Радиус кривизны кривой по уравнению

Радиус кривизны плоской кривой

Любая линия является кривой, даже прямая. Поэтому к любой линии применимы такие характеристики как кривизна или радиус кривизны. Как правило кривизна обозначается латинской литерой k, а радиус кривизны греческой литерой ρ.

Между собой эти характеристики кривой связаны следующим образом:

k = 1/ρ (542.1)

Т.е. чем больше радиус кривой, тем меньше ее кривизна.

А теперь рассмотрим несколько частных случаев кривых.

Радиус кривизны окружности

Окружность — это плоская кривая с постоянным радиусом кривизны. Т.е. радиус окружности это и есть радиус кривизны окружности:

Как определить радиус окружности, мы рассмотрим ниже.

Кривизна дуги

Любая дуга — это часть окружности. Соответственно радиус дуги равен радиусу окружности:

Рисунок 542.1. Дуга — часть окружности

На рисунке 542.1 мы видим дугу АВ, показанную оранжевым цветом, являющуюся частью окружности с радиусом R. Кроме того, мы видим, что угол α, образованный радиусами в точках А и В, равен углу между касательными (показаны фиолетовым цветом) к окружности в этих точках.

Эти закономерности позволяют определить радиус дуги и найти центр окружности даже тогда, когда изначально мы окружность не видим, а только имеем дугу.

Понятие кривизны дуги формулируется так:

Кривизна дуги — это отношение угла между касательными, проведенными в начале и конце дуги, к длине дуги

Т.е. зная длину дуги m и угол α между касательными, мы можем определить кривизну дуги:

А так как длина дуги зависит от угла между радиусами или между касательными в концах дуги:

то, подставив значение длины дуги в уравнение (542.3), получим:

Примечание: При измерении угла между касательными не в радианах, а в градусах уравнение длины дуги имеет другой вид:

но сути дела это не меняет. Такая запись по-прежнему означает, что мы рассматриваем часть длины окружности. Так при α = 360° дуга становится окружностью

Более того, сама идея радианов на этой формуле и основана, так прямой угол 90° = П/2, развернутый 180° = П и т.д.

И еще одно интересное свойство дуги: Если соединить точки А и В прямой линией, то угол между этой линией и касательными будет равен α/2, а сама прямая линия — это и есть расстояние между точками А и В. Если дуга расположена в плоскости соответствующим образом, например так, как показано на рисунке 542.2:

Рисунок 542.2. Дуга из точки начала координат.

то расстояние между точками — это проекция l дуги на ось х. А максимальное расстояние между дугой и осью х — это стрела дуги h.

Радиус кривизны прямой линии

Любая прямая линия, даже бесконечно длинная, может рассматриваться как бесконечно малая часть окружности, т.е. как дуга. Соответственно в каких единицах измерять радиус такой окружности даже трудно представить.

Поэтому обычно прямой линией называют кривую с бесконечно большим радиусом:

kп.л = 1/∞ = 0 (542.6)

Про до сих пор неразрешенный парадокс, возникающий при подобных подходах к прямой линии и к окружности, я уже упоминал в статье «Основы геометрии. Определения основных элементов, пятый элемент». Здесь лишь добавлю, что через прямую линию можно провести бесконечное множество плоскостей и в любой из этих плоскостей радиус кривизны прямой линии будет равен бесконечности. При этом через окружность можно провести две взаимно перпендикулярные плоскости, в одной из которых окружность будет окружностью, а в другой — прямой линией конечной длины. Поэтому

все линии, которые в одной из плоскостей имеют бесконечно большой радиус кривизны, считаются плоскими

Ну и на закуску еще несколько парадоксов, на этот раз связанных с определениями кривизны и радиуса:

1. Из уравнения (542.1) можно сделать вывод, что:

kp = 1 (542.7)

Соответственно для прямой линии:

0·∞ = 1 (542.7.2)

Т.е. если бесконечно много раз взять ноль, то на единичку мы наскребем. Впрочем дальше будет еще веселее.

2. Если прямая — это дуга с бесконечно большим радиусом, соответственно касательные, проведенные в концах такой дуги, совпадают с прямой, а угол, образованный касательными, равен нулю.

Это означает, что радиусы проведенные в концах дуги — прямой линии, являются параллельными прямыми и не могут пересекаться. А между тем по определению это радиусы, которые обязательно должны сходиться в некоторой точке — центре окружности.

Получается, что параллельные прямые пересекаться не должны, но где-то в бесконечности все-таки пересекаются.

