Расчет средних коэффициентов теплоотдачи уравнение подобия

Расчет коэффициентов теплоотдачи

Интенсивность теплоотдачи зависит от динамического вида течения, определяющего структуру пограничного слоя у поверхности теплообмена, который в свою очередь зависит от скорости потока. Увеличение скорости потока ведет к уменьшению пограничного слоя, повышает турбулентность и приводит к увеличению интенсивности теплоотдачи.

Теплоотдача так же зависит от характеристик теплоносителя. Высокая теплопроводность уменьшает термическое сопротивление пограничного слоя и увеличивает теплоотдачу.

Снижение вязкости жидкости уменьшает пограничный слой, что так же благоприятно влияет на теплообмен между поверхностью и потоком теплоносителя.

Уменьшение пограничного слоя происходит так же в случае повышения кинематической вязкости или увеличения плотности рабочей среды, что так же повышает теплоотдачу.

Так же интенсивность теплоотдачи зависит от теплоемкости жидкости. При повышении теплоемкости повышается и теплоотдача, поскольку жидкость с большей теплоемкостью способна переносить большее количество теплоты.

Дополнительными факторами, влияющими на теплоотдачу, являются форма поверхности теплоотдачи, химические реакции и фазовые переходы в теплоносителе.

Онлайн расчеты, выполняемые в данном разделе, включают в себя определение коэффициентов теплоотдачи для наиболее распространенных случаев: плоской поверхности, внутренней и наружной стенки трубы, а так же расчет коэффициента теплоотдачи наружной поверхности группы параллельных труб. Для расчета необходимо задать определяющие размеры поверхностей, их температуру, температуру теплоносителя, скорость потока а так же такие характеристики рабочей среды как динамическая вязкость, плотность, коэффициент теплопроводности и удельная теплоемкость.

Расчет коэффициента теплоотдачи плоской стенки

Вычислить коэффициент теплоотдачи плоской поверхности можно с помощью уравнения подобия:

Nul = 0,66×Rel 0,5 ×Pr 0,33 ; при ламинарном пограничном слое

Nul = 0,037×Rel 0,8 ×Pr 0,43 ; при турбулентном пограничном слое

Rel — число Рейнольдса, Pr — число Прандтля.

Исходные данные:

L — размер поверхности в направлении потока, миллиметрах;

w — скорость потока, метрах в секунду;

μ — динамическая вязкость теплоносителя, в паскаль×секунда;

ρ — плотность теплоносителя, в килограммах / метр 3 ;

λ — коэффициент теплопроводности теплоносителя, в ваттах / метр×°C×сек;

Cp — удельная теплоемкость теплоносителя, в джоулях / килограмм×°C.

КОЭФФИЦИЕНТ ТЕПЛООТДАЧИ ПЛОСКОЙ СТЕНКИ

Размер поверхности L, мм

Скорость потока, w, м/c

Динамическая вязкость, μ, Па*с

Плотность теплоносителя, ρ, кг/м 3

Теплопроводность, λ, Вт/(м* 0 C×сек)

Удельная теплоемкость, Сp, Дж/(кг* 0 C)

Уравнение конвективной теплоотдачи. Средний коэффициент конвективной теплоотдачи

Согласно уравнению конвективной теплоотдачи, называемому также законом Ньютона-Рихмана, тепловой поток прямо пропорционален разности температур стенки и жидкости и площади поверхности теплообмена. Коэффициент пропорциональности в этом уравнении называют средним коэффициентом конвективной теплоотдачи:

, (1)

или , (2)

или , (3)

где Q — тепловой поток, Вт; q = Q/F — поверхностная плотность теплового потока, Вт/м 2 ; — средний коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); — температурный напор теплоотдачи, о С; — температура поверхности теплообмена (стенки), о С; — температура жидкости вдали от стенки, о С; F — площадь поверхности теплообмена (стенки), м 2 .

Независимо от направления теплового потока (от стенки к жидкости или наоборот) будем считать его положительным, то есть будем использовать модуль разности температур.

Величина коэффициента теплоотдачи зависит от большого числа различных факторов: а) физических свойств жидкости ; б) скорости движения жидкости ; в) формы, размеров и ориентации в пространстве поверхности теплообмена; г) величины температурного напора, направления теплообмена и т.п. Поэтому его теоретическое определение в большинстве случаев невозможно.

