Расставьте коэффициенты в уравнении naoh h2so4 na2so4

Подбор коэффициентов в уравнениях реакций методом полуреакций

Составление уравнений электронного баланса

Задача 121.
Составьте уравнение электронного баланса, расставьте коэффициенты в уравнениях реакций, подберите коэффициенты методом полуреакций в следующих уравнениях:
1) NaNO3 + Mg + H2О = NH3 + Mg(OH)2 + NaOH
2) Na2SO3 + KMnO4 + KOH = Na2SO4 + K2MnO4 + H2O
3) H2S + K2CrO7 + H2SO4 = S + Cr2(SO4)3 + K2SO4 + H2O
Решение:
1) NaNO3 + Mg + H2О= NH3 + Mg(OH)2 + NaOH

Уравнения электронного баланса:
Восстановитель 4|Mg 0 — 2электрона = Mg 2+ процесс окисления
Окислитель 1|N 5+ + 8электронв = N 3+ процесс восстановления

4Mg 0 + N 5+ = 4Mg 2+ + N 3+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 8. Разделив это число на 8, получаем коэффициент 1 для окислителя и продукта его восстановления, а при делении 8 на 2 получаем коэффициент 4 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: Mg – восстановитель, окислитель – NaNO3; Mg окисляется до Mg(OH)2, NaNO3 – восстанавливается до NH3.

2) Na2SO3 + KMnO4 + 2KOH = Na2SO4 + 2K2MnO4 + H2O

Уравнения электронного баланса:
Восстановитель 1|S 4+ — 2электрона = S 6+ процесс окисления
Окислитель 2|Mn 7+ + 1электрон = Mn 6+ процесс восстановления

S 4+ + 2Mn 7+ = S 6+ + 2Mn 6+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов 2. Разделив это число на 1, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 2 на 2 получаем коэффициент 1 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

В данной реакции: Na2SO3 – восстановитель, окислитель – KMnO4; Na2SO3 окисляется до Na2SO4, KMnO4 – восстанавливается до K2MnO4.

Уравнения электронного баланса:

Восстановитель 3|S 2– — 2электрона = S 0 процесс окисления
Окислитель 2|C r6+ + 3электрона = Cr 3+ процесс восстановления

3S 2- + 2Cr 6+ = 3S 0 + 2Cr 3+

Общее число электронов, отданных восстановителем, должно быть равно числу электронов, которые присоединяет окислитель. Общее наименьшее кратное для отданных и принятых электронов шесть. Разделив это число на 3, получаем коэффициент 2 для окислителя и продукта его восстановления, а при делении 6 на 3 получаем коэффициент 2 для восстановителя и продукта его окисления. Молекулярное уравнение реакции:

Формулы амфотерных солей

Задача 122.
Составьте формулы всех солей соответствующих кислотам и основаниям,
приведенным для вашего задания. (Для амфотерных гидроксидов необходимо составить формулы их солей, образованных как при реакции с кислотами,
так и с основаниями). Приведите реакцию получения одной из солей в молекулярной и сокращенной ионно-молекулярной форме.
NH4OH; Mg(OH)2; HI; H3BO3.
Решение:
1. Для NH4OH:
NH4Cl, (NH4)2SO4, NH4NO3.

Mg(OH)2 + H2SO4 = MgSO4 + 2H2O — молекулярная форма;
2ОН – + 2Н + = 2H2O — сокращенная ионно-молекулярная форма.

4B(OH)3 + 2NaOH = Na2B4O7 + 7H2O — молекулярная форма;
7ОН – + 7Н + = 7H2O — сокращенная ионно-молекулярная форма.

Расставьте коэффициенты в уравнении naoh h2so4 na2so4

Расставьте коэффициенты в уравнениях реакций (там, где это необходимо), укажите, к какому типу относятся следующие химические реакции:
1) C + O2 ⟶ CO2;
2) CaCO3 ⟶ CaO + CO2;
3) Zn + HCl ⟶ ZnCl2 + H2;
4) NaOH + H2SO4 ⟶ Na2SO4 + H2O.

2) CaCO3 ⟶ CaO + CO2
Реакция разложения.

3) Zn + 2HCl ⟶ ZnCl2 + H2
Реакция замещения.

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции


источники:

http://gomolog.ru/reshebniki/8-klass/kuznecova-2019/20/3.html

http://zadachi-po-khimii.ru/obshaya-himiya/metod-elektronnogo-balansa-ionno-elektronnyj-metod-metod-polureakcij.html