Проверка качества построенного уравнения регрессии носит название

Проверка общего качества уравнения

Множественной регрессии

Для проверки общего качества уравнения регрессии обычно используется коэффициент детерминации R 2 , который характеризует долю дисперсии зависимой переменной Y, объясняемую регрессионной моделью, и определяется по формуле:

(3.27)

Свойства коэффициента R 2 подробно рассмотрены в разделе 2.4.

Для множественной регрессии коэффициент детерминации (или множественный коэффициент детерминации) является неубывающей функцией числа объясняющих переменных, т. е. добавление новой объясняющей переменной (фактора-аргумента Х) в модель никогда не уменьшает значение R 2 . Действительно, каждая новая объясняющая переменная может лишь дополнить информацию, объясняющую поведение зависимой переменной. В целом это уменьшает неопределенность в поведении исследуемой величины Y. Однако увеличение R 2 при добавлении новых переменных далеко не всегда приводит к улучшению качества регрессионной модели, так как эти переменные могут не оказывать существенного влияния на результативный признак. Поэтому, наряду с коэффициентом R 2 , для анализа используется скорректированный коэффициент детерминации , определяемый соотношением:

(3.28)

или с учетом (3.27)

. (3.29)

Можно заметить, что знаменатель в (3.29) является несмещенной оценкой общей дисперсии зависимой переменной Y, а числитель – несмещенной оценкой остаточной дисперсии (дисперсии случайных отклонений).

Скорректированный коэффициент детерминации устраняет (корректирует) неоправданный эффект, связанный с ростом R 2 при увеличении числа объясняющих переменных. Из (3.28) следует, что при m > 1 Можно показать, что увеличивается при добавлении новой объясняющей переменной только тогда, когда t-статистика для этой переменной по модулю больше единицы, т. е. когда ее коэффициент регрессии (параметр модели) считается относительно значимым. Таким образом, в определенной степени использование скорректированного коэффициента детерминации более предпочтительно для сравнения регрессионных моделей при изменении количества объясняющих переменных (регрессоров). Добавление в модель новых регрессоров может осуществляться до тех пор, пока растет .

В компьютерных пакетах приводятся данные как по R 2 , так и по , которые используются на практике для оценки суммарной меры общего качества построенной регрессионной модели.

В общем случае качество модели считается удовлетворительным, если R 2 > 0,5. Однако не следует рассматривать коэффициент детерминации как абсолютный показатель качества модели. Можно привести ряд примеров, когда неправильно специфицированные модели имели сравнительно высокие коэффициенты детерминации. Поэтому коэффициент детерминации в современной эконометрике следует рассматривать лишь как один из показателей, который необходим для анализа строящейся модели.

Анализ общей (совокупной) статистической значимости уравнения множественной регрессии осуществляется на основе проверки основной гипотезы об одновременном равенстве нулю всех коэффициентов при объясняющих переменных:

Если данная гипотеза не отклоняется, то естественно считать уравнение модели статистически незначимым, т. е. не выражающим существенную линейную связь между Y и Х1, Х2, …, Хm.

Напомним (см. раздел 2.4.3), что общая дисперсия зависимой переменной Dn(y) может быть представлена в виде суммы двух составляющих:

где Dn(y) – соответственно, дисперсия, объясняемая уравнением множественной регрессии, и необъясняемая (остаточная) дисперсия, характеризующая влияние неучтенных факторов.

Исходя из этого проводится дисперсионный анализ для проверки гипотезы Н0 (F-тест).

Строится проверочная F-статистика:

(3.30)

где – объясняемая дисперсия (в уравнении множественной регрессии вместе со свободным членом оценивается k = m + 1 параметров); – остаточная дисперсия. При выполнении предпосылок МНК построенная статистика имеет распределение Фишера с числами степеней свободы v1 = m, v2 = nm — 1. Поэтому гипотеза Н0 отклоняется, если при заданном уровне значимости a значение Fнабл, рассчитанное по формуле (3.30), больше, чем критическое значение Fкр = Fa; m; n 1 m (Fнабл > Fкр), и делается вывод о статистической значимости уравнения множественной регрессии. В противном случае (Fнабл > Fкр) нет оснований для отклонения Н0. Это означает, что объясняемая построенной моделью дисперсия соизмерима с дисперсией, вызванной неучтенными факторами, а следовательно, общее качество модели невысоко.

