Равносильные уравнения 11 класс никольский

«Равносильность уравнений» в 11 классе
план-конспект урока по алгебре (11 класс) по теме

Урок по алгебре и началам анализа в 11 классе по теме » Равносильность уравнений»..

Скачать:

ВложениеРазмер
План-конспект урока по алгебре и началам анализа в 11 классе по теме: «Равносильность уравнений»628 КБ

Предварительный просмотр:

Урок по алгебре и началам анализа в 11 классе

Тема: «Равносильность уравнений»

Тип уроков: комбинированные уроки изучения нового материала, обобщения и систематизации знаний.

  • обобщить и систематизировать знания учащихся по наиболее важным вопросам, связанным с преобразованиями и решением уравнений с одной переменной.
  • развитие мышления учащихся; развитие познавательного интереса и умений учебно-познавательной деятельности.
  • воспитание организованности, самоконтроля и взаимоконтроля.

Организационные формы общения: индивидуальная, групповая.

Оборудование: модуль «Решение иррациональных уравнений».

I Организационный этап — 2 мин.

II Актуализация опорных знаний — 4 мин.

III Цели урока — 2 мин.

IV Изучение теоретического материала и способов деятельности — 20 мин.

V Закрепление учебного материала — 12 мин.

V Закрепление учебного материала — 25 мин.

VI Самостоятельная работа — 10 мин.

VII Домашнее задание — 3 мин.

VIII Выводы по уроку — 2 мин.

I Организационный этап

II Актуализация опорных знаний

Краткое обсуждение с учащимися тех теоретических знаний, которыми они обладают и пользуются при решении уравнений.

Допустим, нам необходимо решить уравнение

Преобразуем данное уравнение, выстраивая цепочку уравнений и стараясь получить уравнение вида а х = b , т.е. линейное уравнение

6х — 15 = 2х + 5, 6х — 2х = 5 + 15, 4х = 20.

Откуда получаем, что 5 — корень уравнения. Причём, как последнего уравнения, так и любого из уравнений данной цепочки, так как они являются равносильными уравнениями. По сути, решением уравнения и является выстраивание подобных цепочек уравнений.

Однако при преобразовании уравнений (и неравенств в том числе) далеко не всегда легко получить им равносильные уравнения. И как быть тогда?

Изучением этих крайне важных вопросов нам и предстоит заняться.

Мы вернёмся к целому ряду понятий, связанных с решением уравнений, с которыми вы неплохо знакомы, и посмотрим на них как бы несколько иначе, глубже, обобщим и дополним рядом важных и принципиальных положений.

IV Изучение теоретического материала и способов деятельности

1) Определение. Два уравнения с одной переменной f(х) = g(х) и h(х) = р(х) называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Например, уравнения — 4 = 0 и ( х + 2)(2 Х — 4 ) = 0 равносильны; равносильны и уравнения х 2 + 1 = 0 и = — 2 — они не имеют корней.

2) Определение . Если каждый корень уравнения f(х) = g(х) (1)

является в то же время корнем уравнения h(х) = р(х) (2),

то уравнение (2) называется следствием уравнения (1).

Например, уравнение х — 2 = 3 имеет корень 5 , уравнение — 25 = 0 имеет корни ± 5 . Так как корень уравнения х — 2 = 3 является корнем уравнения х 2 — 25 = 0 , то уравнение х 2 — 25 = 0 является следствием,, уравнения х — 2 = 3.

Следовательно, два уравнения называют равносильными тогда и только тогда, когда каждое из них является следствием другого.

3) Если в ходе преобразований, при переходе от одного из уравнений к уравнению-следствию, мы неуверенны в равносильности выполняемого перехода, то у последнего уравнения могут появиться посторонние корни в отношении исходного уравнения. Поэтому все полученные корни уравнения- следствия необходимо проверить, подставляя их в исходное уравнение. Тем самым, проверка найденных корней уравнения является не проверкой верности выполненных технических преобразований, а неотъемлемой частью, этапом решения уравнения.

