Рациональные уравнения 8 класс ютуб

Рациональные уравнения с примерами решения

Содержание:

Рациональные уравнения. Равносильные уравнения

два уравнения называют равносильными, если они имеют одни и те же корни. Равносильными считают и те уравнения, которые корней не имеют.

Так, например, равносильными будут уравнения

Уравнения — не равносильны, так как корнем первого уравнения является число 10, а корнем второго — число 9.

Ранее, в 7 классе, вы знакомились со свойствами, которые преобразуют уравнения в равносильные им уравнения.

1) Если в любой части уравнения раскрыть скобки или привести подобные слагаемые, то получим уравнение, равносильное данному;

2) если в уравнении перенести слагаемое из одной части в другую, изменив его знак на противоположный, то получим уравнение, равносильное данному;

3) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

Левая и правая части каждого из них являются рациональными выражениями.

Уравнении, левая и правая части которых являются рациональными выражениями, называют рациональными уравнениями.

В первых двух из записанных выше уравнений левая и правая части являются целыми выражениями. Такие уравнения называют целыми рациональными уравнениями. Если хотя бы одна часть уравнения — дробное выражение, то его называют дробным рациональным уравнением. Третье из записанных выше уравнений является дробным рациональным.

Как решать целые рациональные уравнения, мы рассмотрели при изучении математики в предыдущих классах. Рассмотрим теперь, как решать дробные рациональные уравнения, то есть уравнения с переменной в знаменателе.

Применение условия равенства дроби нулю

Напомним, что когда

Пример №202

Решите уравнение

Решение:

С помощью тождественных преобразований и свойств уравнений приведем уравнение к виду где и — целые рациональные выражения. Имеем:

Окончательно получим уравнение:

Чтобы дробь равнялась нулю, нужно, чтобы числитель равнялся нулю, а знаменатель не равнялся нулю.

Тогда откуда При знаменатель Следовательно, — единственный корень уравнения.

Решение последнего, равносильного данному, уравнения, учитывая условие равенства дроби нулю, удобно записывать так:

Значит, решая дробное рациональное уравнение, можно:

1) с помощью тождественных преобразований привести уравнение к виду

2) приравнять числитель к нулю и решить полученное целое уравнение;

3) исключить из его корней те, при которых знаменатель равен нулю, и записать ответ.

Использование основного свойства пропорции

Если то где

Пример №203

Решите уравнение

Решение:

Найдем область допустимых значений (ОДЗ) переменной в уравнении. Так как знаменатели дробей не могут равняться нулю, то Имеем: то есть ОДЗ переменной содержит все числа, кроме 1 и 2.

Сложив выражения в правой части уравнения, приведем его к виду: получив пропорцию:

По основному свойству пропорции имеем:

Решим это уравнение:

откуда

Так как число 4 принадлежит ОДЗ переменной исходного уравнения, то 4 является его корнем.

Запись решения, чтобы не забыть учесть ОДЗ, удобно закончить так:

Таким образом, для решения дробного рационального уравнения можно:

1) найти область допустимых значений (ОДЗ) переменной в уравнении;

2) привести уравнение к виду

3) записать целое уравнение и решить его;

4) исключить из полученных корней те, которые не принадлежат ОДЗ, и записать ответ.

Метод умножения обеих частей уравнения на общий знаменатель дробей

Пример №204

Решите уравнение

Решение:

Найдем ОДЗ переменной и простейший общий знаменатель всех дробей уравнения, разложив знаменатели на множители:

Областью допустимых значений переменной будут те значения при которых то есть все значения кроме чисел А простейшим общим знаменателем будет выражение

Умножим обе части уравнения на это выражение:

Получим: а после упрощения: то есть откуда или

Число 0 не принадлежит ОДЗ переменной исходного уравнения, поэтому не является его корнем.

Следовательно, число 12 — единственный корень уравнения. Ответ. 12.

Решая дробное рациональное уравнение, можно:

3) умножить обе части уравнения на этот общий знаменатель;

4) решить полученное целое уравнение;

5) исключить из его корней те, которые не принадлежат ОДЗ переменной уравнения, и записать ответ.

Пример №205

Являются ли равносильными уравнения

Решение:

Поскольку уравнения являются равносильными в случае, когда они имеют одни и те же, или не имеют корней, найдем корни данных уравнений.

Первое уравнение имеет единственный корень а второе — два корня (решите уравнения самостоятельно). Следовательно, уравнения не являются равносильными.