Разрешить этот парадокс пытались многие математики, однако в пределах евклидовой геометрии при принятом толковании определений данный парадокс не разрешим.

Радиус кривизны точки

Точка — это самый простой и самый сложный элемент геометрии. Одни считают, что точка не имеет размеров, а значит и определить кривизну или радиус кривизны точки не возможно. Другие, в частности Евклид, считают, что точка не имеет частей, а каковы при этом размеры точки — не совсем понятно. Я же считаю, что точка — это начальный, далее не делимый элемент геометрии, размеры которого пренебрежимо малы по сравнению с остальными рассматриваемыми элементами. В этом случае для точки будут справедливыми следующие уравнения кривизны и радиуса кривизны:

kт. = 1/0 = ∞ (542.9)

И хотя нас с первых лет обучения в школе учат, что делить на 0 нельзя и даже встроенный в операционную систему калькулятор пишет, что «деление на ноль невозможно», тем не менее делить на ноль можно, а результатом деления всегда будет бесконечность.

Как и в случае с прямой мы имеем парадоксальный результат, выражаемый формулой (542.5.2). Тем не менее точку также можно отнести к плоской кривой, имеющей постоянный радиус кривизны.

Примечание: На мой взгляд большинство из описанных выше парадоксов возникают из-за неправильного толкования понятия «бесконечность». Бесконечность как некая абсолютная величина не имеет пределов, а значит и никакому измерению не поддается. Кроме того бесконечность — это даже не постоянная, а переменная величина. Например луч — это прямая линия с началом в некоторой точке. Длина луча может быть бесконечно большой. При этом прямая линия тоже может быть бесконечно длинной при этом не иметь ни начала ни конца. Получается, что с одной стороны бесконечно длинный луч вроде бы в 2 раза короче, чем бесконечно длинная прямая. А с другой стороны длины их бесконечны и поэтому равны.

Возможным выходом из этой ситуации является принятие понятия «бесконечность», как относительного. Например, кривизна прямой линии является пренебрежимо малой величиной по отношению к радиусу кривизны. Или радиус кривизны прямой линии несопоставимо больше кривизны. Подобные толкования допускают и наличие кривизны прямой и некое конечное значение радиуса кривизны прямой и многое другое. Я бы назвал такой относительный подход к рассмотрению проблемы реалистичным, а подходы, использующие абсолютные понятия — идеализированными. Впрочем прямого отношения к теме данной статьи это не имеет. Продолжим рассмотрение плоских кривых.

И окружность и прямая линия являются плоскими кривыми с постоянным радиусом кривизны. При этом радиус кривизны прямой линии всегда известен, так как равен бесконечности, а для окружности всегда можно определить радиус, воспользовавшись теоремой Пифагора. Так в частном случае, если центр окружности совпадает с началом координат рассматриваемой плоскости (u = 0; v = 0 — координаты центра окружности), то:

Рисунок 541.4. Радиус окружности, как гипотенуза прямоугольного треугольника.

R 2 = x 2 + y 2 (541.1.2)

А в общем случае, когда координаты центра окружности не совпадают с началом координат:

Рисунок 542.3. Окружность, центр которой не совпадает с началом координат.

R 2 = (x — u) 2 + (y — v) 2 (542.10)

Но в жизни достаточно часто приходится сталкиваться с кривыми, радиус кривизны которых — не постоянная величина. Более того, этот радиус может изменяться в двух плоскостях измерения. Тем не менее так далеко углубляться в геометрию и алгебру мы не будем и далее рассмотрим, как можно определить радиус плоской кривой в некоторой точке.

Плоские кривые с изменяющимся радиусом кривизны

Примеров плоских кривых с изменяющимся радиусом кривизны очень много, это и гиперболы, и параболы, и синусоиды и т.п. Определение радиуса кривизны таких кривых основано на следующих теоретических предпосылках:

1. Любую окружность можно рассматривать как некоторое множество дуг.

2. Если количество дуг, составляющих окружность, стремится к бесконечности, то соответственно длина таких дуг стремится к нулю (m → 0).

3. Если мы обозначим длину такой очень короткой дуги как приращение функции длины окружности (m = Δl), то уравнение кривизны (542.3) примет следующий вид:

(542.3.1)

4. Тогда любую плоскую кривую с изменяющимся радиусом можно рассматривать как стремящееся к бесконечности множество дуг с постоянным радиусом. Другими словами в пределах любой кривой, описываемой параметрическими уравнениями, всегда можно выделить дугу, пусть даже и очень малой длины, стремящейся к точке и определить для нее кривизну и радиус кривизны в рассматриваемой точке.

