Прямые в пространстве параллельны если их уравнения

Параллельные прямые, признаки и условия параллельности прямых

В этой статье мы расскажем о параллельных прямых, дадим определения, обозначим признаки и условия параллельности. Для наглядности теоретического материала будем использовать иллюстрации и решение типовых примеров.

Параллельные прямые: основные сведения

Параллельные прямые на плоскости – две прямые на плоскости, не имеющие общих точек.

Параллельные прямые в трехмерном пространстве – две прямые в трехмерном пространстве, лежащие в одной плоскости и не имеющие общих точек.

Необходимо обратить внимание, что для определения параллельных прямых в пространстве крайне важно уточнение «лежащие в одной плоскости»: две прямые в трехмерном пространстве, не имеющие общих точек и не лежащие в одной плоскости, являются не параллельными, а скрещивающимися.

Чтобы обозначить параллельность прямых, общепринято использовать символ ∥ . Т.е., если заданные прямые a и b параллельны, кратко записать это условие нужно так: a ‖ b . Словесно параллельность прямых обозначается следующим образом: прямые a и b параллельны, или прямая а параллельна прямой b , или прямая b параллельна прямой а .

Сформулируем утверждение, играющее важную роль в изучаемой теме.

Через точку, не принадлежащую заданной прямой проходит единственная прямая, параллельная заданной. Это утверждение невозможно доказать на базе известных аксиом планиметрии.

В случае, когда речь идет о пространстве, верна теорема:

Через любую точку пространства, не принадлежащую заданной прямой, будет проходить единственная прямая, параллельная заданной.

Эту теорему просто доказать на базе вышеуказанной аксиомы (программа геометрии 10 — 11 классов).

Параллельность прямых: признаки и условия параллельности

Признак параллельности есть достаточное условие, при выполнении которого гарантирована параллельность прямых. Иначе говоря, выполнения этого условия достаточно, чтобы подтвердить факт параллельности.

В том числе, имеют место необходимые и достаточные условия параллельности прямых на плоскости и в пространстве. Поясним: необходимое – значит то условие, выполнение которого необходимо для параллельности прямых; если оно не выполнено – прямые не являются параллельными.

Резюмируя, необходимое и достаточное условие параллельности прямых – такое условие, соблюдение которого необходимо и достаточно, чтобы прямые были параллельны между собой. С одной стороны, это признак параллельности, с другой – свойство, присущее параллельным прямым.

Перед тем, как дать точную формулировку необходимого и достаточного условия, напомним еще несколько дополнительных понятий.

Секущая прямая – прямая, пересекающая каждую из двух заданных несовпадающих прямых.

Пересекая две прямые, секущая образует восемь неразвернутых углов. Чтобы сформулировать необходимое и достаточное условие, будем использовать такие типы углов, как накрест лежащие, соответственные и односторонние. Продемонстрируем их на иллюстрации:

Если две прямые на плоскости пересекаются секущей, то для параллельности заданных прямых необходимо и достаточно, чтобы накрест лежащие углы были равными, либо были равными соответственные углы, либо сумма односторонних углов была равна 180 градусам.

Проиллюстрируем графически необходимое и достаточное условие параллельности прямых на плоскости:

Доказательство указанных условий присутствует в программе геометрии за 7 — 9 классы.

В общем, эти условия применимы и для трехмерного пространства при том, что две прямые и секущая принадлежат одной плоскости.

Укажем еще несколько теорем, часто используемых при доказательстве факта параллельности прямых.

На плоскости две прямые, параллельные третьей, параллельны между собой. Этот признак доказывается на основе аксиомы параллельности, указанной выше.

В трехмерном пространстве две прямые, параллельные третьей, параллельны между собой.

Доказательство признака изучается в программе геометрии 10 класса.

Дадим иллюстрацию указанных теорем:

Укажем еще одну пару теорем, являющихся доказательством параллельности прямых.

На плоскости две прямые, перпендикулярные третьей, параллельны между собой.

Сформулируем аналогичное для трехмерного пространства.

В трехмерном пространстве две прямые, перпендикулярные третьей, параллельны между собой.

Все указанные выше теоремы, признаки и условия позволяют удобно доказать параллельность прямых методами геометрии. Т.е., чтобы привести доказательство параллельности прямых, можно показать, что равны соответственные углы, или продемонстрировать факт, что две заданные прямые перпендикулярны третьей и т.д. Но отметим, что зачастую для доказательства параллельности прямых на плоскости или в трехмерном пространстве удобнее использовать метод координат.

Параллельность прямых в прямоугольной системе координат

В заданной прямоугольной системе координат прямая определяется уравнением прямой на плоскости одного из возможных видов. Так и прямой линии, заданной в прямоугольной системе координат в трехмерном пространстве, соответствуют некоторые уравнения прямой в пространстве.

Запишем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от типа уравнения, описывающего заданные прямые.

Начнем с условия параллельности прямых на плоскости. Оно базируется на определениях направляющего вектора прямой и нормального вектора прямой на плоскости.

Чтобы на плоскости две несовпадающие прямые были параллельны, необходимо и достаточно, чтобы направляющие векторы заданных прямых были коллинеарными, или были коллинеарными нормальные векторы заданных прямых, или направляющий вектор одной прямой был перпендикулярен нормальному вектору другой прямой.

Становится очевидно, что условие параллельности прямых на плоскости базируется на условии коллинеарности векторов или условию перпендикулярности двух векторов. Т.е., если a → = ( a x , a y ) и b → = ( b x , b y ) являются направляющими векторами прямых a и b ;

и n b → = ( n b x , n b y ) являются нормальными векторами прямых a и b , то указанное выше необходимое и достаточное условие запишем так: a → = t · b → ⇔ a x = t · b x a y = t · b y или n a → = t · n b → ⇔ n a x = t · n b x n a y = t · n b y или a → , n b → = 0 ⇔ a x · n b x + a y · n b y = 0 , где t – некоторое действительное число. Координаты направляющих или прямых векторов определяются по заданным уравнениям прямых. Рассмотрим основные примеры.