Выражения (1)-(3) позволяют опытным путем определить средний коэффициент теплоотдачи посредством измерения величин Q, F, и :

, (4)

то есть средний коэффициент теплоотдачи численно равен тепловому потоку, передаваемому через единицу поверхности теплообмена при единичном температурном напоре (1 о С или 1 К).

3. Локальный (местный) коэффициент конвективной теплоотдачи

Средний коэффициент теплоотдачи является важной, но не всегда достаточной характеристикой процессов теплообмена. Во многих случаях требуются значения коэффициентов теплоотдачи в отдельных точках поверхности теплообмена, то есть локальные (местные) значения. Локальные коэффициенты характеризуют теплоотдачу в окрестности заданной точки (x) и входят в состав локального уравнения теплоотдачи:

, (5)

или , (6)

где dF – элементарная (бесконечно малая) поверхность теплообмена в окрестности точки x, м 2 ; — элементарный тепловой поток, Вт ; — локальная плотность теплового потока, Вт/м 2 ; — локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); — локальный температурный напор, о С; — локальная температура поверхности (стенки), о С; — температура жидкости вдали от стенки (полагаем, что она постоянна вдоль всей поверхности теплообмена), о С.

Из выражений (5) и (6) следует, что локальные коэффициенты теплоотдачи в принципе могут быть найдены опытным путем посредством измерения величин , dF, и , относящихся к соответствующему бесконечно малому участку:

. (7)

На практике вдоль поверхности выделяют необходимое количество конечных, но достаточно малых участков и производят измерения для каждого i-го участка поверхности:

, (8)

где — среднее для i-го участка значение коэффициента теплоотдачи, Вт/(м 2 ∙К); — площадь поверхности i-го участка, м 2 ; — тепловой поток в пределах i-го участка, Вт; — среднее для i-го участка значение температуры поверхности; — средняя плотность теплового потока в пределах i-го участка, Вт/м 2 ; i = 1,2,…,n – номер очередного участка; n — количество участков.

При теплоотдаче на вертикальной поверхности выделяют n одинаковых по высоте участков (см. рис.4). Если измерять температуру поверхности на границах выделенных участков, начиная с ее нижней кромки (i=1), то средняя для i-го участка температура определится по формуле

. (9)

Среднее для малого i-го участка значение коэффициента теплоотдачи (8) является приближенным значением локального коэффициента теплоотдачи (7). Чем меньше размеры участка, тем точнее получаемый результат.

Результаты большого количества опытов по определению коэффициентов теплоотдачи (8) обобщают в виде эмпирических (опытных) критериальных уравнений (см.разд.5). В дальнейшем эти уравнения используют в инженерных расчетах для определения коэффициентов теплоотдачи.

4. Характер изменения локального коэффициента теплоотдачи

Локальное уравнение теплоотдачи (5)-(6) можно записать в следующем виде:

, (10)

где — локальное термическое сопротивление теплоотдачи, м 2 ∙К/Вт.

Таким образом, при теплоотдаче локальная поверхностная плотность теплового потока ( ) прямо пропорциональна локальному температурному напору и обратно пропорциональна локальному термическому сопротивлению теплоотдачи .

Практически все термическое сопротивление теплоотдачи сосредоточено около поверхности стенки в пределах теплового пограничного слоя, при этом локальное термическое сопротивление пропорционально локальной толщине этого слоя.

При теплоотдаче в условиях свободной конвекции около нагретой вертикальной поверхности (рис.2) пограничный слой формируется вдоль поверхности по ходу потока. Толщина слоя возрастает снизу вверх, и при достаточной высоте поверхности первоначально ламинарный пограничный слой постепенно преобразуется в турбулентный.

В области ламинарного (слоистого) течения локальный коэффициент теплоотдачи уменьшается по высоте поверхности в силу увеличения толщины пограничного слоя и, следовательно, в силу увеличения его локального термического сопротивления (см. рис.2).

В переходной области наблюдается увеличение коэффициента теплоотдачи вопреки возрастанию толщины пограничного слоя. Это происходит из-за дополнительного конвективного переноса теплоты образующимися вихрями.

