Расчет рн буферных растворов уравнение гендерсона гассельбаха

Вычисление рН буферных растворов Уравнение Гендерсона -Хассельбаха

1) Аналитическое выражение для расчета рН буферного раствора, например, ацетатного буфера можно получить из уравнения для константы диссоциации (к реакциям диссоциации применим закон действующих масс).

,

разрешив его относительно концентрации ионов водорода [H + ] можно написать:

Уксусная кислотаприсутствует в растворе в смеси с CH3COONa в виде неионизированных молекул. Поэтому концентрацию молекул можно принять равной общей молярной концентрации кислоты в растворе, т. е. [СН3СООН] = Скисл. Концентрацию анионов уксусной кислоты можно принять равной концентрации соли, т. е. [СН3СОО — ] = Ссоли, так как CH3COONa— сильный электролит, диссоциирующий в растворе на 100%. Приняв эти упрощения, получим:

2. Логарифмируя полученное уравнение и заменяя знаки логарифмов на обратные, получаем:

но – Ig [Н + ] есть рН, а – Ig К есть рК — силовой показатель кислоты.

С учетом этого получим:

Это уравнение называют уравнением буферного раствора (или уравнением Гендерсона-Гассельбаха).

Если при приготовлении буферной системы взять одинаковые концентрации кислоты и соли, то концентрация ионов водорода в таком растворе будет равна константе ионизации кислоты, так как отношение Скис/Ссоли = 1 и [Н + ]=К1, т.е. [Н + ]=К, поэтому рН=рК.

Аналогично для систем NH4OH + NH4C1получают выражения:

1. Запишем уравнение константы ионизации NH4OH и найдем [ОН — ]:

2. Отсюда находим:

Зная, что рН + рОН = 14, получим:

Задача 1. Сколько 0,5 М раствора CH3COONa нужно прибавить к 100 мл 2М раствора СН3СООН, чтобы получить буферный раствор с рН=4?

Откуда

Подставляем числовые данные и получаем:

Число Ig 0,76 = 5,754. Следовательно, отношение концентрации кислоты к концентрации соли должно быть равно 5,754 : 1.

2. Находим концентрацию кислоты в буферной системе:

3. Зная концентрацию кислоты, находим концентрацию солив буферной системе; она должна быть равна 0,2:5,754= 0,03475 (моль).

4. Находим количество 0,5 М раствора ацетата натрия, содержащего 0,03475 моль:

Задача 2.Вычислить рН аммиачной буферной системы, содержащей по 0,5 М NH4ОН и NH4C1. Как изменится рН при добавлении к 1 л этой смеси 0,1 М НС1 и при добавлении к 1 л этой смеси 0,1 М NaOH и при разбавлении раствора водой в 10 раз, если рК (NH4ОН) =4,75?

Дата добавления: 2015-08-08 ; просмотров: 10307 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Расчет рн буферных растворов уравнение гендерсона гассельбаха

а) Уравнение Гендерсона-Хассельбаха. Как уже обсуждалось ранее, концентрацию ионов Н+ принято выражать не в абсолютных величинах, а в единицах рН. Напомним, что значение рН представляет собой значение -lg ионов Н+.

Аналогичным способом может быть выражена константа диссоциации: рК = -log К.

Следовательно, концентрацию ионов Н+ в уравнении 4 можно выразить в единицах pH через отрицательный логарифм:

Чтобы не производить вычисления с отрицательным логарифмом, можно изменить его знак, поменяв местами числитель и знаменатель дроби согласно правилам логарифмирования. В результате получим:

Для бикарбонатной буферной системы рК равно 6,1, и уравнение выше может быть преобразовано следующим образом:

Последнее уравнение называют уравнением Гендерсона-Хасселъбаха. С его помощью можно рассчитать рН раствора при условии, если известны значения молярной концентрации HCO3 — и PCO2. Из этого уравнения становится очевидным, что увеличение содержания HCO3 — вызывает повышение рН, приводя к алкалозу.