Это означает, что самый точный способ определения радиуса кривизны в таком случае — это использование дифференциальных исчислений. В общем случае для этого нужно два раза продифференцировать уравнение радиуса окружности (542.10) по аргументу функции х, а затем извлечь квадратный корень из полученного результата. В итоге (полный вывод уравнения здесь не привожу из-за повышенной сложности записи, а для особо заинтересованных есть справочники и другие сайты) мы получим следующую формулу для определения радиуса кривизны:

(542.11)

Соответственно кривизна плоской кривой в рассматриваемой точке будет равна:

(542.12)

В частном случае, когда тангенс угла между касательными — первая производная от функции — является относительно малой величиной, например, tg2° = 0.035 соответственно (tg2°) 2 = 0.0012, то влиянием куба суммы первой производной и единицы на кривизну можно пренебречь (значение знаменателя дроби сводится к единице) и тогда:

k = y» = d 2 y/dx 2 (542.12.2)

Т.е. формально в таких случаях кривизной считается не отношение угла наклона между касательными к длине дуги, а некоторая величина, примерно соответствующая высоте h на рисунке 542.2.

Эта особенность второй производной очень активно используется в частности для упрощения определения прогиба элементов строительных конструкций.

На этом пока все.

Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»

Для терминалов номер Яндекс Кошелька 410012390761783

Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV

Для Украины — номер гривневой карты (Приватбанк) 5168 7422 4128 9630

Категории:
  • Расчет конструкций . Основы прикладной геометрии
Оценка пользователей:10.0 (голосов: 1)Переходов на сайт:6701Комментарии:

Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).

Кривизна плоской кривой

Под кривизной линии понимают степень ее отклонения от прямой. Не давая пока точных определений, заметим, что чем больше радиус окружности, тем менее она искривлена, тем больше ее участок заданной длины напоминает отрезок прямой той же длины. При этом окружность одинаково искривлена во всех точках. В то же время парабола наиболее искривлена в ее вершине, а по мере удаления от вершины кривизна становится меньше.

Чтобы дать точное определение кривизны, рассмотрим гладкую дугу . Если бы эта дуга не была искривлена, т. е. если бы она была отрезком прямой линии, то касательные в начале и конце дуги имели бы одинаковое направление (совпадающее с направлением отрезка). Таким образом, за меру искривленности данной дуги в целом следует принять угол поворота касательной к этой дуге при движении от начала дуги к ее концу. Например, для полуокружности этот угол равен (рис. 55), для всей окружности он равен , а для дуги синусоиды, изображенной на рисунке 56, этот угол равен нулю, так как при обходе дуги касательная возвращается в исходное положение, не сделав при этом полного оборота.

Угол поворота касательной считают положительным, если вращение происходит против часовой стрелки, и отрицательным в противном случае.

Однако угол поворота касательной показывает лишь полную искривленность линии. Поэтому полуокружности малого и большого радиусов дают один и тот же угол поворота , в то время как искривленность большой окружности в каждой точке меньше, чем малой. Это показывает, что нам надо учитывать не только угол поворота , но и длину дуги, на протяжении которой получился этот поворот касательной. Иными словами, следует рассчитывать угол поворота на единицу длины дуги, или, иначе, отношение величины этого угла к длине дуги. Назовем это отношение средней кривизной данной дуги:

Например, длина полуокружности радиуса равна , а соответствующий ей угол поворота равен . Значит, средняя кривизна полуокружности равна

т. е. обратно пропорциональна радиусу. Очевидно, что тот же результат получился бы, если бы мы взяли любую другую дугу окружности радиуса .

Мы уже говорили, что, вообще говоря, кривизна данной линии различна в разных точках. Поэтому надо перейти от средней кривизны дуги к ее кривизне в данной точке. Введем следующее определение:

Определение. Кривизной дуги кривой в данной точке называется предел средней кривизны дуги , когда длина этой дуги стремится к нулю:

(разумеется, если этот предел не существует, то кривизна линии в данной точке не определена).

Перейдем к выводу расчетной формулы для кривизны. Выберем декартову систему координат (рис. 57). Из рисунка видно, что угол между касательными в точках и равен разности углов и , т. е. углов наклона касательных в этих точках к оси абсцисс. Это можно записать следующим образом: , где — угол наклона касательной к оси абсцисс. Поэтому формулу для кривизны можно переписать так:

Мы доказали, что кривизна дуги кривой является производной угла наклона касательной к положительному направлению оси абсцисс по длине дуги.

