Q1 q2 q3 qn const это уравнение

Закон сохранения электрического заряда

О чем эта статья:

8 класс, 10 класс

Электрический заряд

Электрический заряд — это физическая величина, которая определяет способность тел создавать электромагнитное поле и принимать участие в электромагнитном взаимодействии.

Мы состоим из клеток, клетки состоят из молекул, молекулы в свою очередь состоят из атомов, а атомы — из ядра и электронов. Ядро состоит из протонов и нейтронов.

Протон — это частица, которая заряжена положительно, нейтрон — нейтрально, а электрон — отрицательно. Электроны вращаются по орбитам, которые во много раз больше, чем размер электрона.

Размер электрона с размером орбиты можно сравнить так: представьте футбольный мяч и футбольное поле. Во сколько раз поле больше мяча, во столько же раз орбита больше, чем электрон.

Как мы уже выяснили, электрические заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, разноименные притягиваются:

А вот измерять Электрический заряд мы будем в Кулонах [Кл]. Нет, не тех, что болтаются на цепочке. Шарль Кулон — это физик, который изучал электромагнитные явления.

Электризация

Чтобы разобраться с тем, как тело приобретает электрический заряд и сохраняет его, нам для начала нужно поближе познакомиться с протоном и электроном. Протон — ленивый и неповоротливый — он точно не будет никуда перемещаться, если мы не переместим атом целиком.

А вот электрон — парень подвижный, и ему перебежать с одного атома на другой — ничего не стоит.

Мы поговорим о двух типах электризации: электризация соприкосновением и электризация трением.

  • Электризация соприкосновением — это процесс, при котором мы берем два проводящих тела: отрицательно заряженное и нейтральное.

Свободные электроны переходят с незаряженного тела на нейтральное. А если мы возьмем положительно заряженное тело вместо отрицательного, то свободные электроны перейдут с нейтрального тела, чтобы уравновесить заряды.

  • Электризации трением — это когда мы берем два незаряженных тела и трем их друг о друга.

Электроны переходят от одного тела к другому и в отличии от электризации соприкосновением заряжаются противоположными по знаку и равными по модулю зарядами.

То есть при соприкосновении заряд раздают одного знака и поровну. Как если бы ты поделился с другом конфетами, которых у тебя с избытком.

При трении наоборот — заряды у тел будут разных знаков, но также в одинаковом количестве. Например, у вас есть равное количество денег в рублях и долларах, и у меня аналогичная ситуация с той же суммой. Вы решили лететь в США, а мне как раз доллары не нужны. Чтобы не ходить в банк, мы можем просто поменяться. Тогда у вас будут только доллары, а у меня — только рубли. Главное, договориться про курс 🙂

Давайте решим пару задач по этой теме.

Задачка один

Из какого материала может быть сделан стержень, соединяющий электрометры, изображённые на рисунке?

Решение:

Он может быть сделан либо из проводника, либо из диэлектрика. Проводник пропускает через себя заряды, а диэлектрик — нет. Если мы посмотрим на показания электрометров, то увидим, что они отличаются.

Как мы помним, при соприкосновении заряды уравниваются по величине (один электрометр делится конфетами с другим). В данном случае никто ни с кем не делился, это значит, что стержень не пропускает — он диэлектрик. И стекло, и эбонит являются диэлектриками. Значит подходят оба варианта!

Ответ: стержень может быть сделан как из стекла, так и из эбонита.

Задачка два

В процессе трения о шёлк стеклянная линейка приобрела положительный заряд. Как при этом изменилось количество заряженных частиц на линейке и шёлке при условии, что обмен при трении не происходил?

А) количество протонов на стеклянной линейке

Б) количество электронов на шёлке

Решение:

Вспомните, как мы охарактеризовали протон: он ленивый и неподвижный! Значит количество протонов ни на стеклянной линейке, ни на шелке измениться просто не может. Мы же не отламываем кусок линейки вместе с атомами, из которых она состоит. А вот электроны охотно перемещаются. Нам известно, что линейка приобрела положительный заряд. Получается, электроны сбежали от нее к шелку. Следовательно, количество электронов на шелке увеличилось.