  1. Прямая a в прямоугольной системе координат определяется общим уравнением прямой: A 1 x + B 1 y + C 1 = 0 ; прямая b — A 2 x + B 2 y + C 2 = 0 . Тогда нормальные векторы заданных прямых будут иметь координаты ( А 1 , В 1 ) и ( А 2 , В 2 ) соответственно. Условие параллельности запишем так:

A 1 = t · A 2 B 1 = t · B 2

  1. Прямая a описывается уравнением прямой с угловым коэффициентом вида y = k 1 x + b 1 . Прямая b — y = k 2 x + b 2 . Тогда нормальные векторы заданных прямых будут иметь координаты ( k 1 , — 1 ) и ( k 2 , — 1 ) соответственно, а условие параллельности запишем так:

k 1 = t · k 2 — 1 = t · ( — 1 ) ⇔ k 1 = t · k 2 t = 1 ⇔ k 1 = k 2

Таким образом, если параллельные прямые на плоскости в прямоугольной системе координат задаются уравнениями с угловыми коэффициентами, то угловые коэффициенты заданных прямых будут равны. И верно обратное утверждение: если несовпадающие прямые на плоскости в прямоугольной системе координат определяются уравнениями прямой с одинаковыми угловыми коэффициентами, то эти заданные прямые параллельны.

  1. Прямые a и b в прямоугольной системе координат заданы каноническими уравнениями прямой на плоскости: x — x 1 a x = y — y 1 a y и x — x 2 b x = y — y 2 b y или параметрическими уравнениями прямой на плоскости: x = x 1 + λ · a x y = y 1 + λ · a y и x = x 2 + λ · b x y = y 2 + λ · b y .

Тогда направляющие векторы заданных прямых будут: a x , a y и b x , b y соответственно, а условие параллельности запишем так:

a x = t · b x a y = t · b y

Заданы две прямые: 2 x — 3 y + 1 = 0 и x 1 2 + y 5 = 1 . Необходимо определить, параллельны ли они.

Решение

Запишем уравнение прямой в отрезках в виде общего уравнения:

x 1 2 + y 5 = 1 ⇔ 2 x + 1 5 y — 1 = 0

Мы видим, что n a → = ( 2 , — 3 ) — нормальный вектор прямой 2 x — 3 y + 1 = 0 , а n b → = 2 , 1 5 — нормальный вектор прямой x 1 2 + y 5 = 1 .

Полученные векторы не являются коллинеарными, т.к. не существует такого значения t , при котором будет верно равенство:

2 = t · 2 — 3 = t · 1 5 ⇔ t = 1 — 3 = t · 1 5 ⇔ t = 1 — 3 = 1 5

Таким образом, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, а значит заданные прямые не параллельны.

Ответ: заданные прямые не параллельны.

Заданы прямые y = 2 x + 1 и x 1 = y — 4 2 . Параллельны ли они?

Решение

Преобразуем каноническое уравнение прямой x 1 = y — 4 2 к уравнению прямой с угловым коэффициентом:

x 1 = y — 4 2 ⇔ 1 · ( y — 4 ) = 2 x ⇔ y = 2 x + 4

Мы видим, что уравнения прямых y = 2 x + 1 и y = 2 x + 4 не являются одинаковыми (если бы было иначе, прямые были бы совпадающими) и угловые коэффициенты прямых равны, а значит заданные прямые являются параллельными.

Попробуем решить задачу иначе. Сначала проверим, совпадают ли заданные прямые. Используем любую точку прямой y = 2 x + 1 , например, ( 0 , 1 ) , координаты этой точки не отвечают уравнению прямой x 1 = y — 4 2 , а значит прямые не совпадают.

Следующим шагом определим выполнение условия параллельности заданных прямых.

Нормальный вектор прямой y = 2 x + 1 это вектор n a → = ( 2 , — 1 ) , а направляющий вектором второй заданной прямой является b → = ( 1 , 2 ) . Скалярное произведение этих векторов равно нулю:

n a → , b → = 2 · 1 + ( — 1 ) · 2 = 0

Таким образом, векторы перпендикулярны: это демонстрирует нам выполнение необходимого и достаточного условия параллельности исходных прямых. Т.е. заданные прямые параллельны.

Ответ: данные прямые параллельны.

Для доказательства параллельности прямых в прямоугольной системе координат трехмерного пространства используется следующее необходимое и достаточное условие.

Чтобы две несовпадающие прямые в трехмерном пространстве были параллельны, необходимо и достаточно, чтобы направляюще векторы этих прямых были коллинеарными.

Т.е. при заданных уравнениях прямых в трехмерном пространстве ответ на вопрос: параллельны они или нет, находится при помощи определения координат направляющих векторов заданных прямых, а также проверки условия их коллинеарности. Иначе говоря, если a → = ( a x , a y , a z ) и b → = ( b x , b y , b z ) являются направляющими векторами прямых a и b соответственно, то для того, чтобы они были параллельны, необходимо существование такого действительного числа t , чтобы выполнялось равенство:

a → = t · b → ⇔ a x = t · b x a y = t · b y a z = t · b z

Заданы прямые x 1 = y — 2 0 = z + 1 — 3 и x = 2 + 2 λ y = 1 z = — 3 — 6 λ . Необходимо доказать параллельность этих прямых.

Решение

Условиями задачи заданы канонические уравнения одной прямой в пространстве и параметрические уравнения другой прямой в пространстве. Направляющие векторы a → и b → заданных прямых имеют координаты: ( 1 , 0 , — 3 ) и ( 2 , 0 , — 6 ) .

1 = t · 2 0 = t · 0 — 3 = t · — 6 ⇔ t = 1 2 , то a → = 1 2 · b → .