Степень с целым показателем

Напомним, что в 7 классе мы изучали степень с натуральным показателем. По определению:

где — натуральное число,

В математике, а также при решении задач практического содержания, например в физике или химии, встречаются степени, показатель которых равен нулю или является целым отрицательным числом. Степень с отрицательным показателем можно встретить и в научной или справочной литературе. Например, массу атома гелия записывают так: кг. Как понимать смысл записи

Рассмотрим степени числа 3 с показателями — это соответственно

В этой строке каждое следующее число втрое больше предыдущего. Продолжим строку в противоположном направлении, уменьшая каждый раз показатель степени на 1. Получим:

Число должно быть втрое меньше числа равного числу 3. Но втрое меньшим числа 3 является число 1, следовательно, Равенство справедливо для любого основания при условии, что

Нулевая степень отличного от нуля числа а равна единице, то есть при

Вернемся к строке со степенями числа 3, где слева от числа записано число Это число втрое меньше, чем 1, то есть равно Следовательно, Рассуждая аналогично получаем: и т. д.

Приходим к следующему определению степени с целым отрицательным показателем:

если натуральное число, то

Урок по теме «Решение дробных рациональных уравнений». 8-й класс

Разделы: Математика

Класс: 8

Цели урока:

  • формирование понятия дробных рационального уравнения;
  • рассмотреть различные способы решения дробных рациональных уравнений;
  • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
  • обучить решению дробных рациональных уравнений по алгоритму;
  • проверка уровня усвоения темы путем проведения тестовой работы.
  • развитие умения правильно оперировать полученными знаниями, логически мыслить;
  • развитие интеллектуальных умений и мыслительных операций — анализ, синтез, сравнение и обобщение;
  • развитие инициативы, умения принимать решения, не останавливаться на достигнутом;
  • развитие критического мышления;
  • развитие навыков исследовательской работы.
  • воспитание познавательного интереса к предмету;
  • воспитание самостоятельности при решении учебных задач;
  • воспитание воли и упорства для достижения конечных результатов.

Тип урока: урок – объяснение нового материала.

Ход урока

1. Организационный момент.

Здравствуйте, ребята! На доске написаны уравнения посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

  1. Что такое уравнение? (Равенство с переменной или переменными.)
  2. Как называется уравнение №1? (Линейное.) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа — в правую. Привести подобные слагаемые. Найти неизвестный множитель).
  3. Как называется уравнение №3? (Квадратное.) Способы решения квадратных уравнений. (Выделение полного квадрата, по формулам, используя теорему Виета и ее следствия.)
  4. Что такое пропорция? (Равенство двух отношений.) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов.)
  5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.)
  6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.)

3. Объяснение нового материала.

Решить в тетрадях и на доске уравнение №2.

Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

х 2 -4х-2х+8 = х 2 +3х+2х+6

х 2 -6х-х 2 -5х = 6-8

Решить в тетрадях и на доске уравнение №4.

Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

Теперь попытайтесь решить уравнение №7 одним из способов.

Рациональные уравнения — алгоритмы и примеры вычислений

Общая информация

Рациональным уравнением называется равенство с одним или несколькими неизвестными, в правой и левой частях которого содержатся только рациональные выражения. Очень важно уметь определять тип, поскольку от этого зависит правильность нахождения корней и методика решения.

Определение можно немного упростить. Рациональным называется выражение, состоящее из некоторых числовых значений и неизвестной, операций вычитания, сложения, умножения, деления, а также возведения в степень с целым (натуральным) показателем. Уравнение рационального типа — равенство двух выражений, состоящих из переменных рационального типа (r (x) = 0). Они бывают двух видов: целые и дробные.

К первым относятся тождества, в знаменателе которых не содержится неизвестная величина. Примерами являются: x + 7 = 2x, x 2 + 2x — 7 = 0 и (x 2 + 4) / 2 = 2x / 4. Дробные представлены правильными дробями, числитель и знаменатель которых содержат переменные рационального типа. Примерами дробно-рациональных уравнений являются (x + 7) / 2x = 7 — x, (x 2 + 2x — 7) / (x 2 — 4) = 0 и (x 2 + 4) / 2x^ — 8 = 2x / 4.

Математики выделяют еще одну группу рациональных уравнений с параметрами, которые необходимо найти или они даются при решении задачи. Параметр — некоторое ограничение, влияющее на поиск корней.