Ответ: количество протонов на стеклянной линейке не изменилось, а количество электронов на шелке увеличилось.

Классический курс физики для 10 класса поможет разобраться в законе сохранения заряда и других непростых темах.

Электростатическая индукция

Кажется, с электризацией разобрались. Теперь разберемся, что произойдет, если мы поднесем одно тело к другому, но не вплотную. Произойдет такое явление, как электростатическая индукция — явление перераспределения зарядов в нейтрально заряженных телах.

Давай разбираться на примере задачи:

На нити подвешен незаряженный металлический шарик. К нему снизу поднесли положительно заряженную палочку. Как изменится при этом сила натяжения нити?

Решение:

Здесь важно подчеркнуть, что незаряженный — значит заряжен нейтрально. То есть в теле равное количество положительных и отрицательных зарядов.

Электроны металлического шарика будут перемещаться вниз и притягиваться к поднесенной положительной палочке. В результате шарик притягивается к палочке, следовательно, сила натяжения нити увеличивается.

Ответ: сила натяжения нити увеличивается

Поляризация диэлектрика

Давайте возьмем два, на первый взгляд, одинаковых задания из ЕГЭ.

Задание 1

Если к незаряженному металлическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Мы только что это разобрали: это электростатическая индукция.

Задание 2

Если к незаряженному диэлектрическому шару поднести, не касаясь, точечный положительный заряд, то на стороне шара, ближайшей к заряду, появится отрицательный заряд. Как называется это явление?

Кажется, что очень похоже на электростатическую индукцию, но это явление будет называться поляризация. В чем разница:

В первом случае — это проводник, а во втором — диэлектрик. Если не вдаваться в подробности, то поляризация диэлектрика — процесс, очень похожий по природе своей на электростатическую индукцию, только происходит в непроводящих материалах.

Закон сохранения электрического заряда

И последнее, о чем мы сегодня поговорим — этот закон сохранения заряда

Алгебраическая сумма зарядов электрически замкнутой системы сохраняется.

Закон сохранения заряда

q1, q2, q3, …, qn — заряды электрически замкнутой системы [Кл]

Задачка раз

У нас есть два металлических шарика. Один имеет положительный заряд 2q, а другой — отрицательный −3q. Шарики соприкасаются, после чего их разъединяют. Каков конечный заряд каждого шарика?

Решение:

Для решения этой задачи нам нужно найти алгебраическую сумму зарядов.

Это суммарный заряд шариков и до, и после и во время взаимодействия.

Так как суммарный заряд сохраняется, но шарики соприкоснулись, суммарный заряд разделится между всеми шариками поровну. То есть нам нужно суммарный заряд просто поделить на количество шариков — на 2.

И это ответ к нашей задаче.

Ответ: конечный заряд каждого шарика будет равен −0,5 Кл.

Задачка два

Металлическая пластина, имевшая положительный заряд, по модулю равный 10е, при освещении потеряла шесть электронов. Каким стал заряд пластины?

Решение:

У положительно заряженной пластины 10e забрали 6 электронов. Заряд одного электрона равен −е. Спасемся математикой и посчитаем:

q = q₀ − 6(−e) = 10e + 6e = 16e

Красный знак «минус» образуется из-за того, что мы «отнимаем» электроны, а зеленый — из-за того, что электрон отрицательный. «Минус на минус» дает плюс, поэтому мы получаем 10e + 6e = 16е.

Ответ: 16е

Задачка три

Имеются два одинаковых проводящих шарика. Одному из них сообщили электрический заряд +8q, другому −4q. Затем шарики привели в соприкосновение и развели на прежнее расстояние. Какими стали заряды у шариков после соприкосновения?

Решение:

По закону сохранения заряда сумма зарядов в замкнутой системе остается постоянной.

Два шарика привели в соприкосновение и развели, значит их суммарный заряд разделится между шариками поровну.

Ответ: заряд каждого шарика равен 2q.

Закон Кулона и связь с гравитацией

Мы уже упоминали Шарля Кулона. В честь него названа единица измерения заряда — Кулон. Он придумал закон о взаимодействии зарядов.