Следовательно, необходимое и достаточное условие параллельности прямых в пространстве выполнено.

Ответ: параллельность заданных прямых доказана.

Параллельные прямые, признаки и условия параллельности прямых.

Эта статья о параллельных прямых и о параллельности прямых. Сначала дано определение параллельных прямых на плоскости и в пространстве, введены обозначения, приведены примеры и графические иллюстрации параллельных прямых. Далее разобраны признаки и условия параллельности прямых. В заключении показаны решения характерных задач на доказательство параллельности прямых, которые заданы некоторыми уравнениями прямой в прямоугольной системе координат на плоскости и в трехмерном пространстве.

Навигация по странице.

Параллельные прямые – основные сведения.

Напомним сначала определения параллельных прямых, которые были даны в статьях прямая на плоскости и прямая в пространстве.

Две прямые на плоскости называются параллельными, если они не имеют общих точек.

Две прямые в трехмерном пространстве называются параллельными, если они лежат в одной плоскости и не имеют общих точек.

Обратите внимание, что оговорка «если они лежат в одной плоскости» в определении параллельных прямых в пространстве очень важна. Поясним этот момент: две прямые в трехмерном пространстве, которые не имеют общих точек и не лежат в одной плоскости не являются параллельными, а являются скрещивающимися.

Приведем несколько примеров параллельных прямых. Противоположные края тетрадного листа лежат на параллельных прямых. Прямые, по которым плоскость стены дома пересекает плоскости потолка и пола, являются параллельными. Железнодорожные рельсы на ровной местности также можно рассматривать как параллельные прямые.

Для обозначения параллельных прямых используют символ «». То есть, если прямые а и b параллельны, то можно кратко записать а b .

Обратите внимание: если прямые a и b параллельны, то можно сказать, что прямая a параллельна прямой b , а также, что прямая b параллельна прямой a .

Озвучим утверждение, которое играет важную роль при изучении параллельных прямых на плоскости: через точку, не лежащую на данной прямой, проходит единственная прямая, параллельная данной. Это утверждение принимается как факт (оно не может быть доказано на основе известных аксиом планиметрии), и оно называется аксиомой параллельных прямых.

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых (ее доказательство Вы можете найти в учебнике геометрии 10-11 класс, который указан в конце статьи в списке литературы).

Для случая в пространстве справедлива теорема: через любую точку пространства, не лежащую на заданной прямой, проходит единственная прямая, параллельная данной. Эта теорема легко доказывается с помощью приведенной выше аксиомы параллельных прямых.

Параллельность прямых — признаки и условия параллельности.

Признаком параллельности прямых является достаточное условие параллельности прямых, то есть, такое условие, выполнение которого гарантирует параллельность прямых. Иными словами, выполнение этого условия достаточно для того, чтобы констатировать факт параллельности прямых.

Также существуют необходимые и достаточные условия параллельности прямых на плоскости и в трехмерном пространстве.

Поясним смысл фразы «необходимое и достаточное условие параллельности прямых».

С достаточным условием параллельности прямых мы уже разобрались. А что же такое «необходимое условие параллельности прямых»? По названию «необходимое» понятно, что выполнение этого условия необходимо для параллельности прямых. Иными словами, если необходимое условие параллельности прямых не выполнено, то прямые не параллельны. Таким образом, необходимое и достаточное условие параллельности прямых – это условие, выполнение которого как необходимо, так и достаточно для параллельности прямых. То есть, с одной стороны это признак параллельности прямых, а с другой стороны – это свойство, которым обладают параллельные прямые.

Прежде чем сформулировать необходимое и достаточное условие параллельности прямых, целесообразно напомнить несколько вспомогательных определений.

Секущая прямая – это прямая, которая пересекает каждую из двух заданных несовпадающих прямых.

При пересечении двух прямых секущей образуются восемь неразвернутых углов. В формулировке необходимого и достаточного условия параллельности прямых участвуют так называемые накрест лежащие, соответственные и односторонние углы. Покажем их на чертеже.

Если две прямые на плоскости пересечены секущей, то для их параллельности необходимо и достаточно, чтобы накрест лежащие углы были равны, или соответственные углы были равны, или сумма односторонних углов равнялась 180 градусам.

Покажем графическую иллюстрацию этого необходимого и достаточного условия параллельности прямых на плоскости.

Доказательства этих условий параллельности прямых Вы можете найти в учебниках геометрии за 7 — 9 классы.

Заметим, что эти условия можно использовать и в трехмерном пространстве – главное, чтобы две прямые и секущая лежали в одной плоскости.

Приведем еще несколько теорем, которые часто используются при доказательстве параллельности прямых.

Если две прямые на плоскости параллельны третьей прямой, то они параллельны. Доказательство этого признака следует из аксиомы параллельных прямых.

Существует аналогичное условие параллельности прямых в трехмерном пространстве.

Если две прямые в пространстве параллельны третьей прямой, то они параллельны. Доказательство этого признака рассматривается на уроках геометрии в 10 классе.

Проиллюстрируем озвученные теоремы.

Приведем еще одну теорему, позволяющую доказывать параллельность прямых на плоскости.

Если две прямые на плоскости перпендикулярны к третьей прямой, то они параллельны.

Существует аналогичная теорема для прямых в пространстве.

Если две прямые в трехмерном пространстве перпендикулярны к одной плоскости, то они параллельны.

Изобразим рисунки, соответствующие этим теоремам.

Все сформулированные выше теоремы, признаки и необходимые и достаточные условия прекрасно подходят для доказательства параллельности прямых методами геометрии. То есть, чтобы доказать параллельность двух заданных прямых нужно показать, что они параллельны третьей прямой, или показать равенство накрест лежащих углов и т.п. Множество подобных задач решается на уроках геометрии в средней школе. Однако следует отметить, что во многих случаях удобно пользоваться методом координат для доказательства параллельности прямых на плоскости или в трехмерном пространстве. Сформулируем необходимые и достаточные условия параллельности прямых, которые заданы в прямоугольной системе координат.