В области развитого турбулентного течения толщина пограничного слоя продолжает расти, но в такой же степени возрастает вихревой конвективный перенос теплоты, поэтому термическое сопротивление и коэффициент теплоотдачи остаются постоянными, то есть перестают меняться по высоте поверхности (см. рис.2).

Рис.2. Пограничный слой и локальная теплоотдача:

1 — стенка (поверхность теплообмена); 2 — гидродинамический пограничный слой; 3 — гидродинамическое «ядро потока»

5. Расчет локального коэффициента теплоотдачи

с помощью критериальных уравнений

При свободной конвекции локальный коэффициент теплоотдачи на вертикальной поверхности можно рассчитать по критериальным эмпирическим формулам следующего вида:

, (11)

где C, n и 0,25 — эмпирические (определяемые из опыта) постоянные; — локальное число Нуссельта; — локальное число Релея; Pr, — числа Прандтля, взятые при определяющей температуре и при температуре стенки соответственно. Подробнее см. в разд. 6.

Значения эмпирических постоянных (табл.1) зависят от режима свободного движения жидкости. Режим свободного движения в данной точке x поверхности теплообмена определяется величиной локального числа Релея в этой точке.

Таблица 1. Значения эмпирических постоянных [1]

RaxРежим движенияСn
Rax 9Ламинарный0,600,25
Rax >6·10 10Турбулентный0,151/3

Для газов сомножитель близок к единице, так как в силу слабой зависимости числа Прандтля газов от температуры, поэтому для газов формула (11) принимает более простой вид:

. (11а)

Рассчитав локальное число Нуссельта, определяют входящий в него локальный коэффициент теплоотдачи (см. разд. 6).

Числа (критерии) подобия

Каждый критерий подобия представляет собой безразмерный комплекс (комбинацию), составленный из физических величин, влияющих на процесс: определяющей температуры (разности температур), определяющей скорости (при вынужденной конвекции), определяющего размера, – и физических свойств жидкости. В итоге каждый критерий подобия характеризует определенное соотношение физических эффектов, характерных для рассматриваемого явления.

Один из критериев подобия в уравнении является определяемым (искомым), все другие являются определяющими критериями, то есть играют роль независимых переменных, влияющих на теплоотдачу.

Рассмотрим локальные числа (критерии) подобия.

Число Нуссельта: , (12)

где — локальный коэффициент конвективной теплоотдачи, Вт/(м 2 ∙К); x – координата, в которой ищется локальный коэффициент теплоотдачи, м (см. разд.7); — коэффициент теплопроводности жидкости, Вт/(м∙К).

Это определяемый критерий подобия, так как в его состав входит искомый коэффициент теплоотдачи . Число Нуссельта можно рассматривать как относительный коэффициент теплоотдачи: , где — масштаб отнесения, имеющий ту же размерность, что и коэффициент теплоотдачи . То есть число Нуссельта характеризует интенсивность теплоотдачи или, точнее, соотношение интенсивностей теплоотдачи и теплопроводности жидкости . Если найдено число Нуссельта, например, с помощью (11) или (11 а), то

. (13)

Число Прандтля: , (14)

где — кинематический коэффициент вязкости жидкости, м 2 /с; а — коэффициент температуропроводности жидкости, м 2 /с.

Это один из определяющих критериев подобия. Он характеризует влияние физических свойств жидкости на теплоотдачу. В частности, соотношение толщин гидродинамического и теплового пограничных слоев зависит от соотношения величин и а , то есть от числа Прандтля. Сомножитель в формуле (11) учитывает для капельных жидкостей влияние на теплоотдачу величины температурного напора и его знака (направления теплообмена).

Число Релея: , (15)

где — локальное число Грасгофа.

Это главный определяющий критерий подобия. По его численному значению определяется режим свободного движения жидкости: ламинарный, переходный, турбулентный. Различным режимам движения соответствует различный физический механизм переноса теплоты, что выражается в различных значениях эмпирических постоянных С и n в уравнениях типа (11) и (11а) (см. также разд.9).

Число Релея можно рассматривать как отношение подъемной силы теплового пограничного слоя к силе трения, обусловленной вязкостью.