4) Итак, мы выяснили, что в процессе решения уравнений (а ещё более при решении неравенств) на каждом этапе преобразований крайне важно знать, равносильный ли переход мы совершаем. Сформулируем и обсудим ряд важных для нас положений.

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному уравнению.

Теорема 2. Если обе части уравнения возвести в одну и ту же нечётную степень, то получится уравнение, равносильное данному уравнению.

Теорема 3 . Показательное уравнение (где > 1, 1 ) равносильно уравнению f(х) = g(х).

Определение . Областью определения уравнения f(х) = g(х) или ОДЗ переменной уравнения называется множество тех значений х , при которых одновременно имеют смысл обе части уравнения f(х) = g(х).

Теорема 4 . Если обе части уравнения f(х) = g(х) умножить на одно и то же выражение h(х), которое имеет смысл всюду в области определения (ОДЗ) уравнения f(х) = g(х) и при этом нигде в этой области h(х) 0 , то уравнения f(х) = g(х) и h(х)∙ f(х) = h(х) g(х) равносильны.

То есть, мы можем обе части уравнения умножать или делить на одно и то же отличное от нуля число, не нарушая при этом равносильности уравнений.

Теорема 5. Если обе части уравнения f(х) = g(х) неотрицательны на ОДЗ уравнения, то после возведения обеих его частей в одну и ту же степень n получится уравнение g n (x), равносильное исходному уравнению.

Теорема 6. Если f(х)>0, = g(х)>0 , то уравнение log α 2 f(x) = log α g(x) , где а>0, , равносильно уравнению f(х) = g(х).

5) Рассмотрим применение теоретических положений на практике. Пусть нам дано уравнение х — 1 = 3 , корень которого равен 4 .

а) Умножив обе части уравнения на выражение х — 2 , получим уравнение (х — 1 )(х — 2) = 3(х — 2). Решим полученное уравнение

х 2 — Зх + 2 = Зх — 6, х 2 — 6х + 8 = 0, x 1 = 2, х 2 = 4.

То есть, уравнение-следствие имеет два корня 2 и 4 , причём, 2 -посторонний корень для исходного уравнения. Каким образом у исходного уравнения появился посторонний корень? — Если бы мы вначале преобразовали исходное уравнение к виду х — 4 = 0 . За тем домножили обе части уравнения на х — 2 . То получили бы уравнение (х — 4)(х — 2) = 0 , которое равносильно совокупности уравнении . Тогда понятно, что уравнение х — 2 = 0 , по отношению к исходному уравнению х — 4 = 0 , является посторонним уравнением, отсюда и появление постороннего корня. Фактически мы умножили обе части исходного уравнения на выражение х — 2 , допуская при этом его равенство нулю, что невозможно по теореме 4 .

б) Возведём в квадрат обе части уравнения х — 1 = 3 . Получим уравнение-следствие (х-1) 2 = 9 . Откуда х 2 — 2х — 8 = 0, х 1 = — 2, х 2 = 4 . Вновь у уравнения-следствия появляется посторонний корень по отношению к исходному уравнению. Преобразовав уравнение (х-1) 2 = 9 к виду (х-4)(х+ 2)=0 , получаем постороннее уравнение х + 2 = 0 и посторонний корень -2 . Нарушено условие теоремы 5: возводя в квадрат, мы «забыли», что при возведении в квадрат должно выполняться условие х — 1 >0 .

в) Рассмотрим уравнение ln (2х — 4) = 1n(3х — 5). Потенцируя, получим уравнение 2х — 4 = Зх — 5. Откуда х = 1 . Проверкой убеждаемся, что 1 является посторонним корнем для исходного уравнения. В данном случае произошло не появление постороннего уравнения, а расширение ОДЗ исходного уравнения. У исходного уравнения ОДЗ: (2; + ), у полученного уравнения ОДЗ — вся числовая прямая. Тем самым не нарушены требования теоремы 6.