Параллельность прямых в прямоугольной системе координат.

Если на плоскости задана прямоугольная декартова система координат, то прямую линию в этой системе координат определяет уравнение прямой на плоскости некоторого вида. Аналогично прямую линию в прямоугольной системе координат в трехмерном пространстве задают некоторые уравнения прямой в пространстве.

В этом пункте статьи мы сформулируем необходимые и достаточные условия параллельности прямых в прямоугольной системе координат в зависимости от вида уравнений, определяющих эти прямые, а также приведем подробные решения характерных задач.

Начнем с условия параллельности двух прямых на плоскости в прямоугольной системе координат Oxy . В основе его доказательства лежит определение направляющего вектора прямой и определение нормального вектора прямой на плоскости.

Для параллельности двух несовпадающих прямых на плоскости необходимо и достаточно, чтобы направляющие векторы этих прямых были коллинеарны, или нормальные векторы этих прямых были коллинеарны, или направляющий вектор одной прямой был перпендикулярен нормальному вектору второй прямой.

Очевидно, условие параллельности двух прямых на плоскости сводится к условию коллинеарности двух векторов (направляющих векторов прямых или нормальных векторов прямых) или к условию перпендикулярности двух векторов (направляющего вектора одной прямой и нормального вектора второй прямой). Таким образом, если и — направляющие векторы прямых a и b , а и — нормальные векторы прямых a и b соответственно, то необходимое и достаточное условие параллельности прямых а и b запишется как , или , или , где t — некоторое действительное число. В свою очередь координаты направляющих и (или) нормальных векторов прямых a и b находятся по известным уравнениям прямых.

В частности, если прямую a в прямоугольной системе координат Oxy на плоскости задает общее уравнение прямой вида , а прямую b — , то нормальные векторы этих прямых имеют координаты и соответственно, а условие параллельности прямых a и b запишется как .

Если прямой a соответствует уравнение прямой с угловым коэффициентом вида , а прямой b — , то нормальные векторы этих прямых имеют координаты и , а условие параллельности этих прямых примет вид . Следовательно, если прямые на плоскости в прямоугольной системе координат параллельны и могут быть заданы уравнениями прямых с угловыми коэффициентами, то угловые коэффициенты прямых будут равны. И обратно: если несовпадающие прямые на плоскости в прямоугольной системе координат могут быть заданы уравнениями прямой с равными угловыми коэффициентами, то такие прямые параллельны.

Если прямую a и прямую b в прямоугольной системе координат определяют канонические уравнения прямой на плоскости вида и , или параметрические уравнения прямой на плоскости вида и соответственно, то направляющие векторы этих прямых имеют координаты и , а условие параллельности прямых a и b записывается как .

Разберем решения нескольких примеров.

Параллельны ли прямые и ?

Перепишем уравнение прямой в отрезках в виде общего уравнения прямой: . Теперь видно, что — нормальный вектор прямой , а — нормальный вектор прямой . Эти векторы не коллинеарны, так как не существует такого действительного числа t , для которого верно равенство (). Следовательно, не выполняется необходимое и достаточное условие параллельности прямых на плоскости, поэтому, заданные прямые не параллельны.

нет, прямые не параллельны.

Являются ли прямые и параллельными?

Приведем каноническое уравнение прямой к уравнению прямой с угловым коэффициентом: . Очевидно, что уравнения прямых и не одинаковые (в этом случае заданные прямые были бы совпадающими) и угловые коэффициенты прямых равны, следовательно, исходные прямые параллельны.

Второй способ решения.

Сначала покажем, что исходные прямые не совпадают: возьмем любую точку прямой , например, (0, 1) , координаты этой точки не удовлетворяют уравнению прямой , следовательно, прямые не совпадают. Теперь проверим выполнение условия параллельности этих прямых. Нормальный вектор прямой есть вектор , а направляющий вектор прямой есть вектор . Вычислим скалярное произведение векторов и : . Следовательно, векторы и перпендикулярны, значит, выполненяется необходимое и достаточное условие параллельности заданных прямых. Таким образом, прямые параллельны.

заданные прямые параллельны.

Чтобы доказать параллельность прямых в прямоугольной системе координат в трехмерном пространстве пользуются следующим необходимым и достаточным условием.

Для параллельности несовпадающих прямых в трехмерном пространстве необходимо и достаточно, чтобы их направляющие векторы были коллинеарны.

Таким образом, если известны уравнения прямых в прямоугольной системе координат в трехмерном пространстве и нужно ответить на вопрос параллельны эти прямые или нет, то нужно найти координаты направляющих векторов этих прямых и проверить выполнение условия коллинеарности направляющих векторов. Другими словами, если и — направляющие векторы прямых a и b соответственно, то для параллельности прямых a и b необходимо и достаточно, чтобы существовало такое действительное число t , при котором справедливо .

Разберемся с применением условия параллельности прямых в пространстве при решении примера.

Докажите параллельность прямых и .

Нам заданы канонические уравнения прямой в пространстве вида и параметрические уравнения прямой в пространстве вида . Направляющие векторы и заданных прямых имеют координаты и . Так как , то . Таким образом, выполнено необходимое и достаточное условие параллельности двух прямых в пространстве. Этим доказана параллельность прямых и .

Параллельность в пространстве с примерами решения

Содержание:

Параллельность в пространстве

В этом параграфе вы ознакомитесь с основными понятиями стереометрии, аксиомами стереометрии и следствиями из них. Расширите свои представления о многогранниках. Вы узнаете о взаимном расположении двух прямых, прямой и плоскости, двух плоскостей в пространстве. Ознакомитесь с правилами, по которым изображают пространственные фигуры на плоскости.