Если рассчитан коэффициент детерминации R 2 , то критерий значимости уравнения регрессии (3.30) может быть представлен в следующем виде:

(3.31)

Критерий (3.31) обычно используется на практике для тестирования гипотезы о статистической значимости коэффициента детерминации (Н0 : R 2 = 0; Н1 : R 2 > 0) которая эквивалентна гипотезе об общей статистической значимости уравнения множественной регрессии.

Отметим, что в отличие от парной регрессии, где t-тест и F-тест равносильны, в случае множественной регрессии коэффициент R 2 приобретает самостоятельную значимость.

Пример 3.2. Оценим статистическую значимость построенной модели.

Пусть при оценке регрессии с тремя объясняющими переменными ( по 30 наблюдениям получено значение коэффициента детерминации R 2 = 0,7. Тогда, наблюдаемое значение F-ста­тистики . По таблице критических точек распределения Фишера найдем F0,05; 3; 26 = 2,98 при заданном уровне значимости a = 0,05. Поскольку Fнабл = 20,2 > Fкр = 2,98, то нулевая гипотеза отклоняется, т. е. отвергается предположение о незначимости линейной связи.

Мультиколлинеарность

Весьма нежелательным эффектом, который может проявляться при построении моделей множественной регрессии и искажать статистическую информацию, полученную по модели, является мультиколлинеарность [1,28,33]– линейная взаимосвязь двух или нескольких объясняющих переменных. Различают функциональную и корреляционную формы мультиколлинеарности.

При функциональной форме мультиколлинеарности по крайней мере два регрессора связаны между собой линейной функциональной зависимостью. В этом случае определитель матрицы Х Т Х равен нулю в силу присутствия линейно зависимых вектор-столбцов (нарушается предпосылка 5 МНК), что приводит к невозможности решения соответствующий системы уравнений и получения оценок параметров регрессионной модели.

Однако в эконометрических исследованиях мультиколлинеарность чаще всего проявляется в более сложной корреляционной форме, когда между хотя бы двумя объясняющими переменными существует тесная корреляционная связь. Ниже рассмотрены некоторые способы обнаружения, а также уменьшения и устранения мультиколлинеарности.

Один из таких способов заключается в исследовании матрицы Х Т Х. Если ее определитель близок к нулю, то это может свидетельствовать о наличии мультиколлинеарности. В этом случае наблюдаются значительные стандартные ошибки коэффициентов регрессии и их статистическая незначимость по t-критерию, хотя в целом регрессионная модель может оказаться значимой по F-тесту.

Другой подход состоит в анализе матрицы парных коэффициентов корреляции между объясняющими переменными (факторами). Если бы факторы не коррелировали между собой, то корреляционная матрица R была бы единичной матрицей, поскольку все недиагональные элементы (хi ¹ xj) равны нулю. Определитель такой матрицы равен единице [Тимофеев, 2013]. Например, для модели, включающей три объясняющих переменных , в этом случае имеем:

. (3.32)

Если же, наоборот, между факторами-аргументами существует полная линейная зависимость и все коэффициенты корреляции равны 1 (|rij| = 1), то определитель матрицы межфакторной корреляции равен нулю

. (3.33)

Таким образом, чем ближе к нулю определитель матрицы межфакторной корреляции, тем сильнее мультиколлинеарность объясняющих переменных и ненадежнее оценки множественной регрессии, полученные с использованием МНК.