6) Выводы. Исходное уравнение преобразуется в процессе решения в уравнение-следствие, значит, необходимо обязательное выполнение проверки всех найденных корней, если: расширилась ОДЗ уравнения; возводились в одну и ту же чётную степень обе части уравнения; выполнялось умножение обеих частей уравнения на одно и тоже выражение с переменной.

V Закрепление учебного материала

1) № 1663; № 1665(а, в); № 1666 (а, б).

2) Переходя к решению уравнений, мы будем стараться учесть следующие два момента. С одной стороны наши решения уравнений должны содержать необходимое теоретическое обоснование нашей деятельности. С другой стороны мы будем учитывать, что в дальнейшем, при решении неравенств, в большинстве случаев от нас потребуется обеспечение равносильности переходов в преобразованиях, и поэтому уже на данном этапе — при решении уравнений, мы будем отрабатывать именно эти навыки, дабы обеспечить преемственность способов деятельности.

Пусть на дано уравнение g(x) Возведя в квадрат обе части уравнения, получим уравнение f(х) = g 2 (х) которое можно записать так:

( -g(x)) ( +g(x))=0

Откуда получаем совокупность уравнений: .

Имеем постороннее уравнение, и могут появиться посторонние корни. Следовательно, необходима проверка корней. Если мы захотим выполнить равносильный переход и обойтись без проверки, то исходное уравнение

равносильно смешанной системе:

3) Решим уравнения (двумя способами):

а) Первый способ. Решение. ОДЗ уравнения: х > — 11 . После возведения обеих частей уравнения в квадрат, получим уравнение-следствие х 2 -Зх-10 = 0 с корнями — 2 и 5 . Оба корня принадлежат ОДЗ уравнения, но это не меняет сути дела и мы вынуждены выполнить проверку корней.

Проверка. Подставив x 1 = — 2 , получим — неверное равенство, — 2 — посторонний корень.

Подставив х 2 = 5 , получим или 4 = 4 — верное равенство, 5 корень исходного уравнения.

а) Второй способ . Решение. Исходное уравнение равносильно системе

или решение системы и исходного

уравнения х 2 = 5.

б) Первый способ . Решение. ОДЗ уравнения: . Возведя обе части

уравнения в квадрат и приведя подобные слагаемые, получим уравнение х 2 — х = 0 . Откуда x 1 = 0, х 2 = 1 . Опять оба корня принадлежат ОДЗ уравнения, но будут ли они корнями исходного уравнения ничего сказать нельзя.

Проверка . Подставив x 1 = 0 , получим — верное равенство, 0 — корень исходного уравнения.

Подставив х 2 = 1 , получим — верное равенство, 1 — корень исходного уравнения.

б) Второй способ. Решение. Исходное уравнение равносильно системе

или . Откуда решение системы и исходного уравнения 0 и 1 .

в) Первый способ. Решение. ОДЗ уравнения: -1 . Возведя обе части уравнения в квадрат и приведя подобные слагаемые, получим уравнение . Откуда x 1 = 0, х 2 = . Оба корня принадлежат ОДЗ

уравнения. Выполним проверку.

Проверка . Подставив x 1 = 0 , получим — неверное равенство, 0 -посторонний корень.

Подставив х 2 = , получим — неверное равенство, -посторонний корень.

Оба корня принадлежат ОДЗ переменной уравнения, но при этом являются посторонними корнями. Ответ: корней нет.

в) Второй способ . Решение. Исходное уравнение равносильно системе или . Система решений не имеет, значит, и уравнение тоже решений не имеет.

Ответ: корней нет.

г) Первый способ . Решение. ОДЗ уравнения задаётся решением системы , или которая решений не имеет. Значит, ОДЗ уравнения — пустое множество, уравнение решений не имеет.

