде.

Дрожжи в зависимости от условий брожения образуют раз­ные количества продуктов брожения, среди них могут преобла­дать либо этиловый спирт и углекислота, либо глицерин и уксусная кислота. Причем сбраживают они не все сахара, а только моносахариды (например, глюкозу) и дисахариды (на­пример, мальтозу). Полисахариды (крахмал) дрожжи сбражи­вать не способны, так как они не имеют нужного для расщеп­ления полисахаридов фермента (амилазы).

Брожение зависит не только от условий, в которых оно про­текает, но также от вида и расы применяющихся дрожжей. К числу этих условий относятся концентрация сахара, кислот­ность среды, температура и количество накопившегося спирта.

Наиболее благоприятная концентрация сахара в сбраживае­мом субстрате для большинства дрожжей составляет около 15%, при более высоких концентрациях брожение замедляется, а затем прекращается вовсе. Однако некоторые дрожжи могут вызывать брожение и при содержании в среде сахара свыше 60%. При концентрации сахара в субстрате в количестве менее 10% брожение протекает очень вяло.

Нормальной для спиртового брожения является кислая сре­да с рН, равным 4 или 4,5.

В щелочной среде брожение протекает с образованием гли­церина и уксусной кислоты.

Наилучшая температура брожения находится в пределах 28-32°С. При более высоких температурах брожение замедляет­ся, а при 50°С оно прекращается. Понижение температуры снижает энергию брожения, хотя полностью оно не останавли­вается даже при 0°С.

На практике процессы брожения ведут при температуре в пределах 20-28°С при верховом брожении и в пределах 5-10°С при низовом брожении.

Верховое брожение протекает очень энергично, с образова­нием на поверхности субстрата большого количества пены и с бурным выделением углекислого газа, потоками которого дрожжи выносятся в верхние слои субстрата. Дрожжи, вызы­вающие такое брожение, называются верховыми дрожжа­ми. После окончания брожения они оседают на дно бродильных сосудов.

Низовое брожение, вызываемое низовыми дрожжами, идет значительно спокойнее, с образованием небольшого коли­чества пены. Углекислый газ выделяется постепенно и дрожжи остаются в нижнем слое сбраживаемого субстрата.

Верховые дрожжи применяют для получения спирта и пекар­ских дрожжей, низовые — для производства вина и пива. Для получения вина и пива иногда используют и верховые дрожжи.

Образующийся в процессе брожения спирт оказывает вред­ное воздействие на дрожжи. При накоплении в субстрате спирта более 16% к объему самого субстрата брожение прекращается, а угнетающее действие образовавшегося спирта начинает про­являться уже при концентрации 2-5%. Некоторые же расы специально приученных дрожжей способны выдерживать весь­ма высокие концентрации спирта — до 20-25%.

Спиртовое брожение нормально протекает в анаэробных условиях, создающихся в процессе самого брожения. Но по­скольку дрожжи являются факультативными анаэробами, они могут разлагать сахар и в аэробных условиях с образованием углекислого газа и воды. Замечено, что в условиях хорошей аэрации дрожжи усиленно размножаются. Поэтому при произ­водстве пекарских дрожжей бродящий субстрат продувают воздухом.

Для промышленного получения спирта в качестве сырья ис­пользуют крахмалосодержащие продукты — картофель, зерно­вые культуры, а также отходы сахарного производства. В связи с тем, что дрожжи не способны сбраживать крахмал, его пред­варительно осахаривают с помощью солода, содержащего фер­мент амилазу. Солод получают из проросших зерен ячменя. В настоящее время для осахаривания применяют также гриб­ной солод (грибы рода аспергиллус), который во многих отно­шениях является выгоднее ячменного солода. В результате осахаривания крахмала образуется дисахарид мальтоза — со­лодовый сахар.

