Равенство формула уравнение в чем

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Вернем получившееся равенство в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Пример 4. Рассмотрим равенство

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Чтобы выразить число 3 мы поступили следующим образом:

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства позволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Отсюда .

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Отсюда .

Вернемся к четвертому примеру из предыдущей темы, где в равенстве требовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве вместо числа 15 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного делимого.

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства . Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве вместо числа 5 располагается переменная x .

В этом случае переменная x берет на себя роль неизвестного делителя.

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства . Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Компонентами умножения являются множимое, множитель и произведение

Компонентами деления являются делимое, делитель и частное

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Вычислим правую часть получившегося уравнения:

Мы получили новое уравнение . Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

При этом переменная x является не просто множителем, а неизвестным множителем

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Вычислим правую часть, получим значение переменной x

Для проверки найденный корень отправим в исходное уравнение и подставим вместо x

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Отсюда x равен 2

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Согласно порядку действий, в первую очередь выполняется умножение:

Подставим корень 2 во второе уравнение 28x = 56

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение

Вычтем из обеих частей уравнения число 10

Приведем подобные слагаемые в обеих частях:

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Отсюда .

Вернемся к исходному уравнению и подставим вместо x найденное значение 2

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 2

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Вычтем из обеих частей уравнения число 12

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 4x , а в правой части число 4

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Отсюда

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Пример 3. Решить уравнение

Раскроем скобки в левой части равенства:

Прибавим к обеим частям уравнения число 8

Приведем подобные слагаемые в обеих частях уравнения:

В левой части останется 2x , а в правой части число 9

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 4,5

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение мы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение . Корень этого уравнения, как и уравнения так же равен 4,5

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Получается верное равенство. Значит число 2 действительно является корнем уравнения .

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

В результате останется простейшее уравнение

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение . Корень этого уравнения, как и уравнения равен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение , мы умножили обе части на множитель 8 и получили следующую запись:

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения на множитель 8 желательно переписать следующим образом:

Пример 2. Решить уравнение

Умнóжим обе части уравнения на 15

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Перепишем то, что у нас осталось:

Раскроем скобки в правой части уравнения:

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Приведем подобные слагаемые в обеих частях, получим

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 5

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения равен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на 3

В левой части можно сократить две тройки, а правая часть будет равна 18

Останется простейшее уравнение . Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Отсюда

Вернемся к исходному уравнению и подставим вместо x найденное значение 9

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение

Умнóжим обе части уравнения на 6

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Сократим в обеих частях уравнениях то, что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки в обеих частях уравнения:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Приведем подобные слагаемые в обеих частях:

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Вернемся к исходному уравнению и подставим вместо x найденное значение 4

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение

Раскроем скобки в обеих частях уравнения там, где это можно:

Умнóжим обе части уравнения на 15

Раскроем скобки в обеих частях уравнения:

Сократим в обеих частях уравнения, то что можно сократить:

Перепишем то, что у нас осталось:

Раскроем скобки там, где это можно:

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Приведем подобные слагаемые в обеих частях уравнения:

Найдём значение x

В получившемся ответе можно выделить целую часть:

Вернемся к исходному уравнению и подставим вместо x найденное значение

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Значение переменной А равно . Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно , то уравнение будет решено верно

Видим, что значение переменной B , как и значение переменной A равно . Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Подставим найденное значение 2 вместо x в исходное уравнение:

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Выполним сокращение в каждом слагаемом:

Перепишем то, что у нас осталось:

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Этим методом мы тоже будем пользоваться часто.

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение . Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Приведем подобные слагаемые:

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения . Это есть произведение минус единицы и переменной x

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение на самом деле выглядит следующим образом:

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

или разделить обе части уравнения на −1 , что еще проще

Итак, корень уравнения равен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения на минус единицу:

После раскрытия скобок в левой части образуется выражение , а правая часть будет равна 10

Корень этого уравнения, как и уравнения равен 5

Значит уравнения и равносильны.