Ответ: корней нет.

г) Второй способ . Решение. Исходное уравнение равносильно системе или Система решений не имеет, значит, и исходное уравнение тоже решений не имеет.

Ответ: корней нет .

Решение. Произведение двух сомножителей равно нулю, если хотя бы один из сомножителей равен нулю, а второй сомножитель при этом имеет смысл.

а) х 2 — 9 = 0, х = ± 3.

Проверим, имеет ли смысл при этих значениях второй сомножитель.

При x 1 =-3, — имеет смысл, поэтому — 3 — корень уравнения; при х 2 = 3, — не имеет смысла, 3 не является корнем уравнения.

Уравнение равносильно системе или

Решением системы является число 1 . Так как х 2 — 9 имеет смысл при всех значениях переменной, то 1 является и корнем исходного уравнения.

5) Выводы. При решении иррациональных уравнений — возведении обеих частей уравнения в чётную степень, принадлежность полученных корней ОДЗ уравнения не позволяет сделать вывод, о том являются ли эти корни посторонними или нет. Поэтому выполнение проверки корней обязательно и это этап решения уравнения. Если корень не принадлежит ОДЗ то он, конечно, посторонний корень уравнения. В то же время, записывая систему равносильную уравнению, мы не нарушаем логики решения уравнения: ведь уравнение с пустой ОДЗ равносильно системе, не имеющей решений.

VI Самостоятельная работа

Решить уравнение двумя способами.

I вариант II вариант

VII Домашнее задание

§ 55 по учебнику; № 1673 по задачнику (решить двумя способами).

Конспект урока Равносильные преобразования уравнений 11 класс

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

11 класс по учебнику Алгебра и начала математического анализа авторы С.М.Никольский, М.К.Потапов, Н.Н. Решетников, А.В.Шевкин.

Тема урока: «Равносильные преобразования уравнений»

Тип урока: урок изучения нового материала

— формировать навыки равносильных переходов при решении уравнений;

— создавать условия для закрепления, повторения и углубления знаний.

ввести понятие равносильности уравнений, рассмотреть теоремы равносильности,

рассмотреть примеры равносильных переходов при решении уравнений;

закрепить умение применять основные теоремы равносильности при решении уравнений;

способствовать расширению знаний по изучаемой теме;

развитие логического мышления, познавательного интереса;

формирование математической речи, умения анализировать и сравнивать, делать выводы;

развитие навыков работы над проектами;

развитие приемов умственной деятельности, умения искать рациональный способ решения поставленной задачи;

повышение информационной культуры учащихся, интереса к предмету;

развитие потребности к самообразованию, умение вырабатывать собственную позицию (обосновывать свой решения, свой результат);

обучение эстетическому оформлению записи в тетради и на доске,

воспитание ответственности, самостоятельности, умения работать в коллективе;

обучение умению выступать перед аудиторией и выслушивать других;

повышать уровень учебной мотивации с использованием компьютерных технологий;

воспитание уважения друг к другу, коллективизма, взаимопомощи и ответственности за общую работу.

— умение ясно, точно, грамотно излагать свои мысли в устной и письменной речи; выстраивать аргументацию, приводить примеры и контр-примеры;

— креативность мышления, активность при решении математических задач;

— умение контролировать процесс и результат учебной деятельности;

— формирование первоначальных представлений об идеях и о методах математики;

— умение видеть математическую задачу в контексте проблемной ситуации;

-умение понимать и использовать математические средства наглядности для иллюстрации, интерпретации, аргументации;

— умение видеть различные стратегии решения задач;

умение определить значение идеи, методов и результатов алгебры для построения модели реальных процессов и ситуаций;

-усвоение учащимися решение неравенств с одной переменной, применяя теоремы о равносильности и используя решения ключевых задач.

-компьютер, экран, проектор для показа презентаций, раздаточный материал по теме урока, буклеты.

