Работа решение систем линейных уравнений

Практическая работа № 7 по учебной дисциплине ЕН.01 Математика
учебно-методический материал на тему

Практическая работа № 7 Решение систем линейных алгебраических уравнений

задания к работе

1 Методом Крамера найти решение системы линейных алгебраических уравнений.

2. Установить, что система уравнений имеет единственное решение, и найти его с помощью обратной матрицы.

3. Методом Гаусса (или методом исключения неизвестных) найти решение системы линейных алгебраических уравнений.

4. Найти общее решение однородной системы линейных алгебраических уравнений.

В работе имеется Образец решения варианта.

Скачать:

ВложениеРазмер
prakticheskaya_rabota_7_sistemy_lineynykh_algebraicheskikh_uravneniy.doc443.5 КБ

Предварительный просмотр:

Практическая работа № 7

Решение систем линейных алгебраических уравнений

Задание к работе

1. Методом Крамера найти решение системы линейных алгебраических уравнений.

2. Установить, что система уравнений имеет единственное решение, и найти его с помощью обратной матрицы.

3. Методом Гаусса (или методом исключения неизвестных) найти решение системы линейных алгебраических уравнений.

4. Найти общее решение однородной системы линейных алгебраических уравнений.

Образец решения варианта.

1. Методом Крамера найти решение системы линейных алгебраических уравнений

Решение системы находим по формулам Крамера

Вычислим определитель системы

Последовательно заменив в , первый, второй и третий столбцы столбцом свободных членов, получим соответственно

2. Дана система из трех уравнений с тремя неизвестными. Установить, что система уравнений имеет единственное решение и найти его с помощью обратной матрицы

Если определитель системы отличен от нуля, то система имеет единственное решение (теорема Крамера).

Вычислим определитель данной системы :

следовательно, система имеет единственное решение.

Данную систему можно записать в матричной форме :

, где , , .

Так как , то для матрицы существует обратная матрица . Умножив матричное уравнение слева на , получим , откуда , или .

Найдем обратную матрицу по формуле

где алгебраическое дополнение элемента .

3. Методом Гаусса (или методом исключения неизвестных) найти решение системы линейных алгебраических уравнений

Выпишем расширенную матрицу данной системы и приведем ее к ступенчатому виду

Последовательно умножим первую строку на (–2) и прибавим ее ко второй строке, затем умножим на (–3) и прибавим к третьей строке, умножим на (–2) и прибавим к четвертой строке, получим

Ко второй строке полученной матрицы прибавим третью строку, умноженную на , затем во вновь полученной матрице умножим третью строку на , четвертую – на (–1), затем последовательно умножим вторую строку на 2 и прибавим ее к третьей строке, умножим на 7 и прибавим к четвертой строке, получим

Третью строку полученной матрицы умножим на , четвертую – на , затем третью строку умножим на (–1) и прибавим к четвертой строке, получим

Найденная матрица имеет треугольный вид; по этой матрице запишем систему уравнений, эквивалентную исходной системе,

Последовательно находим неизвестные, начиная с последнего уравнения, ; подставим в третье уравнение найденное , вычислим , ; затем из второго уравнения находим , ; из первого уравнения получим , .

4. Найти общее решение однородной системы линейных алгебраических уравнений .

Элементарными преобразованиями строк приведем матрицу системы к эквивалентной матрице , которой соответствует уравнение , эквивалентное исходной системе. Таким образом, общее решение может быть записано в форме , или , . Решений бесчисленное множество – любая пара, связанная указанной зависимостью, обращает левые части уравнений данной системы в нуль. В системе — число неизвестных и число уравнений. , матрица системы, расширенная матрица системы. В силу теоремы Кронекера-Капелли система имеет бесчисленное множество решений, зависящих от одного параметра . Иногда общее решение удобнее использовать в форме

Практическая работа № 7

Решение систем линейных алгебраических уравнений

1. Методом Крамера найти решение системы линейных алгебраических уравнений.

2. Установить, что система уравнений имеет единственное решение, и найти его с помощью обратной матрицы.

3. Методом Гаусса (или методом исключения неизвестных) найти решение системы линейных алгебраических уравнений.

4. Найти общее решение однородной системы линейных алгебраических уравнений

3.3 3.4

Практическая работа № 7

Решение систем линейных алгебраических уравнений

1. Методом Крамера найти решение системы линейных алгебраических уравнений.

2. Установить, что система уравнений имеет единственное решение, и найти его с помощью обратной матрицы.

3. Методом Гаусса (или методом исключения неизвестных) найти решение системы линейных алгебраических уравнений.

4. Найти общее решение однородной системы линейных алгебраических уравнений

5.1 5.2

Практическая работа по математике с методическими рекомендациями. Тема: «Решение систем линейных уравнений»»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Практическая работа №3

Тема: «Решение систем линейных уравнений»

Цель: сформировать умение исследовать и использовать различные методы для решения систем линейных алгебраических уравнений

Методические указания и теоретические сведения к практической работе

1. Системы линейных уравнений

Пусть задана система линейных уравнений с неизвестными

(1)

Решением системы (1) называется совокупность чисел ( , , …, ), которая при подстановке в систему (1) вместо неизвестных обращает каждое уравнение системы в тождество. Система может иметь решение, тогда она называется совместной , причем, если решение единственное, система определенная , если решений множество – система неопределенная . Если система не имеет решений, она называется несовместной . Рассмотрим два способа решения системы: метод Крамера и метод Гаусса.