Подготовленный к брожению жидкий сахаристый субстрат, называемый затором, подкисляют, а затем в него вводят дрож­жи. Вырабатываемый дрожжами фермент мальтаза переводит солодовый сахар в моносахарид — глюкозу, а последняя с по­мощью фермента зимазы, также выделяемого дрожжами, расщепляется на спирт и углекислый газ. В дальнейшем многие исследователи детально изучили ферментативную природу и механизм спиртового брожения. Первая реакция превращения глюкозы при спиртовом брожении — присоединение к глюкозе под влиянием фермента глюкокиназы остатка фосфорной кислоты от аденозинтрифосфорной кислоты. При этом образуются аденозиндифосфорная кислота (АДФ) и глюкозо-6-фосфорная кислота. Последняя под действием фермента глюкозофосфати-зомеразы превращается в фруктозо-6-фосфорную кислоту, которая, получая от новой молекулы АТФ (при участии фермента фосфофруктокиназы) еще один остаток фосфорной кислоты, превращается в фруктозо-1,6-дифосфорную кислоту. Под влиянием фермента кетозо-1-фосфатальдолазы фруктозо-1,6-дифосфорная кислота расщепляется на глицеринальдегидфосфорную и диоксиацетонфосфорную кислоты, которые могут превращаться друг в друга под действием фермента триозофосфатизомеразы. Глицеринальдегидфосфорная кислота, присоединяя молекулу неорганической фосфорной кислоты и окисляясь под действием фермента дегидрогеназы фосфоглицеринальдегида, активной группой которого у дрожжей является никотинамидадениндинуклеотид (НАД), превращается в 1,3-дифосфоглицериновую кислоту. Молекула диоксиацетонфосфорной кислоты под действием триозофосфатизомеразы даёт вторую молекулу глицеринальдегидфосфорной кислоты, также подвергающуюся окислению до 1,3-дифосфоглицериновой кислоты; последняя, отдавая АДФ (под действием фермента фосфоглицераткиназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеро-мутазы превращается в 2-фосфоглицериновую кислоту, а она под влиянием фермента фосфопируват-гидратазы — в фосфоенол-пировиноградную кислоту. Последняя при участии фермента пируваткиназы передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула фенолпировиноградной кислоты, которая весьма нестойка и переходит в пировиноградную кислоту. Эта кислота при участии имеющегося в дрожжах фермента пируватдекарбоксилазы расщепляется на уксусный альдегид и двуокись углерода. Уксусный альдегид, реагируя с образовавшейся при окислении глицеринальдегидфосфорной кислоты восстановленной формой икотинамидадениндинуклеотида (НАД-Н), при участии фермента алкогольдегидрогеназы превращается в этиловый спирт. Суммарно уравнение спиртового брожения может быть представлено в следующем виде:

C6H12O6 + 2H3PO4 + 2АДФ → 2CH3CH2OH + 2CO2 + 2АТФ

Таким образом, при сбраживании 1 моля глюкозы образуются 2 моля этилового спирта, 2 моля CO2, а также в результате фосфорилирования 2 молей АДФ образуются 2 моля АТФ. Термодинамические расчёты показывают, что при спиртовом брожение превращение 1 моля глюкозы может сопровождаться уменьшением свободной энергии примерно на 210 кДж (50 000 кал), т. е. энергия, аккумулированная в 1 моле этилового спирта, на 210 кДж (50 000 кал) меньше энергии 1 моля глюкозы. При образовании 1 моля АТФ (макроэргических — богатых энергией фосфатных соединений) используется 42 кДж (10 000 кал). Следовательно, значительная часть энергии, освобождающейся при спиртовом брожении, запасается в виде АТФ, обеспечивающей разнообразные энергетические потребности дрожжевых клеток. Такое же биологическое значение имеет процесс брожения и у других микроорганизмов. При полном сгорании 1 моля глюкозы (с образованием CO2 и H2O) изменение свободной энергии достигает 2,87 МДж (686 000 кал). Иначе говоря, дрожжевая клетка использует лишь 7% энергии глюкозы. Это показывает малую эффективность анаэробных процессов по сравнению с процессами, идущими в присутствии кислорода. При наличии кислорода спиртовое брожение угнетается или прекращается и дрожжи получают энергию для жизнедеятельности в процессе дыхания. Наблюдается тесная связь между брожением и дыханием микроорганизмов, растений и животных. Ферменты, участвующие в спиртовом брожении, имеются также в тканях животных и растений. Во многих случаях первые этапы расщепления сахаров, вплоть до образования пировиноградной кислоты, — общие для брожения и дыхания. Большое значение процесс анаэробного распада глюкозы имеет и при сокращении мышц, первые этапы этого процесса также сходны с начальными реакциями спиртового брожения. Сбраживание углеводов (глюкозы, ферментативных гидролизатов крахмала, кислотных гидролизатов древесины) используется во многих отраслях промышленности: для получения этилового спирта, глицерина и других технических и пищевых продуктов. На спиртовом брожении основаны приготовление теста в хлебопекарной промышленности, виноделие и пивоварение. В спиртовом производстве применяют такие расы дрожжей, которые способны быстро и полно сбраживать сахар и устой­чивы к спирту. Для производства пива чаще всего используют ячмень, из которого получают солод, а из солода приготавливают сусло-сахаристую жидкость, подвергаемую брожению.