Основные понятия стереометрии. Аксиомы стереометрии

Изучая математику, вы со многими понятиями ознакомились с помощью определений. Так, из курса планиметрии вам хорошо знакомы определения четырехугольника, трапеции, окружности и др.

Определение любого понятия основано на других понятиях, содержание которых вам уже известно. Например, рассмотрим определение трапеции: «Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны». Видим, что определение трапеции основано на таких уже введенных понятиях, как четырехугольник, сторона четырехугольника, параллельные и непараллельные стороны и др. Итак, определения вводятся по принципу «новое основано на старом». Тогда ясно, что должны существовать первоначальные понятия, которым определений не дают. Их называют основными понятиями (рис. 27.1).

В изученном вами курсе планиметрии определения не давали таким фигурам, как точка и прямая. В стереометрии, кроме них, к основным понятиям отнесем еще одну фигуру — плоскость.

Наглядное представление о плоскости дают поверхность водоема в безветренную погоду, поверхность зеркала, поверхность полированного стола, мысленно продолженные во всех направлениях.

Используя понятие плоскости, можно считать, что в планиметрии мы рассматривали только одну плоскость, и все изучаемые фигуры принадлежали этой плоскости. В стереометрии же рассматривают бесконечно много плоскостей, расположенных в пространстве.

Как правило, плоскости обозначают строчными греческими буквами

Плоскость, так же как и прямая, состоит из точек, то есть плоскость — это множество точек.

Существует несколько случаев взаимного расположения точек, прямых и плоскостей в пространстве. Приведем примеры.

На рисунке 27.4 изображена точка А, принадлежащая плоскости . Также говорят, что точка А лежит в плоскости или плоскость проходит через точку А. Кратко это можно записать так: .

На рисунке 27.5 изображена точка В, не принадлежащая плоскости . Кратко это можно записать так: .

На рисунке 27.6 изображена прямая , принадлежащая плоско­сти . Также говорят, что прямая лежит в плоскости или плоскость проходит через прямую . Кратко это можно записать так:

Если прямая и плоскость имеют только одну общую точку, то говорят, что прямая пересекает плоскость. На рисунке 27.7 изображена прямая , пересекающая плоскость в точке А. Записывают:

В дальнейшем, говоря «две точки», «три точки», «две плоскости» и т.п., будем иметь в виду, что это разные точки, разные прямые и разные плоскости. Если две плоскости имеют общую точку, то говорят, что эти плоскости пересекаются.

На рисунке 27.8 изображены плоскости , пересекающиеся по прямой . Записывают:

На начальном этапе изучения стереометрии невозможно доказывать теоремы, опираясь на другие утверждения, поскольку этих утверждений еще нет. Поэтому первые свойства, касающиеся точек, прямых и плоскостей в пространстве, принимают без доказательства и называют аксиомами. Отметим, что ряд аксиом стереометрии по формулировкам до­словно совпадают со знакомыми вам аксиомами планиметрии.

  • какова бы ни была прямая, существуют точки, принадлежащие этой прямой, и точки, не принадлежащие ей;
  • через любые две точки можно провести прямую, и притом только одну.

Мы не будем знакомиться со строгим аксиоматическим построением стереометрии. Рассмотрим лишь некоторые утверждения, выражающие основные свойства плоскостей пространства, основываясь на которых обычно строят курс стереометрии в школе.

Аксиома А1. В любой плоскости пространства выполняются все аксиомы планиметрии.

Если в любой плоскости пространства выполняются аксиомы планиметрии, то выполняются и следствия из этих аксиом, то есть теоремы планиметрии. Следовательно, в стереометрии можно поль­зоваться всеми известными нам свойствами плоских фигур.

Аксиома А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.

Рисунки 27.9-27.11 иллюстрируют эту аксиому.

Из этой аксиомы следует, что три точки пространства, не лежащие на одной прямой, определяют единственную плоскость, про­ ходящую через эти точки. Поэтому для обозначения плоскости можно указать любые три ее точки, не лежащие на одной прямой.

Например, на рисунке 27.12 изображена плоскость АВС. Запись означает, что точка М принадлежит плоскости АВС. Запись означает, что прямая MN принадлежит плоскости АВС (рис. 27.12).

Аксиома АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.

Например, на рисунке 27.13 точки А, В и С принадлежат плоскости АВС. Тогда можно записать: Из этой аксиомы следует, что если прямая не принадлежит плоскости, то она имеет с данной плоскостью не более одной общей точки.

Утверждение, сформулированное в аксиоме АЗ, часто используют на практике, когда хотят проверить, является ли данная поверхность ровной (плоской). Для этого к поверхности в разных местах прикладывают ровную рейку и проверяют, есть ли зазор между рейкой и поверхностью (рис. 27.14).

Аксиома А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.

Эту аксиому можно проиллюстрировать с помощью согнутого листа бумаги или с помощью вашего учебника (рис. 27.15).

Пример:

Докажите, что если две плоскости имеют общую точку, то они пересекаются по прямой, проходящей через эту точку.

Решение:

Пусть точка А является общей для двух плоскостей , то есть (рис. 27.16). По аксиоме А4 плоскости пересекаются по прямой. Пусть Тогда все общие точки плоскостей принадлежат прямой . Точка А является общей для плоскостей . Следовательно, Кроме аксиом, есть и другие свойства, описывающие взаимное расположение точек, прямых и плоскостей в пространстве. Опираясь на аксиомы, можно доказать, например, следующие утверждения (следствия из аксиом стереометрии).

Теорема 27.1. Через прямую и не принадлежащую ей точку проходит плоскость, и притом только одна (рис. 27.17).

Теорема 27.2. Через две пересекающиеся прямые проходит плоскость, и притом только одна (рис. 27.18).

Из аксиомы А2 и теорем 27.1 и 27.2 следует, что плоскость однозначно определяется:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и точкой, не принадлежащей этой прямой;
  3. двумя пересекающимися прямыми.

Таким образом, мы указали три способа задания плоскости.