При решении методом Крамера используем определители -го порядка. Пусть задана система (1). Составим главный определитель системы из коэффициентов при неизвестных:

.

ТЕОРЕМА. Если определитель системы , то систему (3) можно решить по формуле Крамера, причем это решение единственное:

; ; … ; ,

где определитель может быть получен из главного определителя путем замены -го столбца на столбец из свободных членов.

Составляем главный определитель, элементами которого являются коэффициенты при неизвестных:

и три вспомогательных определителя:

; ; .

Определитель составлен из определителя путем замены элементов первого столбца свободными членами системы уравнений. В определителях и соответственно второй и третий столбцы заменены свободными членами. Вычислим все четыре определителя.

;

;

;

.

Неизвестные , , находим по формулам

; ; ;

; ; .

Ответ: ; ; .

Пример2. Решить систему методом Крамера.

Решение. Выписываем A — матрицу системы и B — столбец свободных членов: , . Далее вычисляем определители:

;

;

;

.

По теореме Крамера ; ; . Ответ: ; ; .

Для проверки результата подставим полученные значения неизвестных в каждое уравнение системы: , , . Все уравнения обратились в тождества, значит, решение найдено верно.

Условия неопределенности и несовместности системы двух линейных уравнений с двумя переменными.

Если определитель системы , то система является либо несовместной (когда и ), либо неопределенной (когда и ). В последнем случае система сводится к одному уравнению, а другое является следствием этого уравнения.

Условия несовместности системы двух линейных уравнений с двумя переменными можно записать в виде:

Условия неопределенности системы двух линейных уравнений с двумя переменными можно записать в виде:

Если один из вспомогательных определителей отличен от нуля, то система уравнений (1) не имеет решения (если ).

Если главный и все вспомогательные определители равны нулю, то система (1) имеет бесконечно много решений.

Если главный определитель отличен от нуля, то система уравнений (1) имеет единственное решение.

Эффективным методом решения и исследования систем линейных уравнений является метод последовательного исключения неизвестных, или метод Гаусса.

Идея метода Гаусса состоит в том, что данная система линейных уравнений преобразуется в равносильную ей систему специального вида, которая легко исследуется и решается.

.

В результате элементарных преобразований добиваются того, чтобы в последнем уравнении системы осталось одно неизвестное ( ), во втором – 2 неизвестных ( и ) а в первом – 3 неизвестных ( , , ). За ведущее уравнение берется то, в котором коэффициент при равен 1. Если такого уравнения нет, то его легко получить, разделив любое из уравнений системы на коэффициент при .

Ведущим уравнением данной системы будет последнее. Перепишем систему так:

(2)

Умножаем первое уравнение на (-2) и складываем со вторым, чтобы избавиться от во втором уравнении. Результат сложения записываем на месте второго уравнения. Далее первое уравнение умножаем на (-5) и складываем с третьим, чтобы избавиться от в третьем уравнении. Результат записываем на месте третьего уравнения. Первое уравнение при этом переписываем без изменений. Получим:

(3)

Системы уравнений (2) и (3) эквиваленты, т. е. они обе несовместны, или же обе совместны и имеют одни и те же решения.

Умножаем второе уравнение системы (5) на (-1) и складываем с третьим, чтобы избавиться от в третьем уравнении. Первое уравнение при этом не трогаем. Результат записываем на месте третьего уравнения. Тогда

.

Из последнего уравнения . Подставляем это значение во втрое уравнение системы и находим :

.

В первое уравнение подставляем значения и , получаем

.

Ответ: ; ; .

Рекомендуется сделать проверку.

Систему можно решить и матричным способом.

Рассмотрим систему вида

Составим матрицу системы из коэффициентов при неизвестных:

.

Из неизвестных , , и свободных членов составим матрицы – столбцы

; (5)

Тогда система (4) в матричной форме примет вид

.

Чтобы найти матрицу , умножим (5) на слева.

A

.

Найти обратную матрицу .

Составляем и вычисляем определитель

.

Определитель вычислен по правилу треугольника.

Транспонируем матрицу. Получаем

.

Вычисляем алгебраические дополнения

; ; ; ; ; ; ; ; .

;

Вычисляем . Вычеркиваем первую строку и второй столбец. Составляем определитель второго порядка из оставшихся элементов.

; .

Вычисляем .

Аналогично вычисляем все остальные алгебраические дополнения:

; ; ; ; ; ; .

Составим обратную матрицу

A

A

Решить систему матричным способом

.

Из коэффициентов при неизвестных составим матрицу :

.

Из неизвестных составим матрицу – столбец:

.

Из свободных членов составим матрицу – столбец:

.

Тогда система запишется в виде

.

Получили матричное уравнение. Умножаем обе части этого уравнения на слева. Получаем:

.