Вкусовые особенности пива зависят от качества сырья, тех­нологии и применяемых дрожжей. Низовые дрожжи, используемые в пивоварении, ведут мед­ленное брожение, не вызывают значительного помутнения сусла, а по окончании брожения образуют на дне плотный оса­док. Среди низовых дрожжей имеются сильнобродящие и слабобродящие дрожжи.

В виноделии до последнего времени дрожжи не играли той преимущественной роли, которая падает на их долю в произ­водстве пива. Основная масса вина получалась путем само­сбраживания сусла с помощью случайных дрожжей, находя­щихся на ягодах винограда. Применение чистых культур в виноделии дает возможность быстрее и полнее осуществить сбраживание виноградного сусла и получить вино с хорошим букетом. Отдельные расы винных дрожжей при сбраживании вино­градного сусла способны накапливать до 10-14% спирта. Каждый винодельческий район имеет расы дрожжей, специфи­ческие для данной местности, поэтому сорт получаемого вина определяется не только сортом винограда и технологией, но и биологическими особенностями используемых дрожжей.

Чистые культуры дрожжей обязательно применяются при изготовлении шипучих вин.

При производстве плодово-ягодных вин для каждого вида плодов или ягод подбирают соответствующие расы винных дрожжей, что позволяет получать сорта вин высокого качества.

Для получения хлебного теста используют пекарские дрож­жи, обладающие хорошей подъемной силой и способностью быстро размножаться. Образующиеся в процессе брожения спирт и углекислый газ разрыхляют и поднимают тесто, а по­бочные продукты брожения придают хлебу особый вкус и аромат.

В производстве хлеба применяют прессованные и жидкие дрожжи, а также закваски. Прессованные дрожжи являются скоропортящимся продуктом и потому должны храниться при низких температурах. Примесь в прессованных дрожжах диких дрожжей и бактерий свидетельствует о их низком ка­честве.

Жидкие дрожжи изготавливаются непосредственно на хлебо­заводах. В отличие от прессованных дрожжей они содержат и молочнокислые бактерии. Вырабатывая молочную кислоту, молочнокислые бактерии препятствуют развитию в тесте карто­фельной палочки, вызывающей тягучую болезнь хлеба.

Закваски представляют собой тесто, оставляемое от предыдущей выпечки. Их используют для разрыхления ржа­ного теста. Закваски содержат дрожжи и молочнокислые бак­терии.

В среду культурных дрожжей, которые применяются в про­изводстве, могут попадать посторонние микроорганизмы, вызывающие порчу продуктов. Так, дикие дрожжи нередко яв­ляются вредителями производства вина и пива. Они изменяют вкус и запах этих продуктов, вызывают их помутнение. Осо­бенно опасны пленчатые дрожжи микодерма. Развиваясь в вине и пиве, они окисляют спирт до углекислоты и воды и придают напиткам неприятный вкус.

Микодерма причиняет вред также при производстве пекар­ских дрожжей. Процесс получения пекарских дрожжей ведут с продуванием субстрата воздухом, так как это способ­ствует их быстрому размножению. Микодерма в таких усло­виях развивается быстрее, чем настоящие дрожжи. Поскольку микодерма не обладает способностью поднимать тесто, то при­сутствие ее в культурных дрожжах резко снижает их пекарские свойства.

Вредителями бродильных производств являются также не­которые виды молочнокислых бактерий, вызывающие помутне­ние вина и пива. Отдельные представители шаровидных бакте­рий (педиококки) способны придавать пиву особый привкус и мутность, а иногда ослизнять его. Уксуснокислые бактерии мо­гут вызвать порчу вина в результате окисления спирта в уксус­ную кислоту.

Молочнокислые бактерии подразделяют на 2 группы – гомоферментативные и гетероферментативные. Гомоферментативные бактерии (например, Lactobacillus delbrьckii) расщепляют моносахариды с образованием двух молекул молочной кислоты в соответствии с суммарным уравнением:

Гетероферментативные бактерии (например, Bacterium lactis aerogenes) ведут сбраживание с образованием молочной кислоты, уксусной кислоты, этилового спирта и CO2, а также образуют небольшое количество ароматических веществ — диацетила, эфиров и т. д.

При молочнокислом брожении превращение углеводов, особенно на первых этапах, близко к реакциям спиртового брожения, за исключением декарбоксилирования пировиноградной кислоты, которая восстанавливается до молочной кислоты за счёт водорода, получаемого от НАД-Н. Гомоферментативное молочнокислое брожение используется для получения молочной кислоты, при изготовлении различных кислых молочных продуктов, хлеба и в силосовании кормов в сельском хозяйстве. Гетероферментативное молочнокислое брожение происходит при консервировании различных плодов и овощей путём квашения.