Если в модели больше двух объясняющих переменных, то для обнаружения мультиколлинеарности полезно находить частные коэффициенты корреляции, поскольку парные коэффициенты корреляции определяют силу линейной зависимости между двумя факторами без учета влияния на них других объясняющих переменных. Например, между двумя экономическими переменными может наблюдаться высокий положительный коэффициент корреляции совсем не потому, что одна из них стимулирует изменение другой, а вследствие того, что обе эти переменные изменяются в одном направлении под влиянием других факторов, присутствующих в модели. Поэтому возникает необходимость оценки действительной тесноты (силы) линейной связи между двумя факторами, очищенной от влияния других переменных. Параметр, определяющий степень корреляции между двумя факторами Хi и Xj при исключении влияния остальных переменных называется частным коэффициентом корреляции.

Например, в случае модели с тремя объясняющими переменными Х1, Х2, Х3 частный коэффициент корреляции между Х1 и Х2 рассчитывается по формуле:

(3.34)

Частный коэффициент корреляции может существенно отличаться от «обычного» парного коэффициента корреляции r12. Пусть, например, r12 = 0,5; r13 = 0,5; r23 = -0,5. Тогда частный коэффициент корреляции r12.3 = 1 (3.34), т. е. при относительно невысоком коэффициенте корреляции r12 частный коэффициент корреляции указывает на высокую зависимость (коллинеарность) между переменными Хi и Xj.

Таким образом, для обоснованного вывода о корреляции между объясняющими переменными множественной регрессии необходимо рассчитывать частные коэффициенты корреляции.

Частный коэффициент корреляции rij.1, 2, …, m, как и парный коэффициент rij, может принимать значения от -1 до 1. Присутствие в модели пар переменных, имеющих высокие коэффициенты частной корреляции (обычно больше 0,8), свидетельствует о наличии мультиколлинеарности.

Для устранения или уменьшения мультиколлинеарности используется ряд методов, простейшим из которых является исключение из модели одной или нескольких коррелированных переменных. Обычно решение об исключении какой-либо переменной принимается на основании экономических соображений. Следует заметить, что при удалении из анализа объясняющей переменной можно допустить ошибку спецификации. Например, при изучении спроса на некоторый товар в качестве объясняющих переменных целесообразно использовать цену данного товара и цены товаров-заменителей, которые зачастую коррелируют друг с другом. Исключив из модели цены заменителей, мы, вероятнее всего, допустим ошибку спецификации. Вследствие этого можно получить смещенные оценки и сделать ненадежные выводы.

Иногда для уменьшения мультиколлинеарности достаточно (если это возможно) увеличить объем выборки. Например, при использовании ежегодных показателей можно перейти к поквартальным данным. Увеличение количества данных сокращает дисперсии коэффициентов регрессионной модели и тем самым увеличивает их статистическую значимость.

В ряде случаев минимизировать либо вообще устранить мультиколлинеарность можно с помощью преобразования переменных, в результате которого осуществляется переход к новым переменным, представляющим собой линейные или относительные комбинации исходных [11].

Например, построенная регрессионная модель имеет вид:

(3.35)

причем Х1 и Х2 – коррелированные переменные. В этом случае целесообразно оценивать регрессионные уравнения относительных величин:

.

Следует ожидать, что в моделях, построенных аналогично (3.36), эффект мультиколлинеарности не будет проявляться.

Существуют также другие, более теоретически разработанные способы обнаружения и подавления мультиколлинеарности, подробное описание которых выходит за рамки данной книги. Одним из таких методов является факторный анализ. Сущностью факторного анализа является процедура вращения факторов, т.е. перераспределение дисперсии по определённому методу с целью получения максимально простой и наглядной структуры факторов (выделение главных компонент) [23,35]. В результате проведения факторного анализа можно соответствующим образом сократить число переменных, тем самым избежать проявления мультиколлинеарности. При этом в один фактор объединяются сильно коррелирующие между собой переменные, что позволяет проводить регрессионный анализ на главных компонентах.

