Рациональные уравнения замена переменной егэ

Рациональные уравнения. Семь типов рациональных уравнений, сводящихся к квадратным

В этой статье я покажу вам алгоритмы решения семи типов рациональных уравнений, которые с помощью замены переменных сводятся к квадратным. В большинстве случаев преобразования, которые приводят к замене, весьма нетривиальны, и самостоятельно о них догадаться достаточно трудно.

Для каждого типа уравнений я объясню, как в нем делать замену переменной, а затем в соответствующем видеоуроке покажу подробное решение.

У вас есть возможность продолжить решение уравнений самостоятельно, а затем сверить свое решение с видеоуроком.

1 . (x-1)(x-7)(x-4)(x+2)=40

Заметим, что в левой части уравнения стоит произведение четырех скобок, а в правой — число.

1. Сгруппируем скобки по две так, чтобы сумма свободных членов была одинаковой.

2. Перемножим их.

3. Введем замену переменной.

В нашем уравнении сгруппируем первую скобку с третьей, а вторую с четвертой,так как (-1)+(-4)=(-7)+2:

В этом месте замена переменной становится очевидной:

Получаем уравнение

Ответ:

  • 2 .

    Уравнение этого типа похоже на предыдущее с одним отличием: в правой части уравнения стоит произведение числа на . И решается оно совсем по-другому:

    1. Группируем скобки по две так, чтобы произведение свободных членов было одинаковым.

    2. Перемножаем каждую пару скобок.

    3. Из каждого множителя выносим за скобку х.

    4. Делим обе части уравнения на .

    5. Вводим замену переменной.

    В этом уравнении сгруппируем первую скобку с четвертой, а вторую с третьей, так как :

    Заметим, что в каждой скобке коэффициент при и свободный член одинаковые. Вынесем из каждой скобки множитель :

    Так как х=0 не является корнем исходного уравнения, разделим обе части уравнения на . Получим:

    Теперь можем ввести замену переменной:

    Получим уравнение:

    Ответ:

  • 3 .

    Заметим, что в знаменателях обоих дробей стоят квадратные трехчлены, у которых старший коэффициент и свободный член одинаковые. Вынесем, как и в уравнении второго типа х за скобку. Получим:

    Разделим числитель и знаменатель каждой дроби на х:

    Теперь можем ввести замену переменной:

    Получим уравнение относительно переменной t:

    Ответ:

  • 4 .

    Заметим, что коэффициенты уравнения симметричны относительно центрального. Такое уравнение называется возвратным .

    Чтобы его решить,

    1. Разделим обе части уравнения на (Мы можем это сделать, так как х=0 не является корнем уравнения.) Получим:

    2. Сгруппируем слагаемые таким образом:

    3. В каждой группе вынесем за скобку общий множитель:

    4. Введем замену:

    5. Выразим через t выражение :

    Отсюда

    Получим уравнение относительно t:

    Ответ:

  • 5. Однородные уравнения.

    Уравнения, имеющие структуру однородного, могут встретиться при решении показательных, логарифмических и тригонометрических уравнений, поэтому ее нужно уметь распознавать.

    Однородные уравнения имеют такую структуру:

    В этом равенстве А, В и С — числа, а квадратиком и кружочком обозначены одинаковые выражения. То есть в левой части однородного уравнения стоит сумма одночленов, имеющих одинаковую степень ( в данном случае степень одночленов равна 2), и свободный член отсутствует.

    Чтобы решить однородное уравнение, разделим обе части на

    Или на

    Или на

    Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

    Пойдем первым путем. Получим уравнение:

    Сократим дроби, получим:

    Теперь мы вводим замену переменной:

    И решаем квадратное уравнение относительно замены:

    .

    При решении уравнения я обычно придерживаюсь такой тактики: нужно уменьшить количество различных выражений, в состав которых входит неизвестное ( принцип «бритвы Оккама» — не нужно множить сущности без нужды), а для этого помогает разложить выражения с неизвестным на множители. Разложим выражение, стоящее в правой части уравнения на множители.

    Перенесем все влево, получим:

    Теперь мы видим, что перед нами однородное уравнение. Разделим обе части уравнения на , предварительно проверив, что х=1 не является корнем исходного уравнения.

    Теперь самое время ввести замену переменной:

    Получим квадратное уравнение:

    Ответ:

    6 .

    Это уравнение имеет такую структуру:

    Решается с помощью введения вот такой замены переменной:

    В нашем уравнении ,тогда . Введем замену:

    Теперь возведем каждую скобку в четвертую степень, используя треугольник Паскаля:

    Упростим выражение и получим биквадратное уравнение относительно t:

    Ответ: или

  • 7 .