Находим обратную матрицу:

; ;

(матрица, составленная из алгебраических дополнений элементов; (обратная матрица).

Умножая обратную матрицу на , получаем матрицу .

.

Отсюда получаем ответ:

; ; .

Сравните решение этой системы с решением метода Гаусса.

Практическая работа №3

Тема: «Решение систем линейных уравнений»

Цель: сформировать умение исследовать и использовать различные методы для решения систем линейных алгебраических уравнений

Содержание практической работы

Задание 1 . Решить систему уравнений по формулам Крамера:

Задание 2 . Решить систему уравнений по формулам Крамера:

Задание 3 . Решить систему уравнений по формулам Крамера:

Задание 4.

а) При каком значении а система не имеет решений?

б) При каком значении а система имеет бесконечно много решений?

Задание 5 . Решить систему уравнений по формулам Крамера, методом Гаусса матричным методом:.

а)

б)

Задание 6 . Решить систему уравнений методом Крамера:

Задание 7 . Решить систему уравнений по формулам Крамера:

Решение систем линейных уравнений методом Гаусса

Разделы: Математика

Пояснительная записка

Данная методическая разработка предназначена для проведения занятия по дисциплине “Математика” на тему “Решение систем линейных уравнений методом Гаусса” по программе учебной дисциплины, разработанной на основе Федерального государственного образовательного стандарта для специальностей среднего профессионального образования.

В результате изучения темы студент должен:

знать:

  • элементарные преобразования над матрицами;
  • этапы решения систем линейных уравнений методом Гаусса.

уметь:

  • решать системы линейных уравнений методом Гаусса.

Цели занятия:

обучающие:

  • рассмотреть элементарные преобразования над матрицами;
  • рассмотреть метод Гаусса для решения систем линейных уравнений.

развивающие:

  • развивать умения анализировать полученную информацию, делать выводы;

воспитательные:

  • воспитывать у студентов интерес к изучаемой дисциплине, показывать значимость знаний по данной теме для их дальнейшей профессиональной деятельности;
  • воспитывать готовность и способность к образованию, в том числе самообразованию, на протяжении всей жизни.

Ход занятия

Деятельность преподавателяДеятельность студентовОбщее время
1. Организационная часть
Отмечает студентов в журнале1 мин
2. Проверка самостоятельной работыСдают выполненную внеаудиторную самостоятельную работу5 мин
3. Изложение теоретического материала
Сообщает тему и цели занятияАнализируют цель занятия

Фиксируют тему в тетрадь1 минОбъясняет ход занятияФиксируют план лекции в тетрадь3 минЗнакомит с методом ГауссаФиксируют этапы решения системы линейных уравнений методом Гаусса15 минЗнакомит с элементарными преобразованиями матрицыФиксируют элементарные преобразования матрицы15 минРассматривает метод Гаусса на конкретном примереФиксируют ход решения в тетрадь12 мин4. Практическая частьВыполняют задания25 минОсуществляет консультирование студентов по итогу проведения занятияЗадают вопросы5 мин5. Итоги занятияПроверяет результаты работыОценивают результаты своей работы5 минФиксирует результаты проверки в журналВыдает внеаудиторную самостоятельную работу с объяснениямиФиксируют задание, озвучивают вопросы по выполнению3 мин

Оценка “отлично”:

  • работа выполнена полностью;
  • в логических рассуждениях и обосновании решения нет пробелов и ошибок;
  • в решении нет математических ошибок (возможна одна неточность, описка, которая не является следствием незнания или непонимания учебного материала).

Оценка “хорошо”:

  • работа выполнена полностью, но обоснования шагов решения недостаточны (если умение обосновывать рассуждения не являлось специальным объектом проверки);
  • допущены одна ошибка или есть два–три недочёта в выкладках, рисунках, чертежах или графиках (если эти виды работ не являлись специальным объектом проверки).

Оценка “удовлетворительно”:

  • допущено более одной ошибки или более двух–трех недочетов в выкладках, чертежах или графиках, но обучающийся обладает обязательными умениями по проверяемой теме.

Оценка “неудовлетворительно”:

  • допущены существенные ошибки, показавшие, что обучающийся не обладает обязательными умениями по данной теме в полной мере.

Общее время — 90 мин.

План занятия:

  1. Организационный момент;
  2. Проверка внеаудиторной самостоятельной работы;
  3. Теоретическая часть;
  4. Практическая часть;
  5. Итоги занятия.

Теоретическая часть

Одним из наиболее универсальных и эффективных методов решений систем линейных уравнений является метод Гаусса, состоящий в последовательном исключении неизвестных.

Система n линейных уравнений с m неизвестными может имеет вид:

, где

i=1, 2, 3, …, n; j=1, 2, 3. m.

Заметим, что число неизвестных m и число уравнений n в общем случае между собой никак не связаны. Возможны три случая: m=n, m > n, m 22.12.2016


источники:

http://infourok.ru/prakticheskaya-rabota-po-matematike-s-metodicheskimi-rekomendaciyami-tema-reshenie-sistem-lineynih-uravneniy-811556.html

http://urok.1sept.ru/articles/662856