Факторный анализ играет большую самостоятельную роль в экономике и, прежде всего, разработан для поиска ненаблюдаемых, латентных переменных (факторов), имеющих определённый социально-экономический смысл [23].

Следует заметить, что если основная задача, решаемая с помощью эконометрической модели – прогнозирование поведения реального экономического объекта, то при общем удовлетворительном качестве модели проявление мультиколлинеарности не является слишком серьезной проблемой, требующей приложения больших усилий по ее выявлению и устранению, т. к. в данном случае наличие мультиколлинеарности не будет существенно сказываться на прогнозных качествах модели. Таким образом, вопрос о том – следует ли серьезно заниматься проблемой мультиколлинеарности или «смириться» с ее проявлением – решается исходя из целей и задач эконометрического анализа.

Вопросы и упражнения для самопроверки

1. Какова общая структура модели множественной линейной регрессии?

2. Опишите алгоритм определения коэффициентов множественной линейной регрессии (параметров модели) по МНК в матричной форме.

3. Как определяется статистическая значимость коэффициентов регрессии?

4. В чем суть скорректированного коэффициента детерминации и его отличие от обычного R 2 ?

5. Как используется F-статистика во множественном регрессионном анализе?

6. Вычислите величину стандартной ошибки регрессионной модели со свободным членом и без него, если n = 30; m = 3.

7. На основе n = 30 наблюдений оценена модель с тремя объясняющими переменными. Получены следующие результаты:

Стандартные ошибки (2,5) (1,6) (2,8) (0,07)

Проведите необходимые расчеты и занесите данные в скобки. Сделайте выводы о существенности коэффициентов регрессии на уровне значимости a =0,05.

8. Имеются данные о ставках месячных доходов по трем акциям за шестимесячный период:

АкцияДоходы по месяцам, %
А5,45,34,94,95,46,0
В6,36,26,15,85,75,7
С9,29,29,19,08,78,6

Есть основания предполагать, что доходы по акции С(Y) зависят от доходов по акциям А(X1) и В(X2). Необходимо:

а) составить уравнение регрессии Y по X1 и X2 с использованием МНК (указание: для удобства вычислений сумм первых степеней, квадратов и попарных произведений переменных составьте вспомогательную таблицу);

б) найти множественный коэффициент детерминации R 2 и оценить общее качество построенной модели;

в) проверить значимость полученного уравнения регрессионной модели на уровне a = 0,05.

9. Объясните суть матрицы ковариаций случайных отклонений.

10. Дайте определение и объясните смысл мультиколлинеарности факторов-аргументов.

11. Каковы основные последствия мультиколлинеарности?

12. Какие вы знаете способы обнаружения мультиколлинеарности?

13. Как оценивается степень коррелированности между двумя объясняющими переменными?

14. Перечислите основные методы устранения мультиколлинеарности.

15. В чем заключается сущность факторного анализа?

16. Как определяются парный и частный коэффициенты корреляции для независимых переменных.

17. Для модели с тремя независимыми переменными X1, X2, X3 построенной по n = 50 наблюдениям, определена следующая корреляционная матрица:

б) определить, имеет ли место мультиколлинеарность для уравнения регрессии.

Показатели качества регрессии

Качество модели регрессии связывают с адекватностью модели наблюдаемым (эмпирическим) данным. Проверка адекватности (или соответствия) модели регрессии наблю­даемым данным проводится на основе анализа остатков — .

Анализ остатков позволяет получить представление, насколько хорошо подобрана сама модель и насколько правильно выбран метод оценки коэффициентов. Согласно общим предположениям регрессионного анализа, остатки должны вести себя как независимые (в действительности, почти независимые) одинаково распределенные случайные величины.

Качество модели регрессии оценивается по следующим направлениям:

проверка качества всего уравнения регрессии;

проверка значимости всего уравнения регрессии;

проверка статистической значимости коэффициентов уравнения регрессии;

проверка выполнения предпосылок МНК.

