Расчет уравнения с одним неизвестным

Уравнение с одним неизвестным

Уравнение вида ax = b, где x — неизвестное, a и b — числа, называется уравнением с одним неизвестным или линейным уравнением.

Число a называется коэффициентом при неизвестном, а число bсвободным членом.

Если в уравнении ax = b коэффициент не равен нулю (a ≠ 0), то, разделив обе части уравнения на a, получим . Значит, уравнение ax = b, в котором a ≠ 0, имеет единственный корень .

Если в уравнении ax = b коэффициент равен нулю (a = 0), а свободный член не равен нулю (b ≠ 0), то уравнение не имеет корней, так как равенство 0x = b, где b ≠ 0, не является верным ни при каком значении x.

Если в уравнении ax = b и коэффициент, и свободный член равны нулю (a = 0 и b = 0), то уравнение имеет бесконечное множество корней, так как равенство 0x = 0 верно при любом значении x.

Решение уравнений с одним неизвестным

Все уравнения с одним неизвестным решаются одинаково с помощью преобразований, которые могут выполняться в любом порядке. Список возможных преобразований, которые могут быть использованы для решения уравнений:

  • освобождение от дробных членов;
  • раскрытие скобок;
  • перенос всех членов, содержащих неизвестное, в одну часть, а известные — в другую (члены с неизвестными, как правило, переносят в левую часть уравнения);
  • сделать приведение подобных членов;
  • разделить обе части уравнения на коэффициент при неизвестном.

Пример 1. Решить уравнение

    Освобождаем уравнение от дробных членов:

20x — 28 — 24 = 9x + 36.

20x — 9x = 36 + 28 + 24.

Выполняем приведение подобных членов:

Делим обе части уравнения на коэффициент при неизвестном (на 11):

Делаем проверку, подставив в данное уравнение вместо x его значение:

Уравнение обратилось в верное равенство, следовательно, корень был найден верно.

Пример 2. Решить уравнение

    Это уравнение проще решить, не раскрывая скобок, поэтому делим обе части уравнения на 5:

Выполняем приведение подобных членов:

  • Делаем проверку, подставив в данное уравнение вместо x его значение:
    5(11 — 2) = 45;
    5 · 9 = 45;
    45 = 45.
  • Обычно все рассуждения при решении уравнения производят устно, а само решение записывается так:

    Решение уравнений с одним неизвестным (переменной)

    В данной публикации мы рассмотрим определение и общий вид записи уравнения с одним неизвестным, а также приведем алгоритм его решения с практическими примерами для лучшего понимания.

    Определение и запись уравнения

    Математическое выражение вида ax + b = 0 называется уравнением с одним неизвестным (переменной) или линейным уравнением. Здесь:

      a и b – любые числа: a – коэффициент при неизвестном, b – свободный коэф.

    Уравнение можно представить в равнозначном виде . После этого мы смотрим на коэффициенты.

    • При a ≠ 0 единственный корень .
    • При a = 0 уравнение примет вид . В таком случае:
      • если b ≠ 0 , корней нет;
      • если b = 0 , корнем является любое число, т.к. выражение верно при любом значении x .

      Алгоритм и примеры решения уравнений с одим неизвестным

      Простые варианты

      Рассмотрим простые примеры при a = 1 и наличии всего одного свободного коэффициента.

      » data-lang=»default» data-override=»<"emptyTable":"","info":"","infoEmpty":"","infoFiltered":"","lengthMenu":"","search":"","zeroRecords":"","exportLabel":"","file":"default">» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>
      ПримерРешениеОбъяснение
      слагаемоеот суммы отнимается известное слагаемое
      уменьшаемоеразность прибавляется к вычитаемому
      вычитаемоеиз уменьшаемого вычитается разность
      множительпроизведение делится на известный множитель
      делимоечастное умножается на делитель
      делительделимое делится на частное

      Сложные варианты

      При решении более сложного уравнения с одной переменной, очень часто требуется сначала его упростить, прежде чем находить корень. Для этого могут применяться следующие приемы:

      • раскрытие скобок;
      • перенос всех неизвестных в одну сторону от знака “равно” (обычно в левую), а известных в другую (правую, соответственно).

      Пример: решим уравнение .

      1. Раскрываем скобки:
        6x + 18 – 3x = 2 + x .
      2. Переносим все неизвестные влево, а известные вправо (не забываем при переносе менять знак на противоположный):
        6x – 3x – x = 2 – 18 .
      3. Выполняем приведение подобных членов:
        2x = -16 .
      4. Делим обе части уравнения на число 2 (коэффициент при неизвестной):
        x = -8 .

      Решение задач по математике онлайн

      //mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

      Калькулятор онлайн.
      Решение показательных уравнений.