Пространственные фигуры

Начальные сведения о многогранниках. В стереометрии, кроме точек, прямых и плоскостей, рассматривают пространственные фигуры, то есть фигуры, не все точки ко­торых лежат в одной плоскости. Некоторые из пространственных фигур вам уже знакомы. Так, на рисунке 28.1 изображены цилиндр, конус и шар. Подробно эти фигуры вы будете изучать в 11 классе.

На рисунке 28.2 изображена еще одна знакомая вам пространственная фигура — пирамида. Эта фигура является частным видом многогранника. Примеры многогранников показаны на рисунке 28.3.

Поверхность многогранника состоит из многоугольников. Их называют гранями многогранника. Стороны многоугольников называют ребрами многогранника, а вершины — вершинами много­гранника (рис. 28.4).

На рисунке 28.5 изображена пятиугольная пирамида FABCDE.

Поверхность этого многогранника состоит из пяти треугольников, которые называют боковыми гранями пирамиды, и одного пятиугольника, который называют основанием пирамиды. Вершину F, общую для всех боковых граней, называют вершиной пирамиды.

Ребра FA, FB, FC, FD и FE называют боковыми ребрами пирамиды, а ребра А В, ВС, CD, DE и ЕАребрами основания пирамиды.

На рисунке 28.6 изображена треугольная пирамида DABC. Треугольную пирамиду называют также тетраэдром.

Еще одним частным видом многогранника является призма. На рисунке 28.7 изображена треугольная призма . Этот многогранник имеет пять граней, две из которых — равные треугольники АВС и Их называют основаниями призмы.

Остальные грани призмы — параллелограммы. Их называют боковыми гранями призмы. Ребра называют боковыми ребрами призмы.

На рисунке 28.8 изображена четырехугольная призма . Ее поверхность состоит из двух равных четырехугольников ABCD и (основания призмы) и четырех параллелограммов (боковые грани призмы).

Вы знакомы также с частным видом четырехугольной призмы — прямоугольным параллелепипедом. На рисунке 28.9 изображен прямоугольный параллелепипед . Все грани прямоугольного параллелепипеда являются прямоугольниками.

В свою очередь, частным видом прямоугольного параллелепипеда является куб. Все грани куба — равные квадраты (рис. 28.10).

Четырехугольную призму, основанием которой является параллелограмм, называют параллелепипедом.

В курсе геометрии 11 класса вы более подробно ознакомитесь с многогранниками и их частными видами.

Пример:

На ребрах и куба отметили соответственно точки М и N так, что (рис. 28.11). Постройте точку пересечения прямой MN с плоскостью АВС.

Решение:

Точки М и N принадлежат плоскости . Тогда по аксиоме АЗ прямая MN принадлежит этой плоскости. Аналогично прямая AD также принадлежит плоскости . Из планиметрии известно, что прямые, лежащие в одной плоскости, или параллельны, или пересекаются. Поскольку , то прямые AD и MN пересекаются. Пусть X — точка их пересечения (рис. 28.12). Точки А и D принадлежат плоскости АВС. Тогда по аксиоме АЗ прямая AD принадлежит этой же плоскости. Точка X принадлежит прямой AD. Следовательно, точка X принадлежит плоскости АВС. Поскольку точка X также принадлежит прямой MN, то прямая MN пересекает плоскость АВС в точке X.

Взаимное расположение двух прямых в пространстве

Из курса планиметрии вы знаете, что две прямые называют пересекающимися, если они имеют только одну общую точку. Такое же определение пересекающихся прямых дают и в стереометрии. Вам также известно, что две прямые называют параллельными, если они не пересекаются. Можно ли это определение перенести в стереометрию?

Обратимся к рисунку 29.1, на котором изображен куб . Каждая из прямых АВ и не имеет с прямой DC общих точек. При этом прямые АВ и DC лежат в одной плоскости — в плоскости АВС, а прямые и DC не лежат в одной плоскости, то есть не существует плоскости, которая проходила бы через эти прямые. Этот пример показывает, что в стереометрии для двух прямых, не имеющих общих точек, возможны два случая взаимного расположения: прямые лежат в одной плоскости и прямые не лежат в одной плоскости. Для каждого из этих случаев дадим соответствующее определение.

Определение. Две прямые в пространстве называют параллельным и, если они лежат в одной плоскости и не пересека­ются. Если прямые параллельны, то записывают:

Определение. Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости. Например, на рисунке 29.1 прямые АВ и DC — параллельные, а прямые и DC — скрещивающиеся.

Наглядное представление о параллельных прямых дают колонны здания, корабельный лес, бревна сруба (рис. 29.2).

Наглядное представление о скрещивающихся прямых дают провода линий электропередачи, различные элементы строительных конструкций (рис. 29.3). Итак, существуют три возможных случая взаимного расположения двух прямых в пространстве (рис. 29.4):

  1. прямые пересекаются;
  2. прямые параллельны;
  3. прямые скрещиваются.

Два отрезка называют параллельными (скрещивающимися), если они лежат на параллельных (скрещивающихся) прямых. Например, ребра и треугольной призмы (рис. 29.5) являются параллельными, а ребра АС и — скрещивающимися.

Теорема 29.1. Через две параллельные прямые проходит плоскость, и притом только одна.

Доказательство. Пусть даны параллельные прямые Докажем, что существует единственная плоскость такая, что

Существование плоскости , проходящей через прямые , следует из определения параллельных прямых.

Если предположить, что существует еще одна плоскость, проходящая через прямые , то через прямую а и некоторую точку прямой будут проходить две различные плоскости, что проти­воречит теореме 27.1.

Существует три способа задания плоскости. Теорему 29.1 можно рассматривать как еще один способ задания пло­скости — с помощью двух параллельных прямых.

Установить параллельность двух прямых, лежащих в одной плоскости, можно с помощью известных вам из курса планиметрии признаков параллельности двух прямых. А как установить, являются ли две прямые скрещивающимися? Ответить на этот вопрос позволяет следующая теорема.