При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом:

где — среднее значение зависимой переменной,

— предсказанное (расчетное) значение зависимой переменной.

Коэффициент детерминации показывает долю вариации результативного признака, находя­щегося под воздействием изучаемых факторов, т. е. определяет, ка­кая доля вариации признака Y учтена в модели и обусловлена влия­нием на него факторов.

Чем ближе к 1, тем выше качество модели.

Для оценки качества регрессионных моделей целесообразно также ис­пользовать коэффициент множественной корреляции (индекс корреляции) R

R = =

Данный коэффициент является универсальным, так как он отра­жает тесноту связи и точность модели, а также может использовать­ся при любой форме связи переменных.

Важным моментом является проверка значимости построенного уравнения в целом и отдельных параметров.

Оценить значимость уравнения регрессии – это означает установить, соответствует ли математическая модель, выражающая зависимость между Y и Х, фактическим данным и достаточно ли включенных в уравнение объясняющих переменных Х для описания зависимой переменной Y

Оценка значимости уравнения регрессии производится для того, чтобы узнать, пригодно уравнение регрессии для практического использования (например, для прогноза) или нет.

Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с n1= k и n2 = (n — k — 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.

В качестве меры точности применяют несмещенную оценку дис­персии остаточной компоненты, которая представляет собой отно­шение суммы квадратов уровней остаточной компоненты к величи­не (n- k -1), где k – количество факторов, включенных в модель. Квадратный корень из этой величины ( ) называется стандартной ошибкой:

значимость отдельных коэффициентов регрессии проверяется по t-статистике пу­тем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена):

,

где Saj — это стандартное (среднеквадратическое) отклонение коэффициента уравнения регрессии aj. Величина Saj представляет собой квадратный корень из произ­ведения несмещенной оценки дисперсии и j -го диагонального эле­мента матрицы, обратной матрице системы нормальных уравнений.

где — диагональный элемент матрицы .

Если расчетное значение t-критерия с (n — k — 1) степенями сво­боды превосходит его табличное значение при заданном уровне зна­чимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует ис­ключить из модели (при этом ее качество не ухудшится).

Проверка выполнения предпосылок МНК.

Рассмотрим выполнение предпосылки гомоскедастичности, или равноизменчивости случайной составляющей (возмущения).

Невыполнение этой предпосылки, т.е. нарушение условия гомоскедастичности возмущений означает, что дисперсия возмущения зависит от значений факторов. Такие регрессионные модели называются моделями с гетероскедастичностью возмущений.

Обнаружение гетероскедастичности. Для обнаружения гетероскедастич­ности обычно используют тесты, в которых делаются различные предположения о зависимости между дисперсией случайного члена и объясняющей переменной: тест ранговой корреляции Спирмена, тест Голдфельда — Квандта, тест Глейзера, двусторонний критерий Фишера и другие [2].

При малом объеме выборки для оценки гетероскедастич­ности может использоваться метод Голдфельда — Квандта. Данный тест используется для проверки такого типа гетероскедастичности, когда дисперсия остатков воз­растает пропорционально квадрату фактора. При этом делается предположение, что, случайная составляющая распределена нормально.

Чтобы оценить на­рушение гомоскедастичности по тесту Голдфельда — Квандта необходимо выполнить следующие шаги.

Упорядочение п наблюдений по мере возрастания перемен­ной х.

Исключение средних наблюдений ( должно быть примерно равно четверти общего количества наблюдений).

Разделение совокупности на две группы (соответственно с малыми и большими значениями фактора ) и определение по каждой из групп уравнений регрессии.

Определение остаточной суммы квадратов для первой регрессии и второй регрессии .

Вычисление отношений (или ). В числителе должна быть большая сумма квадратов.

Полученное от­ношение имеет F распределение со степенями свободы k1=n1-k и k2=n-n1-k, (k– число оцениваемых параметров в уравнении регрессии).

Если , то гетероскедастичность имеет место.