Молочнокислое брожение представляет собой разложение сахара под действием молочнокислых бактерий с образованием молочной кислоты. В общем суммарном виде его можно пред­ставить следующим уравнением:

С6Н12О6 = 2С3Н6О3 + 18 ккал.

Это брожение часто наблюдается в молоке и вызывает его скисание. Отсюда и получили свое название вид брожения, бактерии, вызывающие его, а также основной продукт броже­ния — кислота. Молочнокислые бактерии бывают шаровидной и палочко­видной формы. Они неподвижны, спор не образуют и являются факультативными анаэробами.

Различные виды молочнокислых бактерий в равных условиях продуцируют разное количество кислоты, что объясняется их неодинаковой кислотоустойчивостью. Палочковидные бактерии образуют больше кислоты, чем шаровидные (кокки).

Молочнокислые бактерии способны сбраживать только моно — и дисахариды и совсем не сбраживают крахмал и другие поли­сахариды, так как не выделяют соответствующих ферментов.

Некоторые из этих бактерий вырабатывают антибиотические вещества, действующие против возбудителей кишечных заболе­ваний.

Молочнокислые бактерии широко распространены в природе, они постоянно встречаются в почве, на различных растениях, на плодах и овощах, в молоке и т. д.

Наибольшее значение имеют следующие молочнокислые бак­терии: молочнокислый стрептококк, болгарская, ацидофильная, сырная, дельбрюковская, огуречная, капустная палочки и др.

Молочнокислый стрептококк — соединенные попарно или в короткие цепочки шаровидные бактерии. Лучше всего разви­ваются при температуре 30-35°С, их температурный минимум около 10°С. При брожении накапливают до 1% кислоты. Широко применяются для приготовления молочнокислых продуктов (простокваши, кефира, сметаны, творога и др.).

Болгарская палочка нередко образует длинные цепочки, вы­делена из болгарской простокваши. Представляет собой непо­движную, бесспоровую палочку. Наилучшая для ее развития температура 40-45°С, температурный минимум 20°С. В молоке образует до 3,5% молочной кислоты.

Ацидофильная палочка получена из выделений кишечника грудного ребенка. Имеет температурный оптимум около 40°С, ми­нимальная температура развития 20°С. В молоке накапливает до 2,2% молочной кислоты. Применяется для приготовления молочнокислых продуктов — ацидофилина и ацидофильного мо­лока.

Сырная палочка имеет температурный оптимум около 40°С, используется в сыроделии.

Дельбрюковская палочка представляет собой одиночные или собранные в короткие цепочки клетки, не образующие спор. Температурный оптимум 45°С. Образует в среде до 2,5% кисло­ты. Применяется для промышленного получения молочной кислоты, а также в производстве хлебных заквасок.

Огуречная и капустная палочки развиваются при квашении овощей. Молочнокислое брожение имеет важное промышленное зна­чение. Оно применяется в производстве молочнокислых продук­тов, в хлебопечении, в процессах квашения овощей и силосова­ния кормов, при изготовлении кваса, в производстве молочной кислоты и т. д.

Молочнокислые бактерии относятся к числу постоянных оби­тателей молока и вызывают в нем ряд биохимических процес­сов. Кроме этих бактерий, в молоке могут находиться различные гнилостные бактерии. Количество микроорганизмов и их состав в молоке могут колебаться в значительных пределах. Свеже­выдоенное молоко содержит микроорганизмы, попадающие в него из протоков молочных желез вымени, в которых они оби­тают постоянно.

Нередко гнилостных бактерий в только что выдоенном мо­локе оказывается в несколько раз больше, чем молочнокислых бактерий. Однако развивающиеся молочнокислые бактерии образуют молочную кислоту, которая подавляет жизнедеятель­ность гнилостных бактерий.

Через некоторое время в молоке остаются главным образом молочнокислые бактерии, продолжающие усиленно размно­жаться и накапливать молочную кислоту, под действием кото­рой молоко вскоре свертывается. Полученная таким путем про­стокваша (самоквас) обычно имеет неприятный привкус и запах, так как в ней содержатся продукты жизнедеятельности других микроорганизмов. Употребление в пищу молока-само­кваса опасно для здоровья, так как в нем могут находиться патогенные микроорганизмы, сохранившие жизнеспособность, несмотря на образование молочной кислоты.

При получении молочнокислых продуктов (простокваши, кефира, ацидофилина и др.) в производственных условиях мо­локо предварительно подвергают пастеризации, а затем заква­шивают специальными заквасками, содержащими культуры молочнокислых бактерий. Это дает возможность получать мо­лочнокислые продукты определенного и высокого качества.