Пусть кривая задана уравнением на отрезке , где функция дважды дифференцируема. Тогда эта кривая спрямляема и имеет касательную в любой точке. При этом , а так как , то , и потому

Пример 1. Найти кривизну гиперболы в точке .

Решение. Воспользуемся формулой (2) кривизны кривой. Имеем:

Вычислить значения производных в данной точке . Таким образом,

Пример 2. Найти наибольшую кривизну линии кубической параболы .

Решение. Мы имеем: .

Чтобы найти наибольшее значение кривизны, вычислим

Приравнивая производную нулю, получаем: . В этой точке . Отметим, что при имеем , а при будет . Поэтому вдоль кривой кривизна плавно возрастает от нуля до , а потом плавно убывает.

Это используется при строительстве железных дорог для построения переходных кривых, вдоль которых кривизна плавно возрастает от нуля до требуемого значения.

Кривизна и её вычисление

Вы будете перенаправлены на Автор24

Основная формула для вычисления кривизны плоской кривой

Кривизна представляет собой количественную характеристику степени изогнутости плоской кривой.

Построим касательную к кривой в точке $M$. При переходе по кривой из точки $M$ в некоторую соседнюю точку $N$, касательная в текущей точке поворачивается на угол $\Delta \phi $.

Отношение угла $\Delta \phi $ к длине дуги $\Delta s$ между точками $M$ и $N$ называется средней кривизной дуги $K_ =\frac<\Delta \phi > <\Delta s>$.

Средняя кривизна характеризует среднюю изогнутость на всей дуге. Но на отдельных участках кривой значения кривизны могут испытывать значительные отклонения от среднего значения. Здравый смысл подсказывает, что чем короче дуга, тем лучше она характеризуется средней кривизной. А точнее всего характеризовать изогнутость кривой непосредственно в самой точке $M$.

Кривизной $K$ данной кривой в данной точке $M$ называется предел средней кривизны дуги $\cup MN$ при неограниченном приближении точки $N$ к точке $M$, то есть $K=\mathop<\lim >\limits_ <\Delta s\to 0>\frac<\Delta \phi > <\Delta s>=\frac $. Поскольку считается, что кривизна кривой — величина положительная, то $K=\left|\frac \right|$.

Вычисление кривизны плоской кривой

При произвольном параметрическом задании кривой $x=x\left(t\right)$ и $y=y\left(t\right)$ имеет место выражение $s’_=\sqrt <\left(x'_\right)^ <2>+\left(y’_\right)^ <2>> $.

Теперь для выражения $K = \frac = \frac = \frac <\phi '_> > $ необходимо вычислить $\phi ‘_$.

После преобразований получаем: $\phi ‘_=\frac <\left(y'_\right)^ <<'>> _\cdot x’_-\left(x’_\right)^ <<'>> _\cdot y’_> <\left(x'_\right)^ <2>+\left(y’_\right)^ <2>> $.

Теперь формула для кривизны кривой приобретает окончательный вид: $K=\frac <\left(y'_\right)^ <<'>> _\cdot x’_-\left(x’_\right)^ <<'>> _\cdot y’_> <\sqrt<\left(\left(x'_\right)^ <2>+\left(y’_\right)^ <2>\right)^ <3>> > $.

Если кривая задана в явном виде $y=f\left(x\right)$, то выбирая в качестве параметра $t=x$, получаем $K=\frac <\left(y'_\right)^ <<'>> _ > <\sqrt<\left(1+\left(y'_\right)^ <2>\right)^ <3>> > $.

Если кривая задана в полярных координатах $\rho =\rho \left(\phi \right)$, то принимая в качестве параметра $t=\phi $ и учитывая формулы $x=\rho \cdot \cos \phi $ и $y=\rho \cdot \sin \phi $, получаем:

\[x’_ <\phi >=\left(\rho \cdot \cos \phi \right)^ <<'>> _ <\phi >=\rho ‘_ <\phi >\cdot \cos \phi -\rho \cdot \sin \phi ;\] \[\left(x’_ <\phi >\right)^ <<'>> _ <\phi >=\left(\rho ‘_ <\phi >\cdot \cos \phi -\rho \cdot \sin \phi \right)^ <<'>> _ <\phi >=\left(\rho ‘_ <\phi >\right)^ <<'>> _ <\phi >\cdot \cos \phi -2\cdot \rho ‘_ <\phi >\cdot \sin \phi -\rho \cdot \cos \phi ;\] \[y’_ <\phi >=\left(\rho \cdot \sin \phi \right)^ <<'>> _ <\phi >=\rho ‘_ <\phi >\cdot \sin \phi +\rho \cdot \cos \phi ;\] \[\left(y’_ <\phi >\right)^ <<'>> _ <\phi >=\left(\rho ‘_ <\phi >\cdot \sin \phi +\rho \cdot \cos \phi \right)^ <<'>> _ <\phi >=\left(\rho ‘_ <\phi >\right)^ <<'>> _ <\phi >\cdot \sin \phi +2\cdot \rho ‘_ <\phi >\cdot \cos \phi -\rho \cdot \sin \phi .\]