Число Грасгофа: , (16)

где g – ускорение силы тяжести, м/с 2 ; — термический коэффициент объемного расширения жидкости, 1/К; — локальный температурный напор, о С ( — локальная температура поверхности (стенки), о С; — температура жидкости вдали от стенки, о С).

Это определяющий критерий подобия в составе числа Релея. Он эквивалентен числу Релея при условии Pr = const.

1. Физические свойства жидкости ( , , , а, Pr и др.) берут из справочных таблиц 1 при так называемой определяющей (характерной) температуре (см. разд.8). Значение числа (для капельных жидкостей) берут там же, но при температуре стенки .

2. Для газов коэффициент объемного расширения в таблицах физических свойств не приводится, так как его легко рассчитать:

. (17)

Уравнения подобия

Уравнения подобия

  • Уравнение подобия Уравнение подобия относится к связи между определенным числом подобия и другими определенными числами подобия. Количество, необходимое для расчета теплового оборудования — это коэффициент теплопередачи a и гидравлическое сопротивление dr. Конвективный теплообмен характеризуется пятью сходствами: Nu, Eu, Pr, Gr и Re. Числовое значение Nu содержит

неизвестный коэффициент теплопередачи a, а числовое значение Ei содержит целевое значение Ap. Это характеризует гидравлическое сопротивление при движении жидкости. Следовательно, числа Nu и Ei определяются числами подобия, а числа Pr, Gr и Re являются решающими и. Для конвективного теплообмена уравнение подобия может быть выражено как: Nu = f, (Re, Gr, Pr); • (26-44) Eu = f2 (Re, Gr, Pr). ^ (26-45) Эта связь между числами подобия является результатом

второй теоремы теории подобия. Соотношение между числами подобия определяется в основном опытным путем. свободная конвекция очень мала по сравнению с принудительной конвекцией, что упрощает уравнение подобия теплопередачи. • Nu = / (Re, Pr). (26-46) Для некоторых газов значение числа Прандтля Pr во время конвективного теплообмена мало меняется с температурой, поэтому формула подобия принимает более простую форму. Nu = f (Re). (26-47)

При вынужденном движении жидкости и в развитом турбулентном режиме Людмила Фирмаль

Когда жидкость движется свободно, число Грасгофа необходимо ввести в уравнение подобия теплопередачи, когда нет принудительной конвекции вместо числа Рейнольдса. Отсюда U = / (Gr, Pr) ..- (26-48) Экспериментальные исследования теплопередачи капающей жидкости показали, что коэффициент теплопередачи ce имеет различные значения в условиях нагрева и охлаждения стенки. Это явление связано с изменением физических параметров жидкости в пограничном слое. Чтобы получить уравнение подобия, которое

одинаково справедливо как для зрелости, так и для охлаждения, дополнительно введено следующее соотношение: ^ /) K // CT, ai / | lst, Prz / Prst. Первое соотношение обычно используется для расчета теплопередачи газа, а два других соотношения используются для расчета теплопередачи капающей жидкости. Ученый М.А. Михеев рекомендует учитывать направление тепла: отношение теплового потока Rg / Prgst до 0,25. В этом случае общая формула для подобия конвективного теплообмена следующая: Nu = c Re «, Gr *, Prm, (Prz / Prst) 0-25. (26-49) Все уравнения в особых случаях могут отображаться

в одном формате. Количественная связь между показателями сходства [предмет экспериментальных исследований. моделирование Экспериментальные исследования различных физических явлений, особенно тепловых и тепловых явлений, могут проводиться путем изучения явлений, которые должны быть исследованы либо непосредственно на образце, либо на моделях. Условие, что модель и процессы, происходящие в ней, должны соответствовать теории

  • подобия. Применимость: теория сходства с опытом практически безгранична. В предыдущем разделе было установлено, что все подобные явления в определенной группе являются идентичными явлениями, приведенными в разных масштабах. Вывод: где взять; изучение любого явления в группе может быть распространено на все явления в этой группе. Таким образом, изучение конкретного конкретного явления в определенной группе эквивалентно изучению