Увеличение PCO2 снижает рН, смещая кислотно-щелочное равновесие в сторону ацидоза. Уравнение Гендерсона-Хассельбаха, дополнительно определяющее признаки нормального состояния рН и кислотно-щелочного равновесия во внеклеточной жидкости, позволяет понять механизмы физиологической регуляции содержания кислот и оснований во внеклеточной жидкости.

Как будет рассмотрено далее, концентрация бикарбонатов регулируется главным образом почками, тогда как PCO2 во внеклеточной жидкости зависит от вентиляции легких. Усиление легочной вентиляции способствует выведению CO2 из плазмы, при снижении показателей вентиляции легких значение PCO2 возрастает. Гомеостаз кислотно-щелочного состояния поддерживается согласованными действиями обеих систем: выделительной и дыхательной. Повреждение одного или обоих регулирующих механизмов приводит к нарушениям, вследствие которых содержание бикарбонатов или PCO2 во внеклеточной жидкости изменяется.

Нарушения, смещающие кислотно-щелочное равновесие путем изменения содержания бикарбонатов во внеклеточной жидкости, называют метаболическими, поэтому ацидоз, вызванный таким изменением, носит название метаболического ацидоза, а алкалоз, первичной причиной которого является увеличение концентрации ионов бикарбоната, называют метаболическим алкалозом. При увеличении PCO2 возникает дыхательный ацидоз, а при снижении — дыхательный алкалоз.

Кривая титрования бикарбонатной буферной системы, отражающая pH внеклеточной жидкости при изменении процентного содержания HCO3 — и CO2 (или H2CO3) в растворе

б) Кривая титрования бикарбонатной буферной системы. На рисунке выше показаны сдвиги рН во внеклеточной жидкости в ответ на изменения содержания HCO3 — и CO2 во внеклеточной жидкости. Когда концентрации двух этих компонентов равны, правая часть уравнения Гендерсона-Хасселъбаха становится логарифмом 1, который равен нулю, поэтому величина рН раствора такая же, как и рК (6,1) бикарбонатной буферной системы. При добавлении к ней основания часть растворенного CO2 преобразуется в HCO3 — , увеличивая значение соотношения HCO3 — к CO2 и, соответственно, рН, что становится очевидным из уравнения Гендерсона-Хассельбаха. Добавленная в раствор кислота связывается HCO3 — , который затем преобразуется в растворенный CO2, что уменьшает соотношение между HCO3 — к CO2 и рН внеклеточной жидкости.

в) Буферная емкость раствора определяется суммарной и относительной концентрацией компонентов буферной системы. Особенность расположения ряда точек, изображенных на кривой титрования рисунке, является вполне объяснимой. Во-первых, при условии, когда доля каждого компонента буферного раствора (HCO3 — и CO2) составляет по 50%, рН и рК равны. Во-вторых, буферная система наиболее эффективно действует в центральной части кривой, где рН приближен к рК системы. Это означает, что изменения рН, возникающие в результате добавления к раствору кислот или оснований, в этом диапазоне значений наименьшие. Деятельность буферной системы остается эффективной при отклонениях значений рН в любую сторону в пределах 1, что расширяет границы деятельности буфера от 5,1 до 7,1 единиц. Вне указанных границ буферная емкость быстро снижается. Когда весь CO2 преобразуется в HCO3 — или, наоборот, когда весь HCO3 — преобразуется в CO2, система полностью теряет емкость.

Абсолютная концентрация компонентов буферной системы также является важным показателем, определяющим буферную емкость. При низкой концентрации компонентов буферной системы добавленные даже в небольшом количестве кислоты и щелочи приводят к значительным изменениям рН.

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Расчет рН буферного раствора

Расчета рН буферных растворов осуществляется по уравнению Гендерсона – Гассельбаха:

– для кислотного буфера уравнение имеет вид

.

