Проверить уравнение на наличие корней

Уравнения

Решение уравнений онлайн

Если вы это читаете, значит вас интересует вопрос решения уравнений.

Да, наши калькуляторы могут решить все уравнения, которые встречаются в школьном курсе и не только. Но нужно понимать, что большинство уравнений имеют несколько способов решения, а калькулятор выдает лишь только какое-то одно.

Бесспорно все способы решения хороши по-своему, но каждому методу отводится свое место в программе обучения.

Поэтому не стоит злоупотреблять калькуляторами, если ваш школьный учитель или личный репетитор требует решить уравнение одним способом, а вы предоставляете ему альтернативное решение.

Да, это может быть похвально, но опытный педагог сразу поймет, что решение уравнения не ваше.

Калькулятор решения уравнений

Калькулятор уравнений незаменимый помощник. Именно помощник, а не решатель проблем. Всегда старайтесь своими силами решать уравнения, а калькулятор используйте в качестве проверки вашего ответа.

Для грамотного учителя не столько важен конечный ответ, сколько сам ход решения уравнения.

Как вы могли заметить, при решении некоторых уравнений, например, квадратных, калькулятор может выполнить три разных способа решения. Это разложение уравнения на множители, выделение полного квадрата или найти корни уравнения через дискриминант.

Попытайтесь сначала самостоятельно решить заданное уравнение, вспомните чему вас учили на уроке.

Даже если вы ошибетесь в числах, то ничего страшного, ученик имеет право на ошибку, главное правильно мыслить.

С нашим калькулятором уравнений вы с легкостью исправите допущенную в вычислениях ошибку.

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение показательных уравнений.

Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
Решить уравнение

Немного теории.

Показательная функция, её свойства и график

Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
1) a n a m = a n+m

4) (ab) n = a n b n

7) a n > 1, если a > 1, n > 0

8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \( a \neq 1\)

Показательная функция обладает следующими свойствами

1) Область определения показательной функции — множество всех действительных чисел.
Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

2) Множество значений показательной функции — множество всех положительных чисел.
Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.

3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
Если х x при a > 0.
Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
Если х

Показательные уравнения

Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

Решить уравнение 2 3x • 3 x = 576
Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
Ответ х = 2

Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
откуда 3 х — 2 = 1, x — 2 = 0, x = 2
Ответ х = 2

Решить уравнение 3 х = 7 х
Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac<3^x> <7^x>= 1 \), откуда \( \left( \frac<3> <7>\right) ^x = 1 \), х = 0
Ответ х = 0

Решить уравнение 9 х — 4 • 3 х — 45 = 0
Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
Ответ х = 2

Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
Запишем уравнение в виде
3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
2 х — 2 • 23 = 5 х — 2 • 23
\( \left( \frac<2> <5>\right) ^ = 1 \)
x — 2 = 0
Ответ х = 2

Решить уравнение 3 |х — 1| = 3 |х + 3|
Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
Проверка показывает, что х = -1 — корень исходного уравнения.
Ответ х = -1

Урок математики по теме «Проверка корней тригонометрического уравнения»

Презентация к уроку

Из опыта подготовки учащихся к ЕГЭ, хотелось бы обратить внимание на проверку корней тригонометрического уравнения.

В 10 классе в связи с изучением периодичности тригонометрических функций важно привить учащимся навыки в нахождении периодов таких, например, несложных тригонометрических выражений, как sin 2x, cos (+30°), tg x, ctg 4x и т.д. Учащиеся должны вынести из 10 класса ясное представление о том, что периодом выражений sin (ax+b) и cos (ax+b) служит угол , a периодом выражений tg (ax+b) и ctg (ax+b) является угол . Все это нужно вновь напомнить учащимся в 11 классе.

В основу метода проверки корней тригонометрического уравнения следует положить понятие периода уравнения.

Пусть дано, например, уравнение:

= .

Легко заметить, что периодом этого уравнения может служить угол 180°. Действительно,

cos 4(x+180°) = cos (4 x+2*360°) = cos 4 x,

sin 2(x+180°) = sin (2 x+360°) = sin 2 x и т.д.

Чтобы найти период тригонометрического уравнения, достаточно найти периоды каждой функции, входящей в это уравнение, а затем отыскать их наименьшее общее кратное.

Чтобы найти, пользуясь этим правилом, период вышеприведенного тригонометрического уравнения, надо рассуждать следующим образом: так как период каждой из функций sin 4x и cos 4x равен = 90°, а период каждой из функций sin 2x и cos 2x есть 360°/2 = 180°, то периодом уравнения будет наименьшее общее кратное углов 90° и 180°, то есть 180°.

Методику проверки корней тригонометрического уравнения хорошо уяснить на следующем примере.

Пример. Решить уравнение:

и проверить найденные корни.

(1 — 2x)+ 3 sin x = 2,

2 x — 3 sin x +1 = 0.

sin =1, sin =1/2

=360°n + 90°,

=180°n + 30°.

Полученное множество корней бесконечно. Чтобы проверить все корни, достаточно произвести проверку только тех из них, которые лежат в пределах одного периода уравнения. Так как периодом уравнения (1) служит угол в 360°, то проверить нужно лишь корни, которые удовлетворяют неравенству:

-180°180°.

Если придавать n различные целые значения (положительные, отрицательные или нуль), то мы обнаружим лишь три корня, удовлетворяющие этому неравенству, а именно:

После подстановки их в исходное уравнение (1) найдем, что каждый из них обращает это уравнение в верное числовое равенство. Действительно,

cos 60° + 3 sin 30° = += 2,

cos 300 + 3 sin 150° =+= 2.

Есть одно затруднение, с которым сталкиваются учащиеся при решении тригонометрических уравнений. Иногда общий вид углов, правильно найденный учеником при решении тригонометрического уравнения, не совпадает с общим видом углов, указанным в ответе к задаче. Если учитель не обращает на это внимание, то у ученика порой возникает необоснованное сомнение в правильности своего решения. Рассеять это сомнение можно только посредством доказательства, что множество всех корней , найденное учеником, и множество всех корней, определяемое общей формулой в ответе задачи, между собой совпадают. Допустим, что при решении уравнения

= cos

учеником получены корни:

=720°n ± 120°,

,

а ответ задачи дан в другой форме:

Для того, чтобы убедиться в равносильности того и другого ответа, найдем сначала период уравнения (он равен 720°), а затем отыщем в обоих случаях корни, лежащие в пределах этого периода, то есть удовлетворяющие неравенству:

360°.

Легко убедиться, что такими корнями в обоих случаях будут лишь ±120° и 360°. Совпадение корней, лежащих в пределах одного периода уравнения, указывает на равносильность обоих ответов.


источники:

http://www.math-solution.ru/math-task/exponential-equality

http://urok.1sept.ru/articles/630133