Молочнокислое брожение в хлебопечении позволяет предот­вратить развитие вредных бактерий в тесте, вызывающих кар­тофельную болезнь (тягучесть) хлеба, а также способствует улучшению вкусовых свойств хлеба.

Молочная кислота, образующаяся в результате этого бро­жения, придает особый вкус квашеным овощам и препятствует развитию гнилостных бактерий.

При промышленном получении молочной кислоты в качестве сырья используют крахмал, патоку и другие сахаристые мате­риалы. Молочную кислоту применяют в кондитерском производстве и в производстве безалкогольных напитков.

Пропионовокислое брожение представляет собой процесс превращения сахара или молочной кислоты в пропионовую и уксусную кислоты с образованием углекислоты и воды:

3C6H12О6 = 4С2Н5СООН + 2СН3СООН + 2СО2 + 2H2O

3С3Н6О3 = 2С2Н5СООН + СН3СООН + СО2 + Н2О

Брожение вызывается пропионовокислыми бактериями. Это короткие, неподвижные, бесспоровые анаэробные палочки, опти­мальная температура развития которых около 30°С. Пропионово-кислые бактерии близки к молочнокислым бактериям и нередко развиваются вместе с ними.

Следует отметить, что пропионовокислому брожению могут подвергаться не только молочная кислота, но и ее соли. Это брожение имеет важное значение в созревании сыров. Молочная кислота (вернее, ее кальциевая соль), образующаяся в резуль­тате жизнедеятельности молочнокислых бактерий, под влиянием пропионовокислых бактерий превращается в пропионовую кислоту, уксусную кислоту и углекислый газ. Выделение угле­кислоты приводит к образованию глазков в сыре, придающих ему характерный ноздреватый рисунок. Пропионовая и уксус­ная кислоты способствуют образованию специфического сыр­ного вкуса и запаха.

Пропионовокислые бактерии используются также для получения витамина B12.

При маслянокислом брожении происходит процесс разложения сахара под действием бактерий в анаэробных условиях с образованием масляной кислоты, углекислого газа и водорода. Оно протекает по уравнению:

С6Н12О6 = С3Н7СООН + 2СО2 + 2Н2 + 20 ккал

В качестве побочных продуктов при этом получаются эти­ловый и бутиловый спирты, уксусная кислота и др. Такое брожение может протекать в молоке и молочных продуктах, придавая им неприятные вкус и запах, характерные для масля­ной кислоты. Маслянокислые бактерии, вызывающие это брожение, пред­ставляют собой перитрихиально жгутованные подвижные, спорообразующие палочки, температурный оптимум их развития находится в пределах 30-40°С. Они являются строгими анаэро­бами и могут размножаться только при полном отсутствии кислорода воздуха или при очень незначительном его содер­жании. Споры, образуемые маслянокислыми бактериями, весьма устойчивы к неблагоприятным воздействиям, выдерживают ки­пячение в течение нескольких минут и погибают только при длительной стерилизации. Располагаются они либо в середине, либо ближе к одному из концов клетки, придавая ей форму ве­ретена или теннисной ракетки.

Маслянокислые бактерии способны сбраживать как простые сахара, так и более сложные углеводы — крахмал, пектиновые вещества и другие, а также глицерин. Эти бактерии широко распространены в природе, находясь в почве, в иле озер, прудов и болот, в скоплениях различных остатков и отбросов, навозе, загрязненной воде, молоке, сыре и т. д. Вызываемое этими бак­териями брожение имеет важное значение в превращениях ве­ществ в природе.

В народном хозяйстве маслянокислое брожение может при­нести большой вред, так как маслянокислые бактерии способ­ны вызывать массовую гибель картофеля и овощей, прогоркание молока и вспучивание сыров, порчу консервов и т. д.

На маслянокислые бактерии подавляюще действует кислая реакция среды, поэтому там, где развиваются молочнокислые бактерии, выделяющие молочную кислоту, жизнедеятельность маслянокислых бактерий приостанавливается. Если же в заква­шенных овощах медленно накапливается молочная кислота, то они могут быть испорчены в результате размножения в них маслянокислых бактерий. Эти бактерии вызывают порчу пасте­ризованного молока, в котором исключено молочнокислое брожение, а также сырого молока при длительном хранении его на холоде, когда деятельность молочнокислых бактерий ослаблена.

Развиваясь во влажной муке, маслянокислые бактерии при­дают ей прогорклый вкус. Маслянокислое брожение находит практическое применение в производстве масляной кислоты, которая широко используется в технике.