Теорема 29.2 (признак скрещивающихся прямых). Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся (рис. 29.6).

На рисунке 29.7 ребра АВ и DC тетраэдра DABC являются скрещивающимися. Действительно, прямая DC пересекает плоскость АВС в точке С, не принадлежащей прямой АВ. Следовательно, по признаку скрещивающихся прямых прямые АВ и DC являются скрещивающимися.

Параллельность прямой и плоскости

Вам уже известны два возможных случая взаимного расположения прямой и плоскости:

  1. прямая принадлежит плоскости, то есть все точки прямой принадлежат плоскости;
  2. прямая пересекает плоскость, то есть прямая имеет с плоскостью только одну об­щую точку.

Понятно, что возможен и третий случай, когда прямая и плоскость не имеют общих точек. Например, прямая, содержащая ребро куба , не имеет общих точек с плоскостью АВС (рис. 30.1).

Определение. Прямую и плоскость называют параллель­ными, если они не имеют общих точек.

Если прямая и плоскость параллельны, то записывают: Также принято говорить, что прямая параллельна плоскости , а плоскость параллельна прямой .

Наглядное представление о прямой, параллельной плоскости, дают некоторые спортивные снаряды. Например, брусья параллельны плоскости пола (рис. 30.2). Другой пример — водосточная труба: она параллельна плоскости стены (рис. 30.3).

Выяснять, параллельны ли данные прямая и плоскость, с помощью определения затруднительно. Гораздо эффективнее пользоваться следующей теоремой.

Теорема 30.1 (признак параллельности прямой и плоскости). Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.

Например, на рисунке 30.1 прямые и содержат противолежащие стороны квадрата . Эти прямые параллельны.

Поскольку , то по признаку параллельности прямой и плоскости

Отрезок называют параллельным плоскости, если он принадлежит прямой, параллельной этой плоскости. Например, ребро АВ куба параллельно плоскости (рис. 30.1).

Вы умеете устанавливать параллельность двух прямых с помощью теорем-признаков, известных из планиметрии. Рассмотрим теоремы, описывающие достаточные условия параллельности двух прямых в пространстве.

Теорема 30.2. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.

На рисунке 30.4 прямая параллельна плоскости . Плоскость проходит через прямую и пересекает плоскость по прямой . Тогда

Теорема 30.3. Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, отличной от двух данных, то эта прямая параллельна каждой из двух данных прямых.

На рисунке 30.5 прямые параллельны, плоскость проходит через прямую , а плоскость — через прямую Тогда

Теорема 30.4. Две прямые, параллельные третьей прямой, параллельны между собой.

Пример:

Докажите, что если прямая параллельна каждой из двух пересекающихся плоскостей, то она параллельна прямой их пересечения.

Решение:

Пусть даны прямая и плоскости такие, что (рис. 30.6). Докажем, что В плоскостях найдутся соответственно такие прямые , что Если хотя бы одна из прямых совпадает с пря­мой , то утверждение задачи доказано. Если же каждая из прямых отлична от прямой , то по теореме 30.4 Воспользовавшись теоремой 30.3, приходим к выводу, что . Но , следовательно,

Параллельность плоскостей

Рассмотрим варианты возможного взаимного расположения двух плоскостей. Вы знаете, что две плоскости могут иметь общие точки, то есть пересекаться. Понятно, что две плоскости могут и не иметь общих точек. Например, плоскости АВС и , содержащие основания призмы, не имеют общих точек (рис. 31.1).

Определение. Две плоскости называют параллельны ми, если они не имеют общих точек.

Если плоскости параллельны, то записывают: Также принято говорить, что плоскость параллельна плоскости или плоскость параллельна плоскости

Наглядное представление о параллельных плоскостях дают потолок и пол комнаты; поверхность воды, налитой в аквариум, и его дно (рис. 31.2).

Из определения параллельных плоскостей следует, что любая прямая, лежащая в одной из двух параллельных плоскостей, параллельна другой плоскости.

В тех случаях, когда надо выяснить, являются ли две плоскости параллельными, удобно пользоваться следующей теоремой.

Теорема 31.1 (признак параллельности двух плоско­стей). Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Например, на рисунке 31.3 изображен прямоугольный параллелепипед . Имеем: и . Тогда по признаку параллельности двух плоскостей .

Будем говорить, что два многоугольника параллельны, если они лежат в параллельных плоскостях. Например, грани и прямоугольного параллелепипеда параллельны (рис. 31.3). Рассмотрим некоторые свойства параллельных плоскостей.

Теорема 31.2. Через точку в пространстве, не принадлежа­щую данной плоскости, проходит плоскость, параллельная данной плоскости, и притом только одна (рис. 31.4).

Теорема 31.3. Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны (рис. 31.5).

Пример:

Докажите, что отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Решение:

Пусть даны параллельные плоскости и параллельные прямые АВ и такие, что (рис. 31.6). Докажем, что . Параллельные прямые АВ и задают некоторую плоскость причем

По теореме 31.3 получаем: . Следовательно, четырехугольник — параллелограмм. Отсюда .

Параллельное проектирование

Многие явления и процессы, наблюдаемые нами в повседневной жизни, служат примерами преобразований, при которых образом пространственной фигуры является плоская фигура. Увидеть одно из таких явлений можно в солнечную погоду, когда предмет отбрасывает тень на плоскую поверхность (рис. 32.1). Этот пример иллюстрирует преобразование фигуры, которое называют параллельным проектированием. С помощью этого преобразования на плоскости создают изображения пространственных фигур.

Многие рисунки настоящего учебника, на которых изображены пространственные фигуры, можно рассматривать как тени, отбрасываемые на плоскость страницы предметами, освещенными па­раллельными лучами. Ознакомимся подробнее с параллельным проектированием.