Основные виды

Рациональные уравнения бывают линейными, квадратными, кубическими и биквадратными. Для каждого вида существуют определенные методики решения. Последние строятся на алгоритмах, позволяющих оптимизировать процесс нахождения корней.

Уравнения могут объединяться в системы. Чтобы ее решить, нужно найти все ее корни, удовлетворяющие ее элементам (выражениям). Отличаются равенства между собой только показателем степени. Например, у линейного последняя соответствует единице, у квадратного — 2, кубического — 3 и биквадратным — 4. Если в выражении с неизвестным присутствует дробная часть, всегда проверяется знаменатель на равенство нулю, поскольку такое значение превращает тождество в неопределенность. Числитель проверять нет необходимости. Выбор алгоритма решения рационального уравнения зависит от типа выражения.

Линейные и квадратные

Линейное выражение с неизвестными можно записать следующим образом: a1 * y1 + a2 * y2 +. + an * yn + c = 0. Например, 5х + 4 = 8 является линейным. Решается оно с помощью простого алгоритма:

  • Необходимо перенести неизвестные величины в левую сторону, а известные — в правую: 5х = 8 — 4.
  • Перенести число «5» с противоположным знаком: x = (8 — 4) / 5 = 4 / 5 = 0,8.

Квадратные уравнения — тождества вида az 2 + bz + c = 0. Они бывают полными (присутствуют все коэффициенты) и неполными. В последних какой-либо из параметров равен нулю. В зависимости от методики нахождения его корней, выбирается нужный алгоритм. Основные способы решения:

  • Теорема Виета (при a = 1).
  • Нахождение дискриминанта.
  • Графический метод.
  • Автоматизированный.

При использовании теоремы Виета значения корней вычисляется по таким формулам: z1 + z2 = — b и z1 * z2 = c. Если а > 1 (b и c не равны 0), то необходимо найти некоторый параметр. Математики называют его дискриминантом. Для решения существует специальный алгоритм:

  1. Выполнить расчет дискриминанта, и записать результат в виде квадрата: D = b 2 — 4ac.
  2. Если D больше 0, то два корня уравнения вычисляются таким образом: z1 = [(-b) + (D)^(½)] / (2 * а) и z2 = [(-b) — (D)^(½)] / (2 * а).
  3. При D = 0 две формулы во втором пункте преобразуются в одну, поскольку дискриминант не учитывается: z = [-b] / (2 * а). В этом случае существует только один корень.
  4. Когда при подсчете значения D получается отрицательное число, корней у уравнения нет вообще.
  5. После нахождения корней нужно подставить их в исходное выражение. Результат вычисления будет равен 0. Все остальные значения, приводящие к неверному тождеству, являются неверными. Их необходимо отсеивать. Это происходит, когда квадратное уравнение имеет вид обыкновенной дроби.

Следующим способом является графический метод решения. Для его реализации необходимо построить параболу, а затем найти точки пересечения с осью абсцисс (корни). Использование дополнительного программного обеспечения (онлайн-калькуляторов) для автоматизации вычислений экономит много времени. Его рекомендуется применять для проверки.

При отсутствии свободного члена (az^2 + bz = 0), можно воспользоваться методом разложения на множители. Для этого следует разделить обе части равенства на «а», а затем вынести общий множитель. В результате получится выражение z(z + b) = 0. У него два корня: z1 = 0 и z2 = -b.

Кубические тождества

Выражение вида а * z 3 + b * z 2 + с * z + d = 0 (а > 0), содержащее одну неизвестную, называется кубическим уравнением. Его метод решения зависит от вида. В алгебре выделяют 4 класса:

  1. az 3 + d= 0.
  2. az 3 + bz 2 + bz + a = 0.
  3. az 3 + bz 2 + cz = 0.

а * z 3 + b * z 2 + с * z + d = 0.

Первый класс решается просто. Для этого необходимо перенести свободный член d в правую часть, а затем разделить на «а»: z 3 = -d/a. После этого можно взять кубический корень из правой и левой частей. Кроме того, можно не переносить d, а просто разложить на множители: z 3 + d/a = (z + (d/a)^(1/3)) * (z 2 — [(d/a)^(1/3)]z + [(d/a)^2]^(1/3)) = 0. Разложив на множители, нужно решить 2 уравнения.