Чем больше величина F превышает табличное значение F -критерия, тем более нарушена предпосылка о равенстве дисперсий остаточ­ных величин.

Оценка влияния отдельных факторов на зависимую переменную на основе модели (коэффициенты эластичности, b — коэффициенты).

Важную роль при оценке влияния факторов играют коэффициен­ты регрессионной модели. Однако непосредственно с их помощью нельзя сопоставить факторы по степени их влияния на зависимую переменную из-за различия единиц измерения и разной степени ко­леблемости. Для устранения таких различий при интерпретации применяются средние частные коэффициенты эластичности Э(j) и бета-коэффициенты b(j).

Эластичность Y по отношению к Х(j) определяется как процентное изменение Y, отнесенное к соответствующему процентному изменению Х. В общем случае эластичности не постоянны, они различаются, если измерены для различных точек на линии регрессии. По умолчанию стандартные программы, оценивающие эластичность, вычисляют ее в точках средних значений:

Эластичность ненормирована и может изменяться от — до + . Важно, что она безразмерна, так что интерпретация эластичности =2.0 означает, что если изменится на 1%, то это приведет к изменению на 2%. Если =-0.5, то это означает, что увеличение на 1% приведет к уменьшению на 0.5%.

Высокий уровень эластичности означает сильное влияние независимой переменной на объясняемую переменную.

где Sxj — среднеквадратическое отклонение фактора j

где .

Коэффициент эластичности показывает, на сколько процентов изменяется зависимая переменная при изменении фактора j на один процент. Однако он не учитывает степень колеблемости факторов.

Бета-коэффициент показывает, на какую часть величины средне­го квадратического отклонения Sy изменится зависи­мая переменная Y с изменением соответствующей независимой пере­менной Хj на величину своего среднеквадратического отклонения при фиксирован­ном на постоянном уровне значении остальных независимых пере­менных.

Указанные коэффициенты позволяют упорядочить факторы по степени влияния факторов на зависимую переменную.

Долю влияния фактора в суммарном влиянии всех факторов мож­но оценить по величине дельта — коэффициентов D (j):

где — коэффициент парной корреляции между фактором j (j = 1. m) и зависимой переменной.

В качестве основного литературного источника рекомендуется использовать [4], в качестве дополнительного – [2].

ЛЕКЦИЯ №13 Проверка качества уравнения регрессии

Главная > Документ

Информация о документе
Дата добавления:
Размер:
Доступные форматы для скачивания:

ЛЕКЦИЯ №13


Проверка качества уравнения регрессии

Оценим, насколько хорошо модель линейной регрессии описывает данную систему наблюдений. В качестве этой оценки воспользуемся коэффициентом детерминации .

Составим следующие суммы квадратов отклонений:

фактических значений от их среднего арифметического;

выравненных значений от их среднего арифметического фактических значений;

фактических от выравненных значений.

Можно показать, что справедливо равенство:

А последнее слагаемое представим:

Учитывая (11.8) получим, что первая сумма равна нулю, а вторую сумму представим:

Коэффициент детерминации – это отношение объясненной части вариации ко всей вариации в целом:

Т.о. чем «ближе» этот коэффициент к 1, тем лучше модель описывает эмпирические данные, разумеется, если при этом модель методически правильна.

Проверка значимости (качества) уравнения регрессии производится на основе дисперсионного анализа.

Дисперсионный анализ – самостоятельный инструмент (метод) математической статистики будет подробно рассмотрен в дальнейшем. Пока же кратко рассмотрим схему дисперсионного анализа, представленную в виде таблицы.

Число степеней свободы

Уравнение регрессии значимо на уровне , если фактически наблюдаемое значение статистики удовлетворяет соотношению

Здесь критическое значение критерия Фишера – Снедекора при и степенях свободы; число оцениваемых параметров уравнения регрессии; число наблюдений.

В случае линейной парной регрессии и уравнение регрессии значимо на уровне , если

Оценка остатков

Остатками называются разности наблюдаемых величин и подогнанных или прогнозируемых с помощью модели.

