Равносильно ли уравнение 2 x 256 уравнения log2

Алгебра и начала математического анализа, 11 класс. Часть 2 из 2. Задачник (А. Г. Мордкович и др.) 2009

Страница № 166.

Учебник: Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (профильный уровень) / [А. Г. Мордкович и др. под ред. А. Г. Мордковича. — 3-е изд., стер. — М. : Мнемoзина, 2009. — 264 с.: ил.

OCR-версия страницы из учебника (текст страницы, которая находится выше):

Г Уравнения u неравенства. f Системы уравнений Г и неравенств

Pi I I I I I I I I I I I I I I I I I I I I I I

§ 26. Равносильность уравнений

26.1. Равносильно ли уравнение 2 х = 256 уравнению:

a) log2 х = 3; в) Зх 2 — 24х = 0;

б) х 2 — 9л; + 8 = 0;

26.2. Равносильно ли уравнение sin* = 0 уравнению:

а) cos х = 1; в) cos 2х = 1;

б) tgx = 0; г) у/х — 1 sinx = 0?

26.3. Придумайте три уравнения, равносильных уравнению:

а) у/2х — 1 = 3; в) lg х 2 = 4;

26.4. Укажите уравнение-следствие для уравнения:

а) у/7х 4- 3 = х; в) sin (л — х) • ctg х = -0,5;

б) lo g2 (х-1) — io g2 х = 0; г) sin ^ — х ■ tg х = 0.

26.5. Объясните, почему равносильны уравнения:

а) х 37 — 12х 2 + 1 = 0 и х 37 + = х 2

б) Ух 2 — 2х — 3 = 2 и х 2 — х -2 =332

26.6. Равносильны ли уравнения:

а) V2* 2 + 2 = -Jx 4 + 3 и 2х 2 + 2 = х 4 + 3;

б) %/sin 2 х + 1 = 1 и sin 2 * = О?

Учебник: Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 2. Задачник для учащихся общеобразовательных учреждений (профильный уровень) / [А. Г. Мордкович и др. под ред. А. Г. Мордковича. — 3-е изд., стер. — М. : Мнемoзина, 2009. — 264 с.: ил.

Равносильные уравнения. Равносильные преобразования уравнений

Равносильными называют уравнения, имеющие одни и те же корни. Равносильными считаются также уравнения, каждое из которых не имеет корней.

  • Уравнения \(x+2=7\) и \(2x+1=11\) равносильны, так как каждое из них имеет единственный корень – число \(5\).
  • Равносильны и уравнения \(x^2+1=0\) и \(2x^2+3=1\) — ни одно из них не имеет корней.
  • А вот уравнения \(x-6=0\) и \(x^2=36\) неравносильны, поскольку первое имеет только один корень \(6\), второе имеет два корня: \(6\) и \(-6\).

Равносильные преобразования уравнений — это такие преобразования, которые приводят нас к равносильным уравнениям.

Основные равносильные преобразования уравнений:

  1. Перенос слагаемых из одной части уравнения в другую со сменой знака слагаемого на противоположный.

Умножение или деление обеих частей уравнения на одно число или выражение не равное нулю.

Применение всех формул и свойств, которые есть в математике.

Возведение в нечетную степень обеих частей уравнения.

Извлечение корня нечетной степени из обеих частей уравнения.

Равносильные уравнения и уравнения следствия

Равносильные преобразования уравнений можно назвать «правильными» или «безошибочными» преобразованиями, потому что, сделав их, вы не нарушите математических законов. Почему тогда математики так их и не назвали: «правильные преобразования уравнений»? Потому что есть еще «полу-правильные» преобразования уравнений. В них уравнение при преобразовании приобретает дополнительные корни по ходу решения, но лишние корни мы при записи ответа не учитываем. Строгие математики их называют уравнениями следствиями:

Если каждый корень первого уравнения является корнем второго уравнения, но при этом у второго также есть корни не подходящие первому, то второе уравнение является следствием второго.