Спиртовое брожение

Биохимические этапы спиртового брожения.

При спиртовом брожении помимо основных продуктов — спир­та и СО2, из сахаров возникает множество других, так называе­мых вторичных продуктов брожения. Из 100 г С6Н12О6 образует­ся 48,4 г этилового спирта, 46,6 г диоксида углерода, 3,3 г глице­рина, 0,5 г янтарной кислоты и 1,2 г смеси молочной кислоты, ацетальдегида, ацетоина и других органических соединений.

Наряду с этим дрожжевые клетки в период размножения и логарифмического роста потребляют из виноградного сусла ами­нокислоты, необходимые для построения собственных белков. При этом образуются побочные продукты брожения, главным об­разом высшие спирты.

В современной схеме спиртового брожения насчитывается 10—12 фаз биохимических превращений гексоз под действием комплекса ферментов дрожжей. В упрощенном виде можно вы­делить три этапа спиртового брожения.

I этап — фосфорилирование и распад гексоз. На этом этапе протекает несколько реакций, в результате которых гексоза пре­вращается в триозофосфат:

Фосфогексокиназа, изомериаза, альдолаза

Главную роль в передаче энергии в биохимических реакциях играют АТФ (аденозинтрифосфат) и АДФ (аденозиндифосфат). Они входят в состав ферментов, аккумулируют большое коли­чество энергии, необходимой для осуществления жизненных про­цессов, и представляют собой аденозин — составную часть ну­клеиновых кислот — с остатками фосфорной кислоты. Вначале образуется адениловая кислота (монофосфат аденозина, или аденозинмонофосфат — АМФ):

Если обозначить аденозин буквой А, то строение АТФ может быть представлено в следующем виде:

обозначены так называемые макроэргические фосфатные связи, чрезвычайно богатые энергией, которая выде­ляется при отщеплении остатков фосфорной кислоты. Передача энергии с АТФ на АДФ может быть представлена следующей схе­мой:

Выделяющаяся энергия используется дрожжевыми клетками для обеспечения жизненных функций, в частности их размноже­ния. Первым актом выделения энергии и является образование фосфорных эфиров гексоз — фосфорилирование их. Присоедине­ние к гексозам остатка фосфорной кислоты от АТФ происходит под действием фермента фосфогексокиназы, поставляемого дрожжами (молекулу фосфата обозначим буквой Р):

Глюкоза Глюкозо-6-фосфат фруктозо-1,6-фосфат

Как видно из приведенной схемы, фосфорилирование проис­ходит дважды, причем фосфорный эфир глюкозы под действием фермента изомеразы обратимо превращается в фосфорный эфир фруктозы, имеющий симметричное фурановое кольцо. Симмет­ричное расположение остатков фосфорной кислоты по концам молекулы фруктозы облегчает ее последующий разрыв как раз в середине. Распад гексозы на две триозы катализирует фермент альдолаза; в результате распада образуется неравновесная смесь 3-фосфоглицеринового альдегида и фосфодиоксиацетона:

Фосфоглицери-новый альдегид (3,5 %) Фосфодиокси-ацетон (96,5 %)

В дальнейших реакциях участвует только 3-фосфоглицерино­вый альдегид, содержание которого постоянно пополняется под действием фермента изомеразы на молекулы фосфодиоксиацетона.

ІІ этап спиртового брожения — образование пировиноградной кислоты. На втором этапе триозофосфат в виде 3-фосфоглицеринового альдегида под действием окислительного фермента дегидрогеназы окисляется в фосфоглицериновую кислоту, а она при участии соответствую­щих ферментов (фосфоглицеромутазы и энолазы) и системы ЛДФ — АТФ превращается в пировиноградную кислоту:

Дигедрогеназа, фосфотрансфераза, фосфоглицеромутаза, энолаза

Вначале каждая молекула 3-фосфоглицеринового альдегида присоединяет к себе еще один остаток фосфорной кислоты (за счет молекулы неорганического фосфора) и образуется 1,3-дифосфоглицериновый альдегид. Затем в анаэробных условиях про­исходит его окисление в 1,3-дифосфоглицериновую кислоту:

Активной группой дегидрогеназы является кофермент сложного органического строения НАД (никотинамидадениндинуклеотид), фиксирующий своим никотинамидным ядром два атома водорода:

НАД+ + 2Н+ + НАД • Н2

НАД окисленный НАД восстановленный

Окисляя субстрат, кофермент НАД становится обладателем свободных ионов водорода, что придает ему высокий восстано­вительный потенциал. Поэтому бродящее сусло всегда характеризуется высокой восстанавливающей способностью, что имеет большое практическое значение в виноделии: понижается рН среды, восстанавливаются временно окисленные вещества, погибают патогенные микроорганизмы.