– для основного буфера

Уравнения показывают, что рН буферного раствора данного состава определяется отношением концентраций кислоты и соли или основания и соли, поэтому не зависит от разбавления. При изменении объема раствора концентрация каждого компонента изменяется в одинаковое число раз.

Буферная емкость

Способность буферных растворов сохранять постоянство рН ограничена. Т.е. прибавлять кислоту или щелочь, существенно не меняя рН буферного раствора, можно лишь в ограниченных количествах.

Величину, характеризующую способность буферного раствора противодействовать смещению реакции среды при добавлении кислот и щелочи, называют буферной ёмкостью раствора (В).

Буферная ёмкость измеряется количеством молей эквивалентов сильной кислоты или щелочи, добавление которой к 1 л буферного раствора изменяет рН на единицу.

Математически буферная ёмкость определяется следующим образом:

В по кислоте (моль/л ил ммоль/л):

,

где n(1/z HA) – количество моль эквивалентов кислоты, рН0 и рН – рН буферного раствора до и после добавления кислоты, VБ – объем буферного раствора.

В по щелочи (моль/л или ммоль/л):

,

где n (1/z ВОН) – количество моль эквивалентов щелочи, остальные обозначения те же.

Буферная ёмкость зависит от ряда факторов:

1. От природы добавляемых веществ и компонентов буферного раствора. Т.к. некоторые вещества могут образовывать нерастворимые соединения или комплексы или давать другие нежелательные реакции с компонентами буферной системы, тогда понятие буферной ёмкости теряет смысл.

2. От исходной концентрации компонентов буферной системы.

Чем больше количества компонентов кислотно-основной пары в растворе, тем больше буферная ёмкость этого раствора.

Предел соотношения концентраций компонентов буферного раствора, при котором система все еще сохраняет свои свойства. Интервал рН = рК ± 1, называется зоной буферного действия системы. Это соответствует интервалу соотношения Ссолик-ты от 1/10 до 10/1.

Вк (крови) = 0,05моль/л; Вк (плазмы) = 0,03 моль/л; Вк (сыв.крови) = 0,025 моль/л

Буферные системы крови

Особенно большое значение буферные системы имеют в поддержании кислотно-основного равновесия организмов. Значение рН большей части внутриклеточных жидкостей находится в интервале от 6,8 до 7,8.

Кислотно – основное равновесие в крови человека обеспечивается гидрокарбонатной, фосфатной, белковой и гемоглобиновой буферными системами. Нормальное значение рН плазмы крови 7,40 ± 0,05.

Гемоглобиновая буфернаясистемана 35% обеспечивает буферную емкость крови: . Оксигемоглобин является более сильной кислотой, чем восстановленный гемоглобин. Оксигемоглобин обычно бывает в виде калиевой соли.

Карбонатная буферная система: по своей мощности занимает первое место. Она представлена угольной кислотой (Н2СО3) и бикарбонатом натрия или калия (NaНСО3, КНСО3) в пропорции 1/20. Бикарбонатный буфер широко используется для коррекции нарушений кислотно-основного состояния организма.

Фосфатная буферная система . Дигидрофосфатобладает свойствами слабой кислоты и взаимодействует с поступившими в кровь щелочными продуктами. Гидрофосфат имеет свойства слабой щелочи и вступает в реакцию с более сильными кислотами.

Белковая буферная системаосуществляет роль нейтрализации кислот и щелочей благодаря амфотерным свойствам: в кислой среде белки плазмы ведут себя как основания, в основной – как кислоты:

Буферные системы имеются и в тканях, что способствует поддержанию рН тканей на относительно постоянном уровне. Главными буферами тканей являются белки и фосфаты. Поддержание рН осуществляется также с помощью легких и почек. Через легкие удаляется избыток углекислоты. Почки при ацидозе выделяют больше кислого одноосновного фосфата натрия, а при алкалозе – больше щелочных солей: двухосновного фосфата натрия и бикарбоната натрия.