Пример (ОГЭ). Решите уравнение \(x^2-2x+\sqrt<2-x>=\sqrt<2-x>+3\)

Перенесем оба слагаемых из правой части в левую.

Взаимно уничтожим подобные слагаемые. Это и есть «полу-правильное преобразование», так как после него у уравнения становится два корня вместо изначального одного.

Это уравнение следствие из предыдущего. Найдем корни уравнения по теореме Виета .

Сверяем корни с ОДЗ и исключаем неподходящие.

\(↑\) не подходит под ОДЗ

Запишем ответ.

Переходить к уравнению следствию не запрещено, но при работе с ними нужно быть осторожным и не забывать про ОДЗ .

Пример. В каких пунктах применялись равносильные преобразования, а в каких был переход к уравнению следствию? Укажите какие виды равносильных преобразований применялись.

Решение:

В пункте a) применялось равносильное преобразование 1.

В пункте b) перешли к уравнению следствию, так как \(\sqrt\) «ушло», то ОДЗ расширилось;

В пункте с) тоже перешли к уравнению следствию, из-за того что умножили на знаменатель;

В пункте d) применялось равносильное преобразование: «Извлечения корня нечетной степени из обеих частей уравнения»;

В пункте e) умножили обе части уравнения на \(2\) т.е. равносильно преобразовали;

В пункте f) перешли от вида \(a^=a^\) к виду \(f(x) =g(x)\), что тоже является равносильным преобразованием.

Равносильность уравнений

Презентация к уроку по теме «Равносильность уравнений»

Просмотр содержимого документа
«Равносильность уравнений»

Определение 1. Два уравнения с одной переменной

Иными словами, два уравнения называют равносильными , если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например , уравнения х 2 — 4 = 0 и (х + 2)(2 x — 4) = 0 равносильны, оба они имеют по два корня: 2 и -2. Равносильны и уравнения х 2 +1=0и √ x =-3, поскольку оба они не имеют корней.

Определение 2. Если каждый корень уравнения

является в то же время корнем уравнения

то уравнение (2) называют следствием уравнения (1).

Например , уравнение х — 2 = 3 имеет корень х = 5, а уравнение — 2) 2 = 9 имеет два корня: х 1 = 5, х 2 = -1. Корень уравнения х — 2 = 3 является одним из корней уравнения (х — 2) 2 = 9. Значит, уравнение (х — 2) 2 = 9 — следствие уравнения х — 2 = 3.

Достаточно очевидным является следующее утверждение.

Два уравнения равносильны тогда и только тогда, когда каждое из них является следствием другого .

В итоге можно сказать, что решение уравнения, как правило, осуществляется в три этапа.

Первый этаптехнический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3) → (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этапанализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этаппроверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

0, a ≠1) равносильно уравнению f ( x ) = g (х). » width=»640″

Теоремы о равносильности уравнений

  • «Спокойные теоремы» гарантируют равносильность преобразований без каких-либо дополнительных условий, их использование не причиняет решающему никаких неприятностей.

Теорема 1 . Е сли какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение а f ( x ) = а g ( x ) (где а 0, a ≠1) равносильно уравнению f ( x ) = g (х).

Прежде чем формулировать теоремы 4—6, напомним еще об одном понятии, связанном с уравнениями.

Определение 3. Областью определения уравнения f (х) = g (х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

0 и a ≠1, X — решение системы неравенств f (х) О, g (х) 0 Тогда уравнение log a f ( x ) = log a g ( x ) равносильно на множестве X уравнению f ( x ) = g (х) » width=»640″

« Беспокойные теоремы » работают лишь при определенных условиях, а значит, могут доставить некоторые неприятности при решении уравнений.

Теорема 4. Если обе части уравнения f ( x ) = g (х) умножить на одно и то же выражение h (х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f ( x ) = g (х)

б) нигде в этой области не обращается в 0, то получится уравнение

Следствием теоремы 4 является еще одно «спокойное» утверждение: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5 . Если обе части уравнения f ( x ) = g (х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение ( f ( x )) n =( g ( x )) n равносильное данному в его ОДЗ.