Закон Кулона

k — коэффициент пропорциональности

(Н · м 2 )/Кл 2 — электрическая постоянная

— диэлектрическая проницаемость среды — показывает во сколько раз сила электростатического взаимодействия в вакууме больше силы в среде (в вакууме равна 1)

q1 — заряд первого тела [Кл]

q2 — заряд второго тела [Кл]

r — расстояние между телами [м]

F — сила электростатического взаимодействия (кулоновская) [Н]

Мы уже знаем, что заряды бывают положительными и отрицательными. Одноименные заряды отталкиваются, а разноименные — притягиваются. Это значит, что сила направлена туда же, куда заряд будет стремиться двигаться.

Например, у положительного заряда сила будет направлена в сторону отрицательного, если он есть где-то поблизости, и от положительного, так как одноименные заряды отталкиваются.

Согласно третьему закону Ньютона, силы одной природы возникают попарно, равны по величине, противоположны по направлению. Если взаимодействуют два неодинаковых заряда, сила, с которой больший заряд действует на меньший (В на А) равна силе, с которой меньший действует на больший (А на В).

Интересно, что у различных законов физики есть некоторые общие черты. Вспомним закон тяготения. Сила гравитации также обратно пропорциональны квадрату расстояния, но уже между массами. И невольно возникает мысль, что в этой закономерности таится глубокий смысл. До сих пор никому не удалось представить тяготение и электричество, как два разных проявления одной и той же сущности.

Сила и тут изменяется обратно пропорционально квадрату расстояния, но разница в величине электрических сил и сил тяготения поразительна. Пытаясь установить общую природу тяготения и электричества, мы обнаруживаем такое превосходство электрических сил над силами тяготения, что трудно поверить, будто у тех и у других один и тот же источник. Нельзя говорить, что одно действует сильнее другого, ведь все зависит от того, какова масса и каков заряд.

Рассуждая о том, насколько сильно действует тяготение, мы не вправе говорить: «Возьмем массу такой-то величины», потому что мы выбираем ее сами. Но если мы возьмем то, что предлагает нам сама Природа: ее собственные числа и меры, которые не имеют ничего общего с нашими дюймами, годами — с любыми нашими мерами, вот тогда мы можем сравнивать.

Мы возьмем элементарную заряженную частицу, например, электрон. Две элементарные частицы, два электрона, за счет электрического заряда отталкивают друг друга с силой, обратно пропорциональной квадрату расстояния между ними, а за счет гравитации притягиваются друг к другу опять-таки с силой, обратно пропорциональной квадрату расстояния.

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 · 10 −11 м 3 · кг −1 · с −2

Тяготение относится к электрическому отталкиванию, как единица к числу с 42 нулями. Да, это огромное число! Исследователи перебирали все большие числа, чтобы понять — откуда это взялось. Одно из таких больших чисел — это отношение диаметра Вселенной к диаметру протона — как ни удивительно, это тоже число с 42 нулями. Нормально так перебрали.

Если вы смотрели Рика и Морти, то знаете о теории параллельных вселенных и о том, что эти вселенные расширяются. Из-за расширения вселенной постоянная сила тяготения меняется. Хотя эта гипотеза еще не опровергнута, у нас нет никаких свидетельств в ее пользу. Наоборот, некоторые данные говорят о том, что постоянная сила тяготения не менялась таким образом. Это громадное число по сей день остается загадкой.

От расширяющихся вселенных и мультиков перейдем к чему-то более приземленному — к задачам.

Задачка раз

Расстояние между двумя точечными электрическими зарядами уменьшили в 3 раза, каждый из зарядов увеличили в 3 раза. Во сколько раз увеличился модуль сил электростатического взаимодействия между ними?

Решение:

Возьмем закон Кулона.

Если расстояние уменьшилось в 3 раза, то знаменатель уменьшился в 9 раз. Каждый из зарядов увеличился в три раза, значит числитель увеличился в 9 раз. Уменьшаем знаменатель в 9 раз, тем самым увеличивая всю дробь в 9 раз, увеличиваем числитель в 9 раз, получаем, что вся дробь увеличилась в 81 раз. И это ответ.