После подстановки имеем: $K=\frac <\rho ^<2>+2\cdot \left(\rho ‘_ <\phi >\right)^ <2>-\rho \cdot \left(\rho ‘_ <\phi >\right)^ <<'>> _ <\phi >> <\sqrt<\left(\rho ^<2>+\left(\rho ‘_ <\phi >\right)^ <2>\right)^ <3>> > $.

Задачи вычисления кривизны плоской кривой.

Определить кривизну параболы $y=2\cdot x^ <2>$ в её произвольной точке $M\left(x,y\right)$, а также в точке $M_ <1>\left(0,0\right)$.

Вычисляем первую и вторую производные функции $y=2\cdot x^ <2>$:

\[y’=\left(2\cdot x^ <2>\right)^ <<'>> =4\cdot x; y»=\left(4\cdot x\right)^ <<'>> =4. \]

Подставляем полученные выражения в формулу для кривизны:

В точке $M_ <1>\left(0,0\right)$ имеем $K=4$.

Определить кривизну параболы $y^ <2>=\frac<1> <2>\cdot x$ в её произвольной точке $M\left(x,y\right)$, а также в точке $M_ <1>\left(0,0\right)$. Сравнить результат решения с результатом, полученным в задаче 1.

Вычисляем первую и вторую производные функции $y^ <2>=\frac<1> <2>\cdot x$:

$\left(y^ <2>\right)^ <<'>> =\left(\frac<1> <2>\cdot x\right)^ <<'>> $; $2\cdot y\cdot y’=\frac<1> <2>$, откуда $y’=\frac<1> <4\cdot y>$;

$\left(2\cdot y\cdot y’\right)^ <<'>> =\left(\frac<1> <2>\right)^ <<'>> $; $y’\cdot y’+y\cdot y»=0$, откуда $y»=-\frac<1> <16\cdot y^<3>> $.

Подставляем полученные выражения в формулу для кривизны:

В точке $M_ <1>\left(0,0\right)$ имеем $K=4$.

Полученный результат по форме и численно совпадает с результатом, полученным в задаче 1. Действительно, кривые обеих задач совпадут, если систему координат второй задачи повернуть на $\frac<\pi > <2>$ против часовой стрелки. Естественно, что кривизна кривой не меняется при преобразованиях её системы координат.

Готовые работы на аналогичную тему

\[x’_=\left(2\cdot \cos \left(3\cdot t\right)\right)^ <<'>> _=-6\cdot \sin \left(3\cdot t\right);\] \[x»_ =\left(-6\cdot \sin \left(3\cdot t\right)\right)^ <<'>> _=-18\cdot \cos \left(3\cdot t\right);\] \[y'_=\left(3\cdot \sin \left(2\cdot t\right)\right)^ <<'>> _=6\cdot \cos \left(2\cdot t\right);\] \[y''_ =\left(6\cdot \cos \left(2\cdot t\right)\right)^ <<'>> _=-12\cdot \sin \left(2\cdot t\right).\]

Вычисляем значения производных в заданной точке $t=\frac<\pi > <6>$:

\[x'_\left(\frac<\pi > <6>\right)=-6\cdot \sin \left(3\cdot \frac<\pi > <6>\right)=-6;\] \[x''_ \left(\frac<\pi > <6>\right)=-18\cdot \cos \left(3\cdot \frac<\pi > <6>\right)=0;\] \[y'_\left(\frac<\pi > <6>\right)=6\cdot \cos \left(2\cdot \frac<\pi > <6>\right)=3;\] \[y''_ \left(\frac<\pi > <6>\right)=-12\cdot \sin \left(2\cdot \frac<\pi > <6>\right)=-6\cdot \sqrt <3>.\]

Полученные значения подставляем в формулу для кривизны:

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 30 11 2021


источники:

http://mathhelpplanet.com/static.php?p=krivizna-ploskoi-krivoi

http://spravochnick.ru/matematika/krivizna_krivoy/krivizna_i_ee_vychislenie/