Теорема 6. Пусть а0 и a ≠1, X — решение системы неравенств

Преобразование данного уравнения в уравнение – следствие. Проверка корней.

Если в процессе решения уравнения применяем теоремы 4-6, не проверив выполнения ограничительных условий, то получим уравнение-следствие.

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень проверка!

Потенцируем 2х – 4 = 3х – 5; х = 1, но при этом значении уравнение не имеет смысла ⇒ искать ОДЗ или проверка.

(2) (3) — (4) — . и находят корни последнего (самого простого) уравнения указанной цепочки. Последовательно получаем: 100(2х + 5) = 1296 – 216х + 9х ² 9х ² — 416х + 796 = 0 х ₁ = 2; х₂ = 398/9 Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными. Третий этап — проверка. Подставим поочередно каждое из найденных значений переменной в исходное уравнение. х₂ = 398/9 — посторонний корень. Ответ: х = 2 » width=»640″

Решение. Первый этаптехнический. На этом этапе, как мы отмечали выше, осуществляют преобразования заданного уравнения по схеме (1) — (2) (3) — (4) — . и находят корни последнего (самого простого) уравнения указанной цепочки.

100(2х + 5) = 1296 – 216х + 9х ²

9х ² — 416х + 796 = 0

Второй этапанализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этаппроверка. Подставим поочередно каждое из найденных значений переменной в исходное уравнение.

х₂ = 398/9 — посторонний корень.

Решение. Первый этап . Воспользуемся правилом «сумма логарифмов равна логарифму произведения». Оно позволяет заменить выражение ln (х + 4) + ln (2х + 3) выражением

ln + 4)(2х + 3). Тогда заданное уравнение можно переписать в виде:

Второй этап . В процессе решения произошло расширение ОДЗ уравнения, значит, обязательна проверка.

Третий этап . Поскольку, кроме расширения ОДЗ уравнения, никаких других неравносильных преобразований в процессе решения уравнения не было, проверку можно выполнить по ОДЗ исходного уравнения. Она задается системой неравенств

Значение х = -1 удовлетворяет этой системе неравенств, а значение х = -5,5 не удовлетворяет уже первому неравенству, это посторонний корень.

О потере корней

Укажем две причины потери корней при решении уравнений:

1. Деление обеих частей уравнения на одно и то же выражение h (х) (кроме тех случаев, когда точно известно, что всюду в области определения уравнения выполняется условие h (х) ≠ 0);

2. Сужение ОДЗ в процессе решения уравнения.

С первой причиной бороться нетрудно: приучайте себя переходить от уравнения f ) h (х) = g ) h <х) к уравнению h ( x )( f ( x ) – g ( x ))=0 ( а не к уравнению f ( x )= g ( x ) ). Может быть, даже есть смысл вообще запретить себе деление обеих частей уравнения на одно и то же выражение, содержащее переменную.

Со второй причиной бороться сложнее. Рассмотрим, например, уравнение lg х 2 = 4 и решим его двумя способами.

Первый способ . Воспользовавшись определением логарифма, находим:

Обратите внимание: при втором способе произошла потеря корня — «потерялся» корень х = -100. Причина в том, что вместо правильной формулы lg х 2 = 2 lg l х l мы воспользовались непра вильной формулой

lg х 2 = 2 lg х, сужающей область определения выражения, из нее «выпал» открытый луч (-∞; 0), где как раз и находится «потерявшийся» при втором способе решения корень уравнения.

Вывод: применяя при решении уравнения какую-либо формулу (особенно тригонометрическую), следите за тем, чтобы области допустимых значений переменной для правой и левой частей


источники:

http://cos-cos.ru/math/175/

http://multiurok.ru/files/ravnosil-nost-uravnienii.html