Пример 2. Решить уравнение

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение . Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения на −1 можно записать подробно следующим образом:

либо можно просто поменять знаки всех компонентов:

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения на −1 , мы получили уравнение . Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые:

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение . Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Приведем подобные слагаемые в левой части:

Прибавим к обеим частям 77 , и разделим обе части на 7

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении мы произведение 10 делили на известный сомножитель 2

Но если в уравнении обе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Уравнения вида мы решали выражая неизвестное слагаемое:

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении слагаемое 4 можно перенести в правую часть, изменив знак:

Далее разделить обе части на 2

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда .

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

В случае с уравнениями вида удобнее делить произведение на известный сомножитель. Сравним оба решения:

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Подставляем по-очереди найденные значения в исходное уравнение и убеждаемся, что при этих значениях левая часть равняется нулю:

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Пример 2. Решить уравнение

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение не имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть . Тогда уравнение примет следующий вид

Пусть

Пример 2. Решить уравнение

Раскроем скобки в левой части равенства:

Приведем подобные слагаемые:

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения определить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении левую и правую часть поменяем местами:

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения определить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

В получившемся уравнении v × t = s обе части разделим на v

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение примет следующий вид

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Затем разделить обе части на 50

Пример 2. Дано буквенное уравнение . Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Разделим обе части уравнения на b

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение . Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

В левой части вынесем за скобки множитель x

Разделим обе части на выражение a − b

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Пример 4. Дано буквенное уравнение . Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Умнóжим обе части на a

В левой части x вынесем за скобки

Разделим обе части на выражение (1 − a)

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение примет вид .
Отсюда .

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

Равенство, тождество, уравнение.

Знак равенства используется в математике очень часто, и смысл, который придается этому знаку, далеко не всегда один и тот же. Так, часто мы соединяем знаком равенства два числа, например:

1370 = 3 2 ·5·31 (1) ;

(2) ;

(3) ;

(4)

Каждая такая запись представляет собой некоторое высказывание, которое может быть истинным или ложным. Среди приведенных выше четырех высказываний такого рода второе, третье и четвертое являются истинными, а первое — ложным.

Для того чтобы убедиться в истинности (или ложности) такого высказывания, нередко бывает нужно произвести те или иные действия: сложение дробей, разложение на множители, возведение суммы двух чисел в квадрат и т. п. Однако смысл знака равенства во всех этих случаях один и тот же: истинность такого высказывания означает, что слева и справа от знака равенства стоит одно и то-же число (только, может быть, записанное по-разному).

Высказывания такого вида мы будем называть числовыми равенствами. Если некоторое числовое равенство представляет собой истинное высказывание, то для краткости говорят: «это — верное равенство». Так, равенство (2) — верное. Если же некоторое числовое равенство представляет собой ложное высказывание, то для краткости говорят: «это—неверное равенство». Так, (1) —неверное равенство.

В ином смысле применяется знак =, когда идет речь о равенстве функций. Напомним, что две функции f (х) и g (х) считаются равными (т. е. совпадающими), если, во-первых, области определения этих двух функций совпадают и, во-вторых, для любого числа х0, принадлежащего общей области определения этих функций, значения функций в точке х0 совпадают, т. е. верно числовое равенство f (х0) = g(x0). Равенство функций (х) и g(x) обычно выражают записью f(x) = g(x).

Например, мы пишем (х 2 + 1) 6 = х 3 + Зx 4 +. Зx 2 + 1, выражая этой записью тот факт, что слева и справа от знака = стоят равные функции (т. е. слева и справа стоит одна и та же функция, только, может быть, записанная по-разному).

В записи, выражающей равенство (т. е. совпадение) двух функций, вместо знака = часто используют знак, называемый знаком тождественного равенства.
Запись f(x)g(x) означает совпадение функций f(х) и g(x). Запись равенства двух функций (т. е. соотношение f(х) = gg(x)) называют также тождеством.

Подчеркнем еще раз: когда мы говорим, что f(x) = g(x) есть тождество, то это означает, что области определения функций f(х) и g(х) совпадают и при этом для любого х0, принадлежащего этой области определения, справедливо числовое равенство f(x0) = g(x0).

Примерами тождеств могут служить соотношения:

(x + 1) 2 = x 2 + 2x + 1,

sin 2 x= 1 — cos 2 x.

Иногда при рассмотрении тождеств приходится ограничивать области определения функций. Именно, будем говорить, что равенство f(x) = g(x) является тождеством на множестве М, если, во-первых, множество М содержится в области определения каждой из функций f(x), g (х) и, во-вторых, для любого числа х0, принадлежащего множеству М, справедливо числовое равенство f(x0) = g (x0) В этом случае пишут:

. Пример 1. Равенствоявляется тождеством на множестве неотрицательных чисел, т. е.x при х 0.

Заметим, что обе функции y=и y = х определены на множестве всех действительных чисел, но значения их совпадают лишь на множестве неотрицательных чисел. На множестве всех действительных чисел соотношениетождеством не является.

Пример 2. Рассмотрим равенство arcsin(sinx) =. Обе функции (стоящие в левой и правой частях равенства) определены на множестве всех действительных чисел. Однако написанное равенство является тождеством лишь на отрезке [0,], т. е. arcsin(sin x) =при 0x Разумеется, при написании тождеств вовсе не обязательно обозначать аргумент функций буквой х. Можно аргумент обозначить буквой z, буквой а или любым другим символом.

(z + 7) 2 = z 2 — 14z + 49,

(а — 1)(а 2 + а + 1) = а 3 — 1

являются тождествами на множестве всех действительных чисел (или даже на множестве всех комплексных чисел), Можно также рассматривать функции, зависящие от двух или большего числа аргументов, и писать тождества для таких функций. Конечно, и в этом случае надо указывать, при каких значениях аргументов написанное равенство является тождеством.

Например, равенство log2 a b = b log2 a является тождеством при а > 0 и любом действительном b; равенство

является тождеством при x+k, y+n, x + y+m, где k, n m —любые целые числа, и т. д.

Мы рассмотрели два случая использования знака = в алгебре: для записи числовых равенств и для записи тождеств (в последнем случае он иногда заменяется знаком ?. В совершенно ином смысле используется знак = при рассмотрении уравнений. Уравнение с одним неизвестным х в общем случае записывается в виде

где f(х) и g(x) — произвольные функции, Таким образом, по внешнему виду уравнение выглядит так же, как и тождество: две функции, соединенные знаком равенства. Но когда мы говорим, что соотношение (5) есть уравнение, то это показывает наше отношение к этому равенству. Именно, когда мы говорим, что (5) есть уравнение, то это означает, что равенство (5) рассматривается как неопределенное высказывание (при одних значениях х истинное, при других—ложное), и мы интересуемся нахождением корней этого уравнения, т. е. таких значений х, при подстановке которых это неопределенное высказывание становится истинным. Более подробно, корнем (или решением) уравнения называется всякое число, при подстановке которого вместо неизвестного в обе части уравнения получается справедливое (верное) числовое равенство. Но что значит «получается справедливое числовое равенство»? Это означает, во-первых, что при подстановке этого числа вместо неизвестного все действия, обозначенные в левой и правой частях уравнения, оказываются выполнимыми и, во-вторых, в результате выполнения этих действий в левой и правой частях получается одно и то же число. Иначе говоря, число а называется корнем уравнения (5), если, во-первых, это число принадлежит как области определения функции f(x), так и области определения функции g(x) и, во-вторых, значения этих функций в точке а совпадают, т. е.
f(a) = g

Итак, если сказано, что равенство (5) рассматривается как уравнение, то это означает, что мы интересуемся нахождением корней этого уравнения, т. е. тех значений, которые обращают соотношение (5) в верное числовое равенство.

Пример 3. Для уравнения (х — 1) 2 = х 2 — 2x + 1 любое действительное число b является корнем, так как равенство (b — 1) 2 = b 2 — 2b + 1 имеет место для любого действительного числа b.

Пример 4. Если рассматривать уравнение |х| = х на множестве всех действительных чисел, то всякое неотрицательное число является корнем этого уравнения (других корней нет).

Пример 5. Уравнение lgx = 1g( — х) не имеет решений, так как левая часть этого уравнения определена при положительных значениях х, а правая — при отрицательных, т. е. области определения левой и правой частей не имеют общих точек.

Пример 6. Уравнение cosx = 2 не имеет решений на множестве действительных чисел, так как |cosx0|1 для любого действительного числа х0.

Пример 7. Уравнение х 2 = -1 не имеет решений намножестве действительных чисел и имеет два решения, x = i и х = -i., на множестве комплексных чисел.

Если найдена некоторая совокупность значений х, каждое из которых является корнем уравнения f (x)=g(x), то это еще не значит, что мы решили уравнение.

Решить уравнение — значит найти все его решения (или доказать, что уравнение не имеет решений).

Пример 8. Равенствоможно рассматривать и как тождество, и как уравнение. Если мы относимся к этому равенству как к тождеству, то наиболее полной формулировкой будет следующая: равенствоявляется тождеством при x > 0. Если же мы относимся к этому равенству как к уравнению, то это означает, что мы рассматриваем задачу: решить уравнениет. е. ставим вопрос о том, каковы корни этого уравнения. Ответ будет таков: корнями уравненияявляются все неотрицательные числа и только они.

Пример 9. Бессмысленно ставить вопрос, является ли соотношение 0·x + 5 = 5 тождеством или уравнением. Мы можем сказать, что оно является тождеством на множестве всех действительных чисел. Но мы можем также рассматривать это соотношение как уравнение и тогда скажем, что корнями этого уравнения являются все действительные числа.

Замечание. Кроме рассмотренных выше случаев использования знака = в математике встречаются и другие. Так, выражение вида «рассмотрим функцию f(x) = x 3 — Зх 2 + 5x + 11» часто используется в качестве определения. В этом случае знак = имеет тот смысл, что всюду в проводимом рассуждении f (х) будет обозначать именно эту функцию.

Что такое равенство? Первый признак и принципы равенства

«Равенство» — это тема, которую ученики проходят еще в начальной школе. Сопутствует ей также ей «Неравенства». Эти два понятия тесно взаимосвязаны. Кроме того, с ними связывают такие термины, как уравнения, тождества. Итак, что такое равенство?

Понятие равенства

Под этим термином понимают высказывания, в записи которых есть знак «=». Равенства разделяются на верные и неверные. Если в записи вместо = стоит , тогда речь идет о неравенствах. Кстати, первый признак равенства говорит о том, что обе части выражения идентичны по своему результату или записи.

Кроме понятия равенства, в школе изучают также тему «Числовое равенство». Под этим высказыванием понимают два числовых выражения, которые стоят по обе стороны от знака =. К примеру, 2*5+7=17. Обе части записи равны между собой.

В числовых выражениях подобного типа могут использоваться скобки, влияющие на порядок действий. Итак, существует 4 правила, которые следует учесть при вычислении результатов числовых выражений.

  1. Если в записи нет скобок, тогда действия выполняются с высшей ступени: III→II→I. Если есть несколько действий одной категории, тогда они выполняются слева направо.
  2. Если в записи есть скобки, тогда действие выполняется в скобках, а затем с учетом ступеней. Возможно, в скобках будет несколько действий.
  3. Если выражение представлено в виде дроби, тогда вычислять нужно сначала числитель, потом знаменатель, затем числитель делится на знаменатель.
  4. Если в записи есть вложенные скобки, тогда вычисляется сначала выражение во внутренних скобках.

Итак, теперь понятно, что такое равенство. В дальнейшем будут рассмотрены понятия уравнения, тождества и способы их вычисления.

Свойства числовых равенств

Что такое равенство? Изучение этого понятия требует знания свойств числовых тождеств. Приведенные ниже текстовые формулы позволяют лучше изучить данную тему. Конечно, эти свойства больше подходят для изучения математики в старших классах.

1. Числовое равенство не будет нарушено, если в обеих его частях прибавить одно и то же число к существующему выражению.

А = В ↔ А + 5 = В + 5

2. Не будет нарушено уравнение, если обе его части умножить или разделить на одно и то же число или выражение, которые отличны от нуля.

Р = О ↔ Р ∙ 5 = О ∙ 5

Р = О ↔ Р : 5 = О : 5

3. Прибавив к обеим частям тождества одинаковую функцию, которая имеет смысл при любых допустимых значениях переменной, мы получим новое равенство, равносильное первоначальному.

F(X) = Ψ(X)F(X) + R(X) = Ψ(X) + R(X)

4. Любое слагаемое или выражение можно перенести по другую сторону знака равенства, при этом нужно поменять знаки на противоположные.

Х + 5 = У – 20Х = У – 20 – 5Х = У – 25

5. Умножив или разделив обе части уравнения на одну и ту же функцию, отличную от нуля и имеющую смысл для каждого значения Х из ОДЗ, мы получим новое уравнение, равносильное первоначальному.

F(X) = Ψ(X) F(X) ∙ R(X) = Ψ(X) ∙ R(X)

F(X) = Ψ(X) F(X) : G(X) = Ψ(X) : G(X)

Приведенные правила в явной степени указывают на принцип равенства, который существует при определенных условиях.

Понятие пропорции

В математике существует такое понятие, как равенство отношений. В этом случае подразумевается определение пропорции. Если разделить А на В, то результатом будет отношение числа А к числу В. Пропорцией называют равенство двух отношений:

Иногда пропорция записывается следующим образом: A : B = C : D. Отсюда вытекает основное свойство пропорции: A * D = D * C, где A и D – крайние члены пропорции, а В и С – средние.

Тождества

Тождеством называют равенство, которое будет верно при всех допустимых значениях тех переменных, которые входят в задание. Тождества могут быть представлены как буквенные или числовые равенства.

Тождественно равными называются выражения, содержащие в обеих частях равенства неизвестную переменную, которая способна приравнять две части одного целого.

Если проводить замены одного выражения другим, которое будет равно ему, тогда речь идет о тождественном преобразовании. В этом случае можно воспользоваться формулами сокращенного умножения, законами арифметики и прочими тождествами.

Чтобы сократить дробь, нужно провести тождественные преобразования. К примеру, дана дробь. Чтобы получить результат, следует воспользоваться формулами сокращенного умножения, разложением на множители, упрощением выражений и сокращением дробей.

При этом стоит учесть, что данное выражение будет тождественным тогда, когда знаменатель не будет равен 3.

5 способов доказать тождество

Чтобы доказать равенство тождественное, нужно провести преобразование выражений.

I способ

Необходимо провести равносильные преобразования в левой части. В результате получается правая часть, и можно говорить о том, что тождество доказано.

II способ

Все действия по преобразованию выражения происходят в правой части. Итогом проделанных манипуляций является левая часть. Если обе части идентичны, то тождество доказано.

III способ

«Трансформации» происходят в обеих частях выражения. Если в результате получатся две идентичные части, тождество доказано.

IV способ

Из левой части вычитается правая. В результате равносильных преобразований должен получиться нуль. Тогда можно говорить о тождественности выражения.

V способ

Из правой части вычитается левая. Все равносильные преобразования сводятся к тому, чтобы в ответе стоял нуль. Только в таком случае можно говорить о тождественности равенства.

Основные свойства тождеств

В математике зачастую используют свойства равенств, чтобы ускорить процесс вычисления. Благодаря основным алгебраическим тождествам процесс вычисления некоторых выражений займет считанные минуты вместо долгих часов.

  • Х + У = У + Х
  • Х + (У + С) = (Х + У) + С
  • Х + 0 = Х
  • Х + (-Х) = 0
  • Х ∙ (У + С) = Х∙У + Х∙С
  • Х ∙ (У – С) = Х∙У – Х∙С
  • (Х + У) ∙ (С + Е) = Х∙С + Х∙Е + У∙С + У∙Е
  • Х + (У + С) = Х + У + С
  • Х + (У – С) = Х + У – С
  • Х – (У + С) = Х – У – С
  • Х – (У – С) = Х – У + С
  • Х ∙ У = У ∙ Х
  • Х ∙ (У ∙ С) = (Х ∙ У) ∙ С
  • Х ∙ 1 = Х
  • Х ∙ 1/Х = 1, где Х ≠ 0

Формулы сокращенного умножения

По своей сути формулы сокращенного умножения являются равенствами. Они помогают решить множество задач в математике благодаря своей простоте и легкости в обращении.

  • (А + В) 2 = А 2 + 2∙А∙В + В 2 – квадрат суммы пары чисел;
  • (А – В) 2 = А 2 – 2∙А∙В + В 2 – квадрат разности пары чисел;
  • (С + В) ∙ (С – В) = С 2 – В 2 – разность квадратов;
  • (А + В) 3 = А 3 + 3∙А 2 ∙В + 3∙А∙В 2 + В 3 – куб суммы;
  • (А – В) 3 = А 3 – 3∙А 2 ∙В + 3∙А∙В 2 – В 3 – куб разности;
  • (Р + В) ∙ (Р 2 – Р∙В + В 2 ) = Р 3 + В 3 – сумма кубов;
  • (Р – В) ∙ (Р 2 + Р∙В + В 2 ) = Р 3 – В 3 – разность кубов.

Формулы сокращенного умножения зачастую применяются, если необходимо привести многочлен к привычному виду, упростив его всеми возможными способами. Представленные формулы доказываются просто: достаточно раскрыть скобки и привести подобные слагаемые.

Уравнения

После изучения вопроса, что такое равенство, можно приступать к следующему пункту: что такое уравнение. Под уравнением понимается равенство, в котором присутствуют неизвестные величины. Решением уравнения называют нахождение всех значений переменной, при которых обе части всего выражения будут равны. Также встречаются задания, в которых нахождение решений уравнения невозможно. В таком случае говорят, что корней нет.

Как правило, равенства с неизвестными в качестве решения выдают целые числа. Однако возможны случаи, когда корнем являются вектор, функция и другие объекты.

Уравнение является одним из важнейших понятий в математике. Большинство научных и практических задач не позволяют измерить или вычислить какую-либо величину. Поэтому необходимо составлять соотношение, которое удовлетворит все условия поставленной задачи. В процессе составления такого соотношения появляется уравнение или система уравнений.

Обычно решение равенства с неизвестным сводится к преобразованию сложного уравнения и сведению его к простым формам. Необходимо помнить, что преобразования нужно проводить относительно обеих частей, в противном случае на выходе получится неверный результат.

4 способа решить уравнение

Под решением уравнения понимают замену заданного равенства другим, которое равносильно первому. Подобная подмена известна как тождественное преобразование. Чтобы решить уравнение, необходимо воспользоваться одним из способов.

1. Одно выражение заменяется другим, которое в обязательном порядке будет тождественно первому. Пример: (3∙х+3) 2 =15∙х+10. Это выражение можно преобразовать в 9∙х 2 +18∙х+9=15∙х+10.

2. Перенесение членов равенства с неизвестным из одной стороны в другую. В таком случае необходимо правильно менять знаки. Малейшая ошибка сгубит всю проделанную работу. В качестве примера возьмем предыдущий «образец».

9∙х 2 + 12∙х + 4 = 15∙х + 10

9∙х 2 + 12∙х + 4 – 15∙х – 10 = 0

Дальше уравнение решается с помощью дискриминанта.

3. Перемножение обеих частей равенства на равное число или выражение, которые не равняются 0. Однако стоит напомнить, что если новое уравнение не будет равносильным равенству до преобразований, тогда количество корней может существенно измениться.

4. Возведение в квадрат обеих частей уравнения. Этот способ просто замечательный, особенно когда в равенстве есть иррациональные выражения, то есть квадратный корень и выражение под ним. Тут есть один нюанс: если возвести уравнение в четную степень, тогда могут появиться посторонние корни, которые исказят суть задания. И если неправильно извлечь корень, тогда смысл вопроса в задаче будет неясен. Пример: │7∙х│=35 → 1) 7∙х = 35 и 2) – 7∙х = 35 → уравнение будет решено верно.

Итак, в этой статье упоминаются такие термины, как то уравнения и тождества. Все они происходят от понятия «равенство». Благодаря различного рода равносильным выражениям решение некоторых задач в значительной мере облегчено.


источники:

http://viripit.ru/Pag5.htm

http://fb.ru/article/147167/chto-takoe-ravenstvo-pervyiy-priznak-i-printsipyi-ravenstva