— индивидуальная, групповая, работа в парах.

— репродуктивный, дедуктивный, проблемно-поисковый.

Постановка цели и задач урока

Актуализация опорных знаний и их коррекция:

4) Изучение и закрепление материала:

5) Рефлексия. Подведение итогов урока

6) Домашнее задание

1) Организационный момент

Приветствие учащихся, проверка готовности к уроку, вступительное слово учителя, название темы, запись в тетрадях числа и темы урока (слайд 1)

2) Постановка цели и задач урока

Ребята, я предлагаю сегодня на уроке привести в систему знания и расширить представление о равносильности уравнений. Дьёрдь По́йа сказал: «Недостаточно лишь понять задачу, необходимо желание решить её. Где есть желание, найдется путь!» А я уверена, что у вас есть желание узнать новое, анализировать, делать выводы, найти свой путь решения и расширить знания, которые вам понадобятся для успешной сдачи ЕГЭ. Учитель вместе с учащимися формулирует цели и задачи урока. Здесь мы сначала дадим определение равносильных уравнений и приведем примеры. Дальше перечислим основные виды равносильных преобразований неравенств и докажем их. А в заключение выясним, почему при решении нуравнений нужно использовать только равносильные преобразования.

3)Актуализация опорных знаний и их коррекция

Какие преобразования вы использовали при решении уравнениу

4.Изучение и закрепление материала

1. Теоремы о равносильности уравнений

В основном при решении уравнений используются шесть Теорем равносильности. Первые три теоремы Безусловные. Они гарантируют равносильность преобразований без дополнительных условий. Их применение обычно происходит автоматически, без особых размышлений.

Теорема 1. Если любой член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному. Например, уравнения У]2х + \ — 2х + 5 = 0 и

V2x + 1 = 2х — 5 равносильны.

Теорема 2. Если обе части уравнения возвести в одну и ту же НеЧетную Степень, то получится уравнение, равносильное данному.

Например, уравнения л/Зх + 2 = х И 3x + 2 = xJ равносильны.

Теорема 3. Показательное уравнение Af^X’ = A^X’ (где A > О, А Ф 1) равносильно уравнению Fix) = G(X). Например, показательное уравнение з =32дг»5 равносильно иррациональному уравнению

Теорема 4. Если обе части уравнения Fix) = G(X) Умножить на одно и то же выражение H(X\ Которое:

А) имеет смысл в области определения уравнения Fix) = G(X);

Б) нигде в этой области не обращается в нуль,

То получится уравнение Fix)H(X) = G(X)H(X), Равносильное данному.

Теорема 5 . Если обе части уравнения Дх) = g(x) неотрицательны в области определения уравнения, то после возведения обеих его частей в одну и ту же четную степень П Получится уравнение, равносильное данному: F»(X) = G»(X).

Теорема 6. Если Fix) > 0 и G(X) > О, то логарифмическое уравнение loga F Loga g(x) (где A > 0, A Ф 1) равносильно уравнению

Преобразования приводящие к равносильному уравнению

1. Перенос членов уравнения из одной части в другую с противоположными знаками

2. Умножение или деление обеих частей уравнения на одно и то же число, отличное от нуля, или на выражение, имеющее постоянный знак при всех значениях неизвестного

3. Замена части уравнения тождественно равным ему выражением

4. Возведение уравнения в нечетную степень

5. Извлечения корня нечтной степени из обеих частей уравнения

6 Логарифмирование показательного уравнения

Работа по учебнику — № 7.4 (а,в) , 7.5 (а,в) , 7.6 (а,в) , (У доски решает один из учащихся)

5) Рефлексия. Подведение итогов урока

Понятно, что, кроме равносильных преобразований неравенств, есть и неравносильные, от которых, решая неравенства, нужно держаться подальше. А дело здесь в том, что, выполнив переход к неравносильному неравенству, можно получить решение, которое не является искомым решением исходного неравенства. В некоторых случаях можно получить и верный ответ, но это будет не более чем везение, а в общем случае, выполняя неравносильные преобразования неравенств, будет получен неверный ответ.