Пусть даны плоскость прямая пересекающая эту плоскость, и фигура F (рис. 32.2). Через каждую точку фигуры F проведем прямую, параллельную прямой (если точка фигуры F принадлежит прямой то будем рассматривать саму прямую ). Точки пересечения всех проведенных прямых с плоскостью образуют некоторую фигуру . Описанное преобразование фигуры F называют параллельным проектированием. Фигуру называют параллельной проекцией фигуры F на плоскость в направлении прямой Также фигуру называют изображением фигуры на плоскости в направлении прямой

Выбирая выгодные положения плоскости и прямой можно получить наглядное изображение данной фигуры F. Это связано с тем, что параллельное проектирование обладает рядом замечательных свойств (см. теоремы 32.1-32.3). Благодаря этим свойствам изображение фигуры похоже на саму фигуру.

Пусть даны плоскость и прямая пересекающая эту плоскость. Если прямая параллельна прямой то ее проекцией на плоскость является точ­ка (рис. 32.3). Проекцией прямой также является точка. Если отрезок параллелен прямой или лежит на прямой , то его проекцией на плоскость является точка (рис. 32.3).

В следующих теоремах будем рассматривать прямые и отрезки, не параллельные прямой и не лежащие на ней.

Теорема 32.1. Параллельной проекцией прямой является прямая; параллельной проекцией отрезка является отрезок (рис. 32.4).

Теорема 32.2. Параллельной проекцией двух параллельных прямых являются или прямая (рис. 32.5), или две параллельные прямые (рис. 32.6). Параллельные проекции двух параллельных отрезков лежат на одной прямой или на параллельных прямых (рис. 32.6).

Теорема 32.3. Отношение параллельных проекций отрезков, лежащих на одной прямой или на параллельных прямых, равно отношению самих отрезков (рис. 32.7).

Рассмотрим изображения некоторых многоугольников на плоскости в на­правлении прямой

Если прямая параллельна плоскости многоугольника или принадлежит этой плоскости, то изображением многоугольника является отрезок. Теперь рассмотрим случай, когда прямая пересекает плоскость много­угольника.

Из свойств параллельного проектирования следует, что параллельной проекцией треугольника является треугольник (рис. 32.8).

Поскольку при параллельном проектировании сохраняется параллельность отрезков, то изображением параллелограмма (в частности, прямоугольника, ромба, квадрата) является параллелограмм (рис. 32.9).

Также из свойств параллельного проектирования следует, что изображением трапеции является трапеция.

Параллельной проекцией окружности является фигура, которую называют эллипсом (рис. 32.10).

Изображения объектов с помощью параллельного проектирования широко используют в самых разных областях промышленности, например в автомобилестроении (рис. 32.11).

ГЛАВНОЕ В ПАРАГРАФЕ 4

Основные аксиомы стереометрии

  • А1. В любой плоскости пространства выполняются все аксиомы планиметрии.
  • А2. Через любые три точки пространства, не лежащие на одной прямой, проходит плоскость, и притом только одна.
  • АЗ. Если две точки прямой принадлежат плоскости, то и вся прямая принадлежит этой плоскости.
  • А4. Если две плоскости имеют общую точку, то они пересекаются по прямой.

Плоскость однозначно определяется:

  1. тремя точками, не лежащими на одной прямой;
  2. прямой и точкой, не принадлежащей этой прямой;
  3. двумя пересекающимися прямыми;
  4. двумя параллельными прямыми.

Взаимное расположение двух прямых в пространстве

  • Две прямые называют пересекающимися, если они имеют только одну общую точку.
  • Две прямые в пространстве называют параллельными, если они лежат в одной плоскости и не пересекаются.
  • Две прямые в пространстве называют скрещивающимися, если они не лежат в одной плоскости.

Свойство параллельных прямых

Через две параллельные прямые проходит плоскость, и притом только одна.

Признак скрещивающихся прямых

Если одна из двух прямых лежит в плоскости, а другая пересекает эту плоскость в точке, не принадлежащей первой прямой, то данные прямые — скрещивающиеся.

Параллельность в пространстве

Прямую и плоскость называют параллельными, если они не имеют общих точек. Две плоскости называют параллельными, если они не имеют общих точек.

Признак параллельности прямой и плоскости

Если прямая, не принадлежащая данной плоскости, параллельна какой-либо прямой, лежащей в этой плоскости, то данная прямая параллельна самой плоскости.

Условия параллельности двух прямых в пространстве

  • Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то прямая пересечения плоскостей параллельна данной прямой.
  • Если через каждую из двух параллельных прямых проведена плоскость, причем эти плоскости пересекаются по прямой, от­ личной от двух данных, то эта прямая параллельна каждой из двух данных прямых.
  • Две прямые, параллельные третьей прямой, параллельны между собой.

Признак параллельности двух плоскостей

Если две пересекающиеся прямые одной плоскости параллельны соответственно двум прямым другой плоскости, то эти плоскости параллельны.

Свойства параллельных плоскостей

Через точку в пространстве, не принадлежащую данной плоско­сти, проходит плоскость, параллельная данной плоскости, и притом только одна.

Прямые пересечения двух параллельных плоскостей третьей плоскостью параллельны.

Отрезки параллельных прямых, заключенные между параллельными плоскостями, равны.

Рекомендую подробно изучить предметы:
  1. Математика
  2. Алгебра
  3. Линейная алгебра
  4. Векторная алгебра
  5. Высшая математика
  6. Дискретная математика
  7. Математический анализ
  8. Математическая логика
Ещё лекции с примерами решения и объяснением:
  • Перпендикулярность в пространстве
  • Векторы и координаты в пространстве
  • Множества
  • Рациональные уравнения
  • Числовые последовательности
  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.


источники:

http://www.cleverstudents.ru/line_and_plane/parallel_lines.html

http://www.evkova.org/parallelnost-v-prostranstve-s-primerami-resheniya