Ответ: модуль сил электростатического взаимодействия увеличится в 81 раз.

Задачка два (последняя!)

Два одинаковых маленьких отрицательно заряженных металлических шарика находятся в вакууме на достаточно большом расстоянии друг от друга. Модуль силы их кулоновского взаимодействия равен F1. Модули зарядов шариков отличаются в 5 раз.

Если эти шарики привести в соприкосновение, а затем расположить на прежнем расстоянии друг от друга, то модуль силы их кулоновского взаимодействия станет равным F2. Определите отношение F2 к F1.

Решение:

Для начала найдем заряд шариков после соприкосновения.

По закону Кулона найдем силу F1:

Теперь по закону Кулона найдем силу F2:

И находим отношение сил

Ответ: отношение сил равно 1,8.

Закон сохранения электрического заряда.

В изолированной системе алгебраическая сумма зарядов всех тел остается постоянной:

Замкнутая система (изолированная) – это такая, в которую заряды из вне не поступают и из неё не выходят, и только тела системы могут обмениваться зарядами между собой.

Закон сохранения электрического заряда утверждает, что в замкнутой системе тел не могут наблюдаться процессы рождения или исчезновения зарядов только одного знака: заряды «рождаются» и «исчезают» парами.

Закон Кулона.

Сила взаимодействия двух точечных неподвижных заряженных тел в вакууме прямо пропорциональна произведению модулей зарядов и обратно пропорциональна квадрату расстояния между ними.

Точечным зарядом называют заряженное тело, размерами которого в условиях данной задачи можно пренебречь.

Силы взаимодействия подчиняются третьему закону Ньютона:

.

Электрическое поле.

Электрическое поле – это нечто простейшее, не имеющее структуры, материальная среда, осуществляющая взаимодействия электрических зарядов.

Дата добавления: 2017-05-02 ; просмотров: 1351 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Где — Q1, Q2, Q3 – количество теплоты, полученное или отданное телами; n — число тел, участвующих в теплообмене

Теплоту, полученную телом, считают положительной и в уравнении ставят знак «+»; теплоту, отданную телом, считают отрицательной и ставят знак «-».

Тепловым эффектом химической реакции называют алгебраическую сумму поглощенной при реакции теплоты и совершённой работы за вычетом работы против сил внешнего давления (pΔV).

В соответствии с первым законом термодинамики:

где ΔU – изменение внутренней энергии системы; A – совершенная системой работа,

тепловой эффект реакции зависит от пути и способа проведения процесса. Однако, по крайней мере, при соблюдении одного из двух условий теплота химической реакции не зависит от пути и способа осуществления взаимодействия:

1) если реакция протекает в изохорно-изотермических условиях и при этом не совершается работа (А=0; V=const; T=const), то тепловой эффект реакции равен изменению внутренней энергии системы и, следовательно, не зависит от пути процесса:

где U2 – внутренняя энергия продуктов реакции; U1 — внутренняя энергия исходных веществ;

2) если реакция протекает в изобарно-изотермических условиях (P=const; T=const) и при этом не совершается никакой работы, кроме работы расширения, то тепловой эффект реакции равен изменению энтальпии системы и следовательно не зависит от пути процесса:

где Н2 – энтальпия продуктов реакции; Н1 – энтальпия исходных веществ.

Измерение тепловых эффектов реакций составляет обширную область термохимии, данные которой позволяют составить правильное представление об энергетической ценности той или иной реакции, ее внутреннем механизме, возможном направлении кинетики и т. д.

Для практических измерений тепловых эффектов употребляются калориметры.

Результаты опытов по измерению тепловых эффектов очень интересны. Так, оказалось, что 1 г веществ, из которых состоит бактерия (кишечная палочка), выделяет в час около 400 кал (1 кал = 4,1868 Дж), 1 г вещества таракана выделяет 50 кал/ч, 1 г вещества улитки – около 0,5 кал/ч. Особенно поучительно сравнение этих величин с теми, которые характеризуют неживые объекты, 1 г веществ, образующих тело человека, выделяет в 10 000 раз больше теплоты, чем 1 г материи Солнца; летящая муха дрозофила выделяет за единицу времени столько же энергии, сколько автомобиль на полной скорости, а бактерия – столько же, сколько реактивный самолет (конечно, в расчете на равные веса). Эти парадоксальные результаты указывают на исключительную мощность синтетических процессов в живых организмах и необычайные энергетические возможности жизни.