В заключительной фазе II этапа спиртового брожения фермент фосфотрансфераза дважды катализирует перенос остатка фосфорной кислоты, а фосфоглицеромутаза перемещает его от 3-го угле­родного атома ко 2-му, открывая возможность ферменту энолазе образовать пировиноградную кислоту:

1,3-Дифосоглицериновая кислота 2-Фосфогглицериновая кислота Пировиноградная кислота

В связи с тем что из одной молекулы дважды фосфорилированной гексозы (израсходовано 2 АТФ) получаются две молеку­лы дважды фосфорилированных триоз (образовано 4 АТФ), чи­стым энергетическим балансом ферментативного распада саха­ров является образование 2 АТФ. Эта энергия обеспечивает жиз­ненные функции дрожжей и вызывает повышение температуры бродящей среды.

Все реакции, предшествующие образованию пировиноградной кислоты, присущи как анаэробному сбраживанию сахаров, так и дыханию простейших организмов и растений. III этап име­ет отношение только к спиртовому брожению.

III этап спиртового брожения — образование этилового спирта. На заключитель­ном этапе спиртового брожения пировиноградная кислота под действием фермента декарбоксилазы декарбоксилируется с об­разованием ацетальдегида и диоксида углерода, а с участием фермента алкогольдегидрогеназы и кофермента НАД-Н2 проис­ходит восстановление ацетальдегида в этиловый спирт:

Пировиноградная кислота Ацетилальдегид Этиловый спирт

Если в бродящем сусле есть избыток свободной сернистой кислоты, то часть ацетальдегида связывается в альдегидсернистое соединение: в каждом литре сусла 100 мг Н2SO3 связывают 66 мг СН3СОН.

Впоследствии при наличии кислорода это нестойкое соедине­ние распадается, и в виноматериале обнаруживают свободный ацетальдегид, что особенно нежелательно для шампанских и сто­ловых виноматериалов.

В сжатом виде анаэробное превращение гексозы в этиловый спирт может быть представлено следующей схемой:

Схема спиртового брожения.

Как видно из схемы спиртового брожения, сперва образуются фосфорные эфиры гексоз. При этом молекулы глюкозы и фруктозы под действием фермента гексокеназы присоединяют остаток фосфорной кислоты от аденозиттрифосфата (АТФ), при этом образуется глюкоза-6-фосфат и аденозитдифосфат (АДФ).

Глюкоза-6-фосфат под действием фермента изомеразы превращается в фруктозу-6-фосфат, присоединяющий еще один остаток фосфорной кислоты из АТФ и образующий фруктозу-1,6-дифосфат. Эта реакция катализируется фосфофруктокиназой. Образованием этого химического соединения заканчивается первая подготовительная стадия анаэробного распада сахаров.

В результате этих реакций молекула сахара переходит в оксиформу, приобретает большую лабильность и становится более способной к ферментативным преобразованиям.

Под влиянием фермента альдолазы фруктоза-1, 6-дифосфат расщепляется на глицеринальдегидофосфорную и диоксиацетонофосфорную кислоты, способные превращаться одна в одну под действием фермента триозофосфатизомеразы. Дальнейшему преобразованию подвергается фосфоглицериновый альдегид, которого образуется приблизительно 3 % по сравнению с 97 % фосфодиоксиацетона. Фосфодиоксиацетон, по мере использования фосфоглицеринового альдегида, превращается под действием изомеразы фосфотриоз в 3-фосфоглицериновый альдегид.

На второй стадии 3-фосфоглицериновый альдегид присоединяет еще один остаток фосфорной кислоты (за счет неорганического фосфора) с образованием 1, 3-дифосфоглицеринового альдегида, который дегидруется под действием триозофосфатдегидрогеназы и дает 1, 3-дифосфоглицериновую кислоту. Водород, в этом случае, переносится на окисленную форму кофермента НАД. 1, 3-дифосфоглицериновая кислота, отдавая АДФ (под действием фермента фосфоглицераткеназы) один остаток фосфорной кислоты, превращается в 3-фосфоглицериновую кислоту, которая под действием фермента фосфоглицеромутазы превращается в 2-фосфоглицериновую кислоту. Последняя, под действием фосфопируватгидротазы, превращается в фосфоэнолпировиноградную кислоту. Дальше, при участии фермента пируваткеназы, фосфоэнолпировиноградная кислота передает остаток фосфорной кислоты молекуле АДФ, в результате чего образуется молекула АТФ и молекула энолпировиноградной кислоты переходит в пировиноградную кислоту.