      Этот математический калькулятор онлайн поможет вам решить показательное уравнение. Программа для решения показательного уравнения не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

      Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

      Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

      Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
      Правила ввода функций >> Почему решение на английском языке? >>
      С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> Введите показательное уравнение
      Решить уравнение

      Немного теории.

      Показательная функция, её свойства и график

      Напомним основные свойства степени. Пусть а > 0, b > 0, n, m — любые действительные числа. Тогда
      1) a n a m = a n+m

      4) (ab) n = a n b n

      7) a n > 1, если a > 1, n > 0

      8) a n m , если a > 1, n n > a m , если 0 x , где a — заданное положительное число, x — переменная. Такие функции называют показательными. Это название объясняется тем, что аргументом показательной функции является показатель степени, а основанием степени — заданное число.

      Определение. Показательной функцией называется функция вида y = a x , где а — заданное число, a > 0, \( a \neq 1\)

      Показательная функция обладает следующими свойствами

      1) Область определения показательной функции — множество всех действительных чисел.
      Это свойство следует из того, что степень a x где a > 0, определена для всех действительных чисел x.

      2) Множество значений показательной функции — множество всех положительных чисел.
      Чтобы убедиться в этом, нужно показать, что уравнение a x = b, где а > 0, \( a \neq 1\), не имеет корней, если \( b \leqslant 0\), и имеет корень при любом b > 0.

      3) Показательная функция у = a x является возрастающей на множестве всех действительных чисел, если a > 1, и убывающей, если 0 x при a > 0 и при 0 x при a > 0 проходит через точку (0; 1) и расположен выше оси Oх.
      Если х x при a > 0.
      Если х > 0 и |х| увеличивается, то график быстро поднимается вверх.

      График функции у = a x при 0 0 и увеличивается, то график быстро приближается к оси Ох (не пересекая её). Таким образом, ось Ох является горизонтальной асимптотой графика.
      Если х

      Показательные уравнения

      Рассмотрим несколько примеров показательных уравнений, т.е. уравнений, в которых неизвестное содержится в показателе степени. Решение показательных уравнений часто сводится к решению уравнения a x = a b где а > 0, \( a \neq 1\), х — неизвестное. Это уравнение решается с помощью свойства степени: степени с одинаковым основанием а > 0, \( a \neq 1\) равны тогда и только тогда, когда равны их показатели.

      Решить уравнение 2 3x • 3 x = 576
      Так как 2 3x = (2 3 ) x = 8 x , 576 = 24 2 , то уравнение можно записать в виде 8 x • 3 x = 24 2 , или в виде 24 x = 24 2 , откуда х = 2.
      Ответ х = 2

      Решить уравнение 3 х + 1 — 2 • 3 x — 2 = 25
      Вынося в левой части за скобки общий множитель 3 х — 2 , получаем 3 х — 2 (3 3 — 2) = 25, 3 х — 2 • 25 = 25,
      откуда 3 х — 2 = 1, x — 2 = 0, x = 2
      Ответ х = 2

      Решить уравнение 3 х = 7 х
      Так как \( 7^x \neq 0 \) , то уравнение можно записать в виде \( \frac<3^x> <7^x>= 1 \), откуда \( \left( \frac<3> <7>\right) ^x = 1 \), х = 0
      Ответ х = 0

      Решить уравнение 9 х — 4 • 3 х — 45 = 0
      Заменой 3 х = t данное уравнение сводится к квадратному уравнению t 2 — 4t — 45 = 0. Решая это уравнение, находим его корни: t1 = 9, t2 = -5, откуда 3 х = 9, 3 х = -5.
      Уравнение 3 х = 9 имеет корень х = 2, а уравнение 3 х = -5 не имеет корней, так как показательная функция не может принимать отрицательные значения.
      Ответ х = 2

      Решить уравнение 3 • 2 х + 1 + 2 • 5 x — 2 = 5 х + 2 х — 2
      Запишем уравнение в виде
      3 • 2 х + 1 — 2 x — 2 = 5 х — 2 • 5 х — 2 , откуда
      2 х — 2 (3 • 2 3 — 1) = 5 х — 2 ( 5 2 — 2 )
      2 х — 2 • 23 = 5 х — 2 • 23
      \( \left( \frac<2> <5>\right) ^ = 1 \)
      x — 2 = 0
      Ответ х = 2

      Решить уравнение 3 |х — 1| = 3 |х + 3|
      Так как 3 > 0, \( 3 \neq 1\), то исходное уравнение равносильно уравнению |x-1| = |x+3|
      Возводя это уравнение в квадрат, получаем его следствие (х — 1) 2 = (х + 3) 2 , откуда
      х 2 — 2х + 1 = х 2 + 6х + 9, 8x = -8, х = -1
      Проверка показывает, что х = -1 — корень исходного уравнения.
      Ответ х = -1


      источники:

      http://microexcel.ru/uravnenie-s-odnoy-peremennoy/

      http://www.math-solution.ru/math-task/exponential-equality