Вывод ясен: при решении неравенств нужно выполнять только равносильные преобразования.

При обобщении изученного материала обучающие отвечают на вопросы:

Что нового было на уроке?

Больше всего затруднений вызвало…

Для меня непонятно было…

6) Домашнее задание

По учебнику решить — № 7.4 (б,г) , 7.5 (б,г) , 7.6 (б,г))

11 класс по учебнику Алгебра и начала математического анализа авторы С.М.Никольский, М.К.Потапов, Н.Н. Решетников, А.В.Шевкин.

Равносильность уравнений на множествах

Данная презентация подготовлена для проведения урока алгебры и начала математического анализа в 11 классе по учебнику Никольского

Просмотр содержимого документа
«Равносильность уравнений на множествах»

Равносильность уравнений на множествах

Урок алгебры 11 класс

Учитель математики МБОУ

« Школа № 3г. Феодосии Республики Крым».

Равносильность уравнений на множествах

Цель: ввести понятия равносильных уравнений на множествах; перечислить основные преобразования, приводящие к уравнениям, равносильным на множествах; научиться решать уравнения путем замены его равносильным уравнением на множестве.

  • Пусть даны два уравнения f(x)=g(x) и p(x)=h(x) и пусть дано некоторое множество чисел М
  • Если любой корень первого уравнения, принадлежащий множеству М, является корнем второго уравнения, а любой корень второго уравнения, принадлежащий множеству М, является корнем первого уравнения, то такие уравнения называют равносильными на множестве М.
  • Если каждое из этих уравнений не имеет корней на множестве М , то такие уравнения называются равносильными на множестве М

  • Замену одного уравнения другим уравнением, равносильным ему на множестве М , называют равносильным переходом на множестве М от одного уравнения к другому.
  • Если два уравнения равносильны на множестве всех действительных чисел, то в таких случаях говорят, что уравнения равносильны, опуская слова на множестве действительных чисел.

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

  • Возведение уравнения f(x)=g(x) в четную степень, приводит к уравнению, равносильному исходному на том множестве М, на котором обе функции неотрицательны.
  • Умножение ( деление) обеих частей уравнения на функцию ψ, приводит к уравнению, равносильному исходному на том множестве М, на котором функция ψ определена и отлична от нуля.

0, a ≠1 приводит к уравнению f(x)=g(x), равносильному исходному на том множестве М, на котором положительны обе функции f и g . Приведение подобных членов ( h(x)-h(x)=0) приводит к уравнению, равносильному исходному на том множестве М, на котором определена функция h(x) , т,е. на области существования функции h(x). » width=»640″

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

  • Потенцирование логарифмического уравнения

приводит к уравнению f(x)=g(x), равносильному исходному на том множестве М, на котором положительны обе функции f и g .

  • Приведение подобных членов ( h(x)-h(x)=0) приводит к уравнению, равносильному исходному на том множестве М, на котором определена функция h(x) , т,е. на области существования функции h(x).

Основные преобразования уравнений, приводящие исходное уравнение к уравнению, равносильному ему на некотором множестве чисел

  • Применение некоторых формул

( логарифмических, тригонометрических и др.) приводит к уравнению, равносильному исходному на множестве М, на котором определены обе части применяемых формул.

Работаем в классе:

  • № 10.5 (а,в)
  • № 10.6 ( а, в)
  • № 10.7 ( а, в)
  • № 10.8 ( а,в)
  • № 10.11( а,в)


источники:

http://infourok.ru/konspekt-uroka-ravnosilnie-preobrazovaniya-uravneniy-klass-2493284.html

http://multiurok.ru/files/ravnosil-nost-uravnienii-na-mnozhiestvakh-1.html