других явлений в той же группе. Поэтому, если прямое экспериментальное исследование конкретного явления в природе образца затруднительно по техническим или экономическим причинам, оно будет заменено исследованием аналогичного явления в модели. Моделирование — это экспериментальный метод исследования, при котором изучение физических явлений проводится в сокращенной модели. Идея моделирования основана на

том факте, что [все явления описываются безразмерными переменными [отражают признаки группы похожих явлений]. Чтобы модель была похожа на модель, Вы можете моделировать процессы, которые имеют одинаковые физические свойства и описываются одними и теми же дифференциально-дифференциальными уравнениями. Явные

должны быть выполнены следующие условия: Людмила Фирмаль

условия должны быть одинаковыми во всех, кроме постоянных чисел, содержащихся в этих условиях. Требования двусмысленности требуют комфорта. Геометрическое сходство образца и модели, сходство условия G движения жидкости во входном сечении образца и модели, сходство физических параметров при сходстве образца и модели, Сходство температурного поля на границе жидкой среды. Кроме того, сходные числа сходства для похожих участков образца и модели должны быть численно одинаковыми. , ■ ч Перечисленные

условия сходства для образцов и моделей являются необходимыми и достаточными. Однако практически все условия моделирования трудно реализовать практически точно. По этой причине была разработана приближенная методика моделирования, состоящая из стабильности и надежности. Применение потоковых методов самоподобия и локальности. Геометрическое сходство от модели к модели легко реализовать. Аналогичное распределение скорости.

Тент на входе относительно легкий. Сходство физических параметров модели и потока жидкости образца является лишь приблизительным, и подобие поля температуры на нагретой поверхности модели и образца очень сложно реализовать. В связи с этим используется метод аппроксимации локального моделирования. Локальное моделирование основано на том факте, что подобие температурного поля выполняется не на всем устройстве, а в отдельном месте, то есть

на участке, где изучается теплообмен. Эквивалентность критериев выбора образца и модели может быть выполнена приблизительно. -Стабильность является характеристикой вязкости жидкости, которая всегда принимает одинаковое распределение скорости по площади поперечного сечения на одном и том же расстоянии от впускного отверстия, независимо от характера скорости входной площади поперечного сечения. \ Явление самоподобия связано с тем, что существует распределение скоростей, которое практически не изменяется в этом сечении, когда жидкость движется с довольно

широким диапазоном скоростей. Другими словами, он практически не зависит от Re. В настоящее время моделирование является одним из основных методов научных исследований и широко используется во многих областях науки и техники. Он стал мощным инструментом для выявления различных недостатков в существующем техническом оборудовании и поиска путей их устранения. Кроме того, моделирование в настоящее время широко используется для тестирования вновь созданных устройств, улучшая новые

конструкции, которые еще не реализованы на практике. XXVI глава вопросы безопасности 1. Что такое конвективный теплообмен? -2 Какие бывают типы конвекции? 3. Динамические и тепловые пограничные слои и их физические значения. • 4: Какая разница между типом движения жидкости и #? «» 5. Число Рейнольдса и его обозначение. 6. Что такое измерение числа Рейнольдса? 7. Критическое значение числа Рейнольдса. 8. Каков механизм теплообмена при ламинарном и турбулентном движении * жидкостей? 9. Обеспечивает определение динамических и

кинематических коэффициентов. Класс вязкости. «» LO. Какие факторы влияют на конвективный теплообмен? П. Определение коэффициента теплопередачи. * 12. Какова функция коэффициента теплопередачи? 13. Создать систему дифференциальных уравнений для конвективного теплообмена. 14. Что называется условием уникальности? 15. Почему теория подобия используется для определения коэффициента теплопередачи? • ‘•• 16. Какие условия лежат в основе теории подобия? 17. Зависит ли коэффициент

теплопередачи от такого количества? , 18. Три теоремы подобия. — 19. Из какого дифференциального уравнения можно получить сходство? •. ’20. Какое сходство можно получить из дифференциального уравнения конвективного теплообмена? •• ■ — • • 21. Что такое уравнение называется похожим уравнением? 22. Какое же число конвективных теплообменов между газом и капающей жидкостью? 23. Какое соотношение учитывает направление теплового потока?

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института


источники:

http://allrefrs.ru/4-40778.html

http://lfirmal.com/uravneniya-podobiya/