Третья стадия спиртового брожения характеризуется расщеплением пировиноградной кислоты под действием фермента пируватдекарбоксилазы на диоксид углерода и уксусный альдегид, который под действием фермента алкогольдегидрогеназы (коферментом ее является НАД) восстанавливается в этиловый спирт.

Суммарное уравнение спиртового брожения может быть представлено так:

С6Н12О6 + 2Н3РО4 + 2АДФ → 2С2Н5ОН + 2СО2 + 2АТФ + 2Н2О

Таким образом, при брожении происходит преобразование одной молекулы глюкозы в две молекулы этанола и две молекулы диоксида углерода.

Но указанный ход брожения не единственный. Если, например, в субстрате нет фермента пируватдекарбоксилазы, то не происходит расщепление пировиноградной кислоты до уксусного альдегида и восстановлению подвергается непосредственно пировиноградная кислота, превращаясь в молочную кислоту в присутствии лактатдегидрогеназы.

В виноделии брожение глюкозы и фруктозы происходит в присутствии бисульфита натрия. Уксусный альдегид, образующийся при декарбоксилировании пировиноградной кислоты, удаляется в результате связывания бисульфитом. Место уксусного альдегида занимают диоксиацетонфосфат и 3-фосфоглицериновый альдегид, они получают водород от восстановленных химических соединений, образуя глицерофосфат, который превращается в результате дефосфорилирования в глицерин. Это вторая форма брожения по Нейбергу. По этой схеме спиртового брожения происходит накопление глицерина и уксусного альдегида в виде бисульфитной производной.

Вещества, образующиеся при брожении.

В настоящее время в продуктах брожения найдено около 50 высших спиртов, которые обладают разнообразными запаха­ми и существенно влияют на аромат и букет вина. В наиболь­ших количествах при брожении образуются изоамиловый, изобутиловый и N-пропиловый спирты. В мускатных игристых и столовых полусладких винах, получаемых путем так называемого биологического азотопонижения, в большом количестве (до 100 мг/дм3) найдены ароматические высшие спирты β-фенилэтанол (ФЭС), тирозол, терпеновый спирт фарнезол, обладающие ароматом розы, ландыша, цветов липы. Их присутствие в неболь­шом количестве желательно. Кроме того, при выдержке вина высшие спирты вступают в этерификацию с летучими кислотами и образуют сложные эфиры, придающие вину благоприятные эфирные тона зрелости букета.

Источником высших спиртов являются, прежде всего, амино­кислоты, потребляемые дрожжами при размножении на стадии логарифмического роста.

Согласно теории Ф. Эрлиха высшие спирты образуются дву­мя путями:

І — через декарбоксилирование

R−CH(NH2)COOH → R−CH2NH2 → R−CH2OH

Аминокислота Амин Спирт

R−CH(NH2)COOH → R−CH(OH)COOH → R−CH2OH

Аминокислота Оксикислота Спирт

ІІ — через первоначальное гидролитическое дезаминирование

В дальнейшем было доказано, что основная масса алифатических высших спиртов образуется из пировиноградной кислоты путем переаминирования и непосредственного биосинтеза с участием аминокислот и ацетальдегида. Но наиболее ценные ароматические высшие спирты образуются только из соответствующих аминокислот ароматического ряда, например:

Образование высших спиртов в вине зависит от многих факторов. В нормальных условиях их накапливается в среднем 250 мг/дм3. При медленном длительном брожении количество высших спиртов возрастает, при повышении температуры брожения до 30 °С — уменьшается. В условиях поточного непрерывно брожения размножение дрожжей очень ограничено и высших спиртов образуется меньше, чем при периодическом способе брожения.

При уменьшении количества дрожжевых клеток в результате охлаждения, отстаивания и грубой фильтрации забродившего сусла происходит медленное накопление биомассы дрожжей и одновременно растет количество высших спиртов, прежде всего ароматического ряда.

Повышенное количество высших спиртов нежелательно для столовых белых сухих, шампанских и коньячных виноматериалов, однако придает многообразие оттенков в аромате и вкусе красным столовым, игристым и крепким винам.

Спиртовое брожение виноградного сусла связано также с образованием высокомолекулярных альдегидов и кетонов, летучих и жирных кислот и их эфиров, имеющих значение в формировании букета и вкуса вина.


источники:

http://pandia.ru/text/81/113/53101.php

http://vinograd-vino.ru/protsessy-proiskhodyashchie-pri-izgotovlenii-vina/173-spirtovoe-brozhenie.html