Результаты термохимических измерений – тепловые эффекты реакций – принято относить к одному молю образующегося вещества. Количество теплоты, которое выделяется при образовании 1 моля соединения из простых веществ, называется теплотой образования данного соединения. Например, выражение «теплота образования воды равна 285,8 кДж/моль» означает, что при образовании 18 г жидкой воды из 2 г водорода и 16 г кислорода выделяется 285,8 кДж.

Если элемент может существовать в виде нескольких простых веществ, то при расчете теплоты образования этот элемент берется в виде того простого вещества, которое при данных условиях наиболее устойчиво. Теплоты образования наиболее устойчивых простых веществ принимаются равными нулю. Например, при обычных условиях наиболее устойчивой формой кислорода является молекулярный кислород О2, теплота образования которого считается равной нулю. Теплота же образования озона О3 равна -142 кДж/моль, поскольку при образовании из молекулярного кислорода одного моля озона поглощается 142 кДж.

Тепловые эффекты можно включать в уравнения реакций. Химические уравнения, в которых указано количество выделяющейся или поглощаемой теплоты, называются термохимическими уравнениями. Величина теплового эффекта указывается обычно в правой части уравнения со знаком плюс в случае экзотермической реакции и со знаком минус в случае эндотермической реакции.

Например, термохимическое уравнение реакции образования жидкой воды имеет вид

Возможна и другая запись термохимических уравнений, в которой величина теплового эффекта указана в виде изменения энтальпии ∆H. Часто изменение энтальпии записывается как ∆H 0 298. Верхний индекс 0 означает стандартную величину теплового эффекта реакции, а нижний температуру, при которой идет взаимодействие. В реакциях, идущих с выделением теплоты (экзотермических), энтальпия системы уменьшается (∆H ‹ 0); в реакциях, идущих с поглощением теплоты (эндотермических), энтальпия системы увеличивается (∆H › 0 ).

Ниже приведен пример записи термохимического уравнения с учетом вышесказанного:

Данная запись означает, что реакция образования оксида азота (II) идет с поглощением теплоты (эндотермическая).

Обе формы записи правильны и возможно использование любой из них.

Важнейшей характеристикой веществ, применяемых в качестве топлива, является их теплота сгорания. Эту величину также принято относить к одному молю вещества. Таким образом, выражение «теплота сгорания ацетилена равна 1300 кДж/моль» эквивалентно термохимическому уравнению

С2H2 + 2 O2 = H2O + 2CO2 + 1300 кДж

Величина теплового эффекта зависит от природы исходных веществ и продуктов реакции. Их агрегатного состояния и температуры. Для удобства сравнения различных реакций по величинам их тепловых эффектов последние обычно указывают для случая, когда температура исходных веществ и продуктов реакции равна 25 0 С[1].

[1] Все тепловые эффекты, приводимые в таблицах термодинамических величин, относятся к 25 0 С.

При этом также подразумевается, что участвующие в реакции вещества находятся в том агрегатном состоянии, которое устойчиво при 25 0 С (стандартной температуре). Агрегатное состояние вещества указывается в уравнении реакции: для обозначения кристаллического состояния используется знак (к) около формулы вещества, жидкого – (ж), газообразного – (г).

Изменение давления, концентрации веществ и температуры приводит к смещению равновесия в ту или иную сторону. Направление смещения определяется известным принципом Ле-Шателье: при воздействии на систему, находящуюся в равновесии, равновесие смещается в сторону той из двух противоположных реакций (прямой или обратной), которая ослабляет эффект внешнего воздействия. Остановимся подробнее на влиянии температуры.

Реакция между кислородом и водородом сопровождается выделением тепла (уменьшением энтальпии)


источники:

http://poznayka.org/s91997t1.html

http://mydocx.ru/6-88751.html