Примеры решения задач

Пример 1.

Рассчитать рН буферного раствора, приготовленного смешением 10 мл 0,1М раствора уксусной кислоты и 100 мл 0,1М раствора ацетата натрия (рК(сн3 соон) =4,76).

Рассчитываем рН кислотного буферного раствора по формуле , тогда

Пример 2.

Рассчитать буферную емкость по кислоте, если на титрование 10 мл сыворотки крови пошло 5 мл 0,1 моль/л соляной кислоты, если при титровании рН изменился от 7,36 до 5,0.

Рассчитываем буферную емкость по формуле:

Ответ: 0,021 моль/л

Пример 3.

Буферный раствор состоит из 100 мл 0,1моль/л уксусной кислоты и 200 мл 0,2моль/л ацетата натрия. Как изменится рН этого раствора, если к ней добавить 30 мл 0,2моль/л раствора гидроксида натрия.

Рассчитываем рН буферного раствора по формуле:

При добавлении к буферному раствору NaOH увеличивается количество соли и уменьшается количество кислоты в буферном растворе:

Рассчитываем n(NaOH) = 0,03 л · 0,2 моль/л = 0,006 моль, следовательно в буферном растворе количество кислоты уменьшается на 0,006 моль, а количество соли увеличится на 0,006 моль.

Рассчитываем рН раствора по формуле:

Отсюда: рН2 – рН1 = 5,82 – 5,3 = 0,52

Ответ: изменение рН буферного раствора = 0,52.

Задачи для самостоятельного решения

1. Рассчитать рН буферного раствора, приготовленного смешением 100 мл 0,1М раствора дигидрофосфата натрия и 10 мл 0,1М раствора гидрофосфата натрия (рК(Н2РО4 — ) = 7,21).

2. Рассчитать молярную концентрацию уксусной кислоты, если на приготовление ацетатного буфера с рН= 5,76 к 100 мл 0,1М раствора ацетата натрия прилили 10 мл уксусной кислоты (рК(сн3 соон) =4,76).

3. Рассчитать Рн желудочного сока, если концентрация НС1 0,365%, плотность 1г/мл.

4. На титрование 2 мл крови для изменения рН от начального значения (7,36) до конечного значения (7,0) потребовалось добавить 1,6 мл 0,01 М раствора HCl. Рассчитайте буферную емкость по кислоте.

5. Сколько моль ацетата натрия необходимо добавить к 300 мл уксусной кислоты, чтобы понизить концентрацию ионов водорода в 300 раз (Кдис (сн3 соон) = 1,85.10 -5 ).

6. При биохимических исследованиях используют фосфатный буфер с рН= 7,4. В каком соотношении надо смешать растворы гидрофосфата натрия и дигидрофосфата натрия с концентрацией по 0,1 моль/л каждый, чтобы получить такой буферный раствор (рК(Н2РО4 — ) = 7,4).

7. Какие нарушения КОС наблюдаются при следующих показателях: рН крови = 7,20, Рсо2 = 38 мм рт. ст., БО = 30 ммоль/л, СБО = -4 ммоль/л. Как устранить данное нарушение КОС?

8. Рассчитать Рн ацетатного буферного раствора, состоящего из 60 мл 0,2М раствора уксусной кислоты и 120 мл 0,01М раствора ацетата натрия при рК(сн3соон) = 4,76.

9. Рассчитать рН 0,01М раствора уксусной кислоты, если степень диссоциации кислоты равна 0,1.

10. Рассчитать объем 5% раствора гидрокарбоната натрия, необходимого для коррекции метаболического ацидоза, если сдвиг буферных оснований (ВЕ) составляет — 10 ммоль/л при массе больного 68 кг.


источники:

http://meduniver.com/Medical/Physiology/764.html

http://lektsia.com/1x82e.html