Чтобы решить второй тип задания, нужно выполнить некоторые математические преобразования: az 3 + bz 2 + bz + a = a (z 3 + 1) + b (z 2 + z) = a (z + 1)(z 2 — z + 1) + bz (z + 1) = (z + 1)(az 2 + z (b — a) + a) = 0. В результате этой операции произошло понижение степени. Далее нужно решить 2 равенства с неизвестными.

В третьем классе нужно просто вынести неизвестную (общий множитель) за скобку, а затем решить линейное и квадратное уравнения. Кроме того, этот тип тождеств решается также при помощи графического метода или замены переменной. Четвертый класс решается только с помощью построения графика (графическое представление — кубическая парабола) или заменой неизвестной.

В первом случае нужно построить кривую, которая называется кубической параболой. После этого следует найти точки пересечения графика с осью абсцисс. Метод замены — введение нового параметра, приводящего к равносильному упрощенному выражению. Сведение к квадратному многочлену осуществляется по такому алгоритму:

  • Разделить обе части на «а».
  • Выполнить замену: z = w — (b/(3a)).
  • Вычислить коэффициенты р и q: p = [(3ас — b 2 ) / (3а 2 )] и q = [2b 3 — 9abc + (27a 2 ) * D] / (27a 3 ).
  • Записать результат: w 2 + pw + q = 0.
  • Решить квадратное уравнение.
  • Вычислить z, подставив корни из пятого пункта во второй.
  • Осуществить проверку.

Последний пункт также можно выполнить в автоматизированном режиме, поскольку это займет меньше времени. Методика позволяет избавиться от высшей степени и свести выражение к квадратному многочлену.

Биквадратные уравнения

Биквадратные уравнения (az 4 + bz 2 + c = 0) — сложные выражения. Они решаются аналитическим методом, который заключается в понижении степени. В этом случае вводится новая неизвестная для понижения степени w = z 2 . В результате этого получается равносильное равенство вида: aw 2 + bw + c = 0. Далее решается обыкновенное квадратное уравнение, а затем его корни подставляются в параметр замены.

Когда биквадратный многочлен с неизвестными представлен в виде az 4 + bz 3 + cz 2 + dz + e = 0, нужно решать при помощи формулы Кардана. Математики рекомендуют воспользоваться алгоритмом:

  • Рассчитать вспомогательные коэффициенты: f = b / a, g = c / a и h = d / a.
  • Вычисление основных параметров: i = -((f)^2 / 3) + g и k = [2 (f)^3 / 27] — [(f * g) / 3] + h.
  • Нахождение по формуле Кардана математического ожидания: m = [(-k / 2) + ((k 2 / 4) + i 3 / 27)^(½)]^(1/3) + [(-k / 2) — (-(k 2 / 4) + i 3 / 27)^(½)]^(1/3).
  • Поиск искомых корней: z1 = m — f, z2 = m — g и z3 = m — h.

Математическое ожидание — область, принимающая среднее значение при определенных условиях. Если уравнение имеет другой вид, корни следует искать с помощью математического ожидания Кардана. Однако его следует править в зависимости от коэффициентов исходного тождества. Можно также построить график функции, но эта методика довольно сложная.

Для этого специалисты рекомендуют пользоваться сторонними сервисами, одним из которых является «yotx.ru». Он позволяет строить разные графики. Особенностью веб-приложения является его гибкая настройка, а также табличные данные зависимости значения функции от ее аргумента, которыми можно воспользоваться. Полученный график можно распечатать, сохранить на жестком диске, получить в виде ссылки и html-кода для сайта или урока.

Пример решения

После получения теоретических знаний следует приступить к практике. Начинать следует с простых примеров, заканчивая более сложными. Например, выполнить работу по нахождению корней равенства с неизвестными: [(2z^3 — 16) / (2z^2 — 4z + 2)] = 0.

Уравнение является рациональным. Оно состоит из двух выражений: числителя и знаменателя. Первый следует приравнять к нулю, поскольку при делении на любое выражение будет получено нулевое значение. Однако не все так просто — нужно обязательно проверить знаменатель. Следует найти корень или корни, при которых он обращается в ноль, превращая все тождество в пустое множество или неопределенность. Чтобы найти корни числителя, нужно воспользоваться алгоритмом:


источники:

http://urok.1sept.ru/articles/559882

http://nauka.club/matematika/algebra/ratsionalny%D0%B5-uravneniy%D0%B0.html