    Это уравнение имеет такую структуру:

    Чтобы его решить, нужно в левой части уравнения выделить полный квадрат.

    Чтобы выделить полный квдарат, нужно прибавить или вычесть удовоенное произведение. Тогда мы получим квадрат суммы ли разности. Для удачной замены переменной это имеет определяющее значение.

    Начнем с нахождения удвоенного произведения. Именно оно будет ключиком для замены переменной. В нашем уравнении удвоенное произведение равно

    Теперь прикинем, что нам удобнее иметь — квадрат суммы или разности. Рассмотрим, для начала сумму выражений:

    Отлично! это выражении в точности равно удвоенному произведению. Тогда, чтобы в скобках получить квадрат суммы, нужно прибавить и вычесть удвоенное произведение:

    [/pmath]

    Введем замену:

    Получим квадратное уравнение:

    Ответ:


  • Рациональные уравнения

    Рациональное уравнение – это уравнение вида $f(x)=g(x)$, где $f(x)$ и $g(x)$ — рациональные выражения.

    Рациональные выражения — это целые и дробные выражения, соединённые между собой знаками арифметических действий: деления, умножения, сложения или вычитания, возведения в целую степень и знаками последовательности этих выражений.

    $<2>/+5x=7$ – рациональное уравнение

    $3x+√x=7$ — иррациональное уравнение (содержит корень)

    Если хотя бы в одной части рационального уравнения содержится дробь, то уравнение называется дробно рациональным.

    Чтобы решить дробно рациональное уравнение, необходимо:

    1. Найти значения переменной, при которых уравнение не имеет смысл (ОДЗ);
    2. Найти общий знаменатель дробей, входящих в уравнение;
    3. Умножить обе части уравнения на общий знаменатель;
    4. Решить получившееся целое уравнение;
    5. Исключить из его корней те, которые обращают в ноль общий знаменатель.

    Решить уравнение: $4x+1-<3>/=0$

    1. находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

    2. находим общий знаменатель дробей и умножаем на него обе части уравнения

    3. решаем полученное уравнение

    Решим вторым устным способом, т.к. $а+с=b$

    4. исключаем те корни, при которых общий знаменатель равен нулю

    В первом пункте получилось, что при $x = 0$ уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

    При решении уравнения с двумя дробями, можно использовать основное свойство пропорции.

    Находим значения переменной, при которых уравнение не имеет смысл (ОДЗ)

    Воспользуемся основным свойством пропорции

    Раскроем скобки и соберем все слагаемые в левой стороне

    Решим данное квадратное уравнение первым устным способом, т.к. $a+b+c=0$

    В первом пункте получилось, что при x = 0 уравнение не имеет смысл, среди корней уравнения нуля нет, значит, оба корня нам подходят.

    Материал для подготовки к заданию номер 12 из ЕГЭ по профильной математике

    Все уравнения можно разделить на несколько групп:

    — Целые рациональные уравнения

    Каждая группа уравнений имеет свои особенности. На первый взгляд может показаться, что это очень большой материал и на его изучение понадобится много времени, однако на самом деле для подготовки в экзамену и выполнению задания номер 12 можно подготовиться достаточно быстро, используя верно подобранные материалы и разбирая примеры заданий

    Комбинируя все представленные в данных материалах способы и обладая базовыми знаниями математики, можно успешно решить большинство уравнений, которые могут встретиться учащимся во время обучения в средней и старшей школе а так же успешно решить задания на данную тему в контрольно-измерительных материалах

    СОВЕТ: после прохождения какой-либо темы в моём пособии, необходимо прорешать похожие уравнения (этой же группы) на одном из подобранных мной сайтов (смотрите ниже)

    Часть I. Способы решения уравнений. Метод “Замена переменной”

    Уравнение вида af²(x)+bf (x)+c=0 Такие уравнения (их иногда называют трехчленными) являются одними из наиболее распространенных. Скорее всего, самый известный и яркий пример этого типа уравнений — биквадратное уравнение ax⁴ + bx2 + c = 0 (здесь f (x) = x 2 ). Заменой переменной t = f (x) трехчленное уравнение сводится к квадратному относительно переменной t уравнению at² + bt + c = 0

    Решить уравнение (2x² – 3x + 1) = 22x² – 33x + 1.


    источники:

    http://examer.ru/ege_po_matematike/teoriya/racionalnye_uravneniya

    http://vc.ru/u/1019775-egor-borodin/330865-material-dlya-podgotovki-k-zadaniyu-nomer-12-iz-ege-po-profilnoy-matematike