При анализе остатков следует учитывать ряд существенных факторов:

Если модель подобрана правильно, то остатки будут вести себя достаточно хаотично, в известном смысле они будут напоминать белый шум.

В остатках не будет систематической составляющей, резких выбросов, в чередовании их знаков не будет никаких закономерностей, остатки будут независимы друг от друга.

Согласно общим предположениям регрессионного анализа, остатки должны вести себя как независимые одинаково распределенные случайные величины. Независимость остатков проверяется с помощью критерия Дарбина – Уотсона. Исследование остатков полезно начинать с изучения их графика. Он может показать наличие какой-либо зависимости, не учтенной в модели.

Поведение остатков должно имитировать поведение ошибок . Иначе говоря, поскольку предполагается, что ошибки — независимые в совокупности случайные величины, имеющие стандартное нормальное распределение , то ожидаем, что поведение последовательности остатков должно имитировать поведение последовательности независимых в совокупности случайных величин c распределением .

Исходя из этих предположений, проанализируем представленный реальный график (рис.1).

Рис. 1. Сравнение стандартизованных остатков с N (0,1)

Гистограмма остатков «почти» симметрична относительно нуля, т.е. количество отрицательных значений равно количеству положительных. Как и в нормальном распределении, количество малых остатков (разностей между наблюденными результатами и данными модели) велико, а большие остатки малы.

Рассмотрим еще одно графическое представление остатков (см. рис.2). Из графика остатков на нормальной вероятностной бумаге видно, что они достаточно хорошо ложатся на прямую, которая соответствует стандартному нормальному распределению.

Исходя из построенных графических результатов, можно сделать вывод о том, что предположение о нормальности распределения ошибок – достаточно корректно.

Рис. 2. График остатков на нормальной вероятностной бумаге

Критерий Дарбина – Уотсона (Durbin — Watson)

Оценивая качество уравнения регрессии, мы предполагаем, что реальная взаимосвязь переменных линейна. Отклонения от регрессионной прямой являются случайными, независимыми друг от друга величинами с нулевым математическим ожиданием и постоянной дисперсией. Если эти предположения не выполняются, то оценки коэффициентов регрессии не обладают свойствами несмещенности , эффективности и состоятельности . В этом случае анализ значимости полученных оценок будет неточным.

Статистика Дарбина—Уотсона используется для проверки гипотезы о том, что остатки построенной регрессионной модели некоррелированны (корреляции равны нулю), против альтернативы: остатки связаны авторегрессионной зависимостью (первого порядка) вида:

На практике для анализа коррелированности отклонений вместо коэффициента корреляции используют тесно с ним связанную статистику Дарбина—Уотсона, рассчитываемую по формуле

Здесь сделано допущение, что при больших значениях выполняется соотношение

Нетрудно заметить, что если , то и . Если то и . Во всех других случаях .

Критические точки статистики Дарбина—Уотсона табулированы для различных . При проверке гипотезы об отсутствии автокорреляции остатков используется числовой отрезок, на котором отложены нижняя граница статистики и верхняя граница:

Рис. 3. Статистика Дарбина—Уотсона

Проверка гипотезы проводится по схеме:

Если , то гипотеза отклоняется, принимается значительная положительная автокорреляция остатков;

Если , , то гипотеза отклоняется, принимается значительная отрицательная автокорреляция остатков;

Если , то гипотеза об отсутствии автокорреляции остатков принимается;

Если , или , то гипотеза об отсутствии автокорреляции не может быть ни принята, ни отклонена.

Не обращаясь к таблице критических точек Дарбина—Уотсона можно воспользоваться «грубым» правилом и считать, что автокорреляция остатков отсутствует, если . Для более надежных выводов необходимо воспользоваться статистическими таблицами.


источники:

http://zdamsam.ru/a2541.html

http://gigabaza.ru/doc/78471.html