Равносильные уравнения и неравенