Равнопеременное движение уравнение движения в векторной форме

Кинематические уравнения равнопеременного движения.

Равнопеременное движение – это движение, при котором скорость тела (материальной точки) за любые равные промежутки времени изменяется одинаково.

Ускорение тела при равнопеременном движении остаётся постоянным по модулю и по направлению (a = const).

Равнопеременное движение может быть равноускоренным или равнозамедленным.

Равноускоренное движение – это движение тела (материальной точки) с положительным ускорением, то есть при таком движении тело разгоняется с неизменным ускорением. В случае равноускоренного движения модуль скорости тела с течением времени возрастает, направление ускорения совпадает с направлением скорости движения.

Равнозамедленное движение – это движение тела (материальной точки) с отрицательным ускорением, то есть при таком движении тело равномерно замедляется. При равнозамедленном движении векторы скорости и ускорения противоположны, а модуль скорости с течением времени уменьшается.

В механике любое прямолинейное движение является ускоренным, поэтому замедленное движение отличается от ускоренного лишь знаком проекции вектора ускорения на выбранную ось системы координат.

Средняя скорость переменного движения определяется путём деления перемещения тела на время, в течение которого это перемещение было совершено. Единица измерения средней скорости – м/с.

Мгновенная скорость – это скорость тела (материальной точки) в данный момент времени или в данной точке траектории, то есть предел, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Вектор мгновенной скорости равнопеременного движения можно найти как первую производную от вектора перемещения по времени:

=

Проекция вектора скорости на ось ОХ:

это производная от координаты по времени (аналогично получают проекции вектора скорости на другие координатные оси).

Ускорение – это величина, которая определяет быстроту изменения скорости тела, то есть предел, к которому стремится изменение скорости при бесконечном уменьшении промежутка времени Δt:

Вектор ускорения равнопеременного движения можно найти как первую производную от вектора скорости по времени или как вторую производную от вектора перемещения по времени:

= ‘ = «

Учитывая, что 0 – скорость тела в начальный момент времени (начальная скорость), – скорость тела в данный момент времени (конечная скорость), t – промежуток времени, в течение которого произошло изменение скорости, формула ускорения будет следующей:

Отсюда формула скорости равнопеременного движения в любой момент времени:

= 0 + t

Если тело движется прямолинейно вдоль оси ОХ прямолинейной декартовой системы координат, совпадающей по направлению с траекторией тела, то проекция вектора скорости на эту ось определяется формулой:

Знак «-» (минус) перед проекцией вектора ускорения относится к равнозамедленному движению. Аналогично записываются уравнения проекций вектора скорости на другие оси координат.

Так как при равнопеременном движении ускорение является постоянным (a = const), то график ускорения – это прямая, параллельная оси 0t (оси времени, рис. 1.15).

Рис. 1.15. Зависимость ускорения тела от времени.

Зависимость скорости от времени – это линейная функция, графиком которой является прямая линия (рис. 1.16).

Рис. 1.16. Зависимость скорости тела от времени.

График зависимости скорости от времени (рис. 1.16) показывает, что

При этом перемещение численно равно площади фигуры 0abc (рис. 1.16).

Площадь трапеции равна произведению полусуммы длин её оснований на высоту. Основания трапеции 0abc численно равны:

Высота трапеции равна t. Таким образом, площадь трапеции, а значит, и проекция перемещения на ось ОХ равна:

В случае равнозамедленного движения проекция ускорения отрицательна и в формуле для проекции перемещения перед ускорением ставится знак «–» (минус).

Общая формула для определения проекции перемещения:

График зависимости скорости тела от времени при различных ускорениях показан на рис. 1.17. График зависимости перемещения от времени при v0 = 0 показан на рис. 1.18.

Рис. 1.17. Зависимость скорости тела от времени для различных значений ускорения.

Рис. 1.18. Зависимость перемещения тела от времени.

Скорость тела в данный момент времени t1 равна тангенсу угла наклона между касательной к графику и осью времени v = tg α, а перемещение определяют по формуле:

Если время движения тела неизвестно, можно использовать другую формулу перемещения, решая систему из двух уравнений:

Формула сокращённого умножения разности квадратовпоможет нам вывести формулу для проекции перемещения:

Так как координата тела в любой момент времени определяется суммой начальной координаты и проекции перемещения, тоуравнение движения тела будет выглядеть следующим образом:

Графиком координаты x(t) также является парабола (как и график перемещения), но вершина параболы в общем случае не совпадает с началом координат. При аx

|следующая лекция ==>
|Работа сил электростатического поля при перемещении заряда по любой замкнутой траектории равна нулю.

Дата добавления: 2016-01-29 ; просмотров: 7535 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Гурский И.П. Кинематика прямолинейного движения материальной точки //Квант

Гурский И.П. Кинематика прямолинейного движения материальной точки //Квант. — 1973. — № 11. — С. 57-60.

По специальной договоренности с редколлегией и редакцией журнала «Квант».

Равномерное прямолинейное движение

Равномерным прямолинейным движением называется движение, при котором материальная точка за любые равные промежутки времени совершает одинаковые перемещения. Уравнение такого движения в векторной форме записывается так:

где — перемещение, — скорость движения, t — время.

Движение материальной точки всегда рассматривается относительно какого-либо тела, которое в данной задаче принимается за неподвижное и называется телом отсчета. С ним связывается система координат; вместе с телом отсчета они образуют систему отсчета. Для прямолинейного движения достаточно выбрать одну ось координат, например ОХ. Тогда положение точки будет определяться его координатой х. Уравнение равномерного движения в скалярной форме будет выглядеть так:

где x0 — координата точки в момент времени t = 0.

Правильный выбор системы отсчета часто существенно облегчает решение задачи. Рассмотрим несколько конкретных задач.

Задача 1. Пассажир, сидящий у окна поезда, идущего со скоростью υ1 = 72 км/ч, видит встречный поезд, идущий со скоростью υ2 = 31,4 км/ч, в течение 10 секунд. Определить длину встречного поезда.

За тело отсчета примем пассажира, а ось координат направим по направлению скорости встречного поезда. Величины скоростей υ1 и υ2 заданы относительно некоторой неподвижной системы отсчета, например земли. По отношению же к пассажиру, движущемуся со скоростью υ1, встречный поезд имеет так называемую относительную скорость υ2отн, которая равна

или в скалярной форме

Тогда искомая длина встречного поезда l равна

Задача 2. Рыбак плывет на лодке вверх по реке; проезжая под мостом, он уронил в воду соломенную шляпу. Через полчаса он это обнаружил и, повернув назад, догнал шляпу в 5 км ниже моста. Какова скорость течения реки, если рыбак, двигаясь вверх и вниз по реке, греб одинаково?

Свяжем систему отсчета с водой в реке, то есть со шляпой. Рыбак удаляется от шляпы и приближается к ней с одной и той же скоростью, следовательно, он догонит ее через полчаса после того, как обнаружил потерю, или через час после падения шляпы в воду. За это время шляпа относительно земли проплыла 5 км. Значит, скорость течения реки равна 5 км/ч.

Равнопеременное прямолинейное движение

Если скорость материальной точки не постоянна, но в любые равные промежутки времени она изменяется на одну и ту же величину, то в этом случае говорят о равнопеременном движении. Движение называют равноускоренным, если скорость увеличивается, и равнозамедленным, если скорость уменьшается.

Для решения задач на эту тему достаточно знать уравнения для скорости и перемещения. В скалярной форме они записываются так:

Здесь υ0 — начальная скорость точки, х0 — начальная координата, а — ускорение, υ и х — соответственно скорость и координата точки в момент времени t. Величины υ0, a, υ и х будем считать положительными, когда их направление совпадает с положительным направлением выбранной оси координат ОХ, отрицательными — в противном случае.

Начинать решение задачи полезно с краткой записи ее условия, по возможности полностью переводя задачу на язык условных обозначений. При этом надо следить за тем, чтобы единицы измерения всех величин были даны в одной и той же системе единиц. Все расчеты лучше проводить в общем виде, то есть в буквенных обозначениях, а численные значения подставлять в окончательный результат.

Решим следующие задачи.

Задача 3. Два велосипедиста едут друг другу навстречу: один из них, имея скорость 5,4 км/ч, спускается с горы с ускорением 0,2 м/с 2 ; другой, имея скорость 18 км/ч, поднимается в гору с ускорением — 20 см/с 2 . Через сколько времени они встретятся?

Пусть начало координат совпадает с начальным положением первого велосипедиста, а положительное направление оси координат — с направлением его начальной скорости. Тогда краткая запись условия задачи будет выглядеть так:

υ01 = 5,4 км/ч = 1,5 м/с

Запишем уравнения движения для каждого велосипедиста:

(1)

(2)

причем а1 = а2 по условию. В момент встречи

(3)

Решая совместно уравнения (1) — (3), получим

На этом можно было бы закончить решение, но в данном случае следует убедиться в том, что полученный ответ имеет физический смысл. Для этого найдем скорость второго велосипедиста через 30 с после начала движения:

= –5 м/с + 0,2 м/с 2 • 30 с = 1 м/с.

Оказывается, что второй велосипедист к этому времени будет скатываться с горы, а не подниматься в гору. Очевидно, что данная задача составлена некорректно.

Задача 4. Аэростат поднимается с земли вертикально вверх с ускорением 2,45 м/с 2 . Через 8 секунд от начала движения из его гондолы выпадает предмет. Через сколько времени и с какой скоростью этот предмет упадет на землю? Сопротивлением воздуха пренебречь.

Так как сначала предмет движется вместе с аэростатом, то через t1 = 8 с он поднимется на некоторую высоту h1 и будет иметь скорость υ1 причем

и

Дальнейшее движение предмета можно описать по-разному.

Часто задачи такого типа решаются в два этапа. Сначала рассматривается замедленное движение предмета вверх до наибольшей высоты, затем — свободное падение на землю. Задача, однако, решается проще, если считать, что предмет одновременно участвует в двух независимых друг от друга движениях: он равномерно со скоростью υ1 поднимается вверх и свободно падает. Свяжем систему отсчета с землей, а ось координат направим вверх. Тогда уравнение движения предмета с высоты h1 до земли запишется так:

(t2 — время движения предмета). Подставляя в это уравнение выражения для h1 и υ1, получим

Задача 5. Тело брошено вертикально вверх с некоторой начальной скоростью. Когда оно достигло высшей точки подъема на высоте Н = 100 м от земли, из того же начального пункта и с той же начальной скоростью брошено второе тело. На какой высоте они встретятся? Какие они будут иметь скорости в момент встречи? С какой начальной скоростью были брошены тела? Сопротивлением воздуха пренебречь.

Рассмотрим сначала некоторые особенности движения тела, брошенного вертикально вверх. Это сложное движение является суммой двух простых — равномерного движения и свободного падения. Причем каждое движение происходит независимо от другого и от того, поднимается или опускается тело. Поэтому можно сказать, что время прохождения телом одного и того же участка пути вверх и вниз одно и то же и что скорости тела на некоторой высоте при движении вверх или вниз одинаковы по величине.

Покажем, например, что время подъема тела до максимальной высоты равно времени падения до начального положения и что конечная скорость по величине равна начальной скорости. Пусть начальная скорость тела равна υ0. Запишем уравнения для скорости и координаты (начало координат свяжем с точкой бросания и ось координат направим вверх):

В точке максимального подъема υ = 0, поэтому

Теперь тело начинает свободно падать. Обозначим время падения t’, а конечную скорость υ’ и запишем уравнения для свободного падения

Теперь вернемся к нашей конкретной задаче. Согласно сказанному выше, время подъема второго тела до высоты h (рис. 1), равное времени падения первого тела с высоты H — h, составляет половину времени свободного падения первого тела с высоты Н до земли, то есть

Скорости тел в момент встречи одинаковы по величине и равны

Начальная скорость .

В заключение рассмотрим задачу на построение графиков.

Задача 6. Дан график зависимости скорости движения тела от времени (рис. 2, а). Построить графики ускорения, перемещения и пути.

Прежде всего, посмотрим, как движется тело в различные моменты времени. Из графика скорости видно, что на первом этапе (от 0 до t1) тело движется равноускоренно; на втором (от t1 до t2) — равнозамедленно; на третьем (от t2 до t3) — равноускоренно, но в обратном направлении; на четвертом (от t3 до t4) — равнозамедленно; на пятом (от t4 до t5) — равноускоренно в первоначальном направлении и т. д. Графики зависимости ускорения, перемещения и пути от времени показаны на рисунках 2, б, в и г соответственно.

1. По двум параллельным путям в одном направлении идут два поезда: пассажирский — длиной 200 м со скоростью 72 км/ч и товарный — длиной 400 м со скоростью 45 км/ч. Сколько времени пассажирский поезд будет обгонять товарный?

2. Замыкающий колонны войск, растянувшейся на 2,5 км и идущей со скоростью 5 км/ч, послал мотоциклиста с извещением командиру, находящемуся во главе колонны. Командир принимал извещение и писал ответ, стоя на обочине дороги, в. течение трех минут. Определить среднюю скорость мотоциклиста, если он вернулся к замыкающему через 9 мин 27 с.

3. Два велосипедиста едут навстречу друг другу: один из них, имея скорость 7,2 км/ч, спускается с горы с ускорением 0,30 м/с 2 ; другой, имея скорость 36 км/ч, поднимается с ускорением —0,20 м/с 2 . Каково было расстояние между велосипедистами в начальный момент, если они встретились через 0,5 минуты? При какой наибольшей длине горы задача имеет решение?

4. С некоторой высоты падает тело. Через 2 с с той же высоты падает второе тело. Через сколько секунд после начала падения первого тела удвоится расстояние, разделяющее тела до начала падения второго тела? Сопротивлением воздуха пренебречь.

5. Вертолет поднимается вверх со скоростью 10 м/с. На высоте 100 м из него выбрасывается вверх предмет со скоростью 2 м/с относительно вертолета. Найти наибольшую высоту, которой достигнет предмет, а также через сколько времени и с какой скоростью предмет упадет на землю.

6. Тело бросают вверх со скоростью 20 м/с. Какова высота точки, которую тело проходит дважды с промежутком 3 с? Сопротивлением воздуха пренебречь.

7. Дан график зависимости ускорения от времени (рис. 3). Построить график зависимости величины перемещения от скорости.

Равнопеременное движение уравнение движения в векторной форме

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где — начальная скорость тела, — скорость тела в момент времени t.

В проекции на ось Ox:

где — проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox:

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где — изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

(3.9)

3.1.7. Формулы для расчета пути

(3.10)

(3.12)

(3.11)

(3.13)

(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), — путь, который прошло тело от начала движения до пересечения с осью времени, — время, прошедшее с момента пересечения оси времени до данного момента t, — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Если то

Тогда за 1-ую секунду тело проходит путь:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy.

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

где A, B и то есть постоянные величины.

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

то есть, скорость можно найти как интеграл по времени от ускорения.

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий — значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.


источники:

http://alsak.ru/item/251-7.html

http://phys-ege.sdamgia.ru/rus_sprav?ajax=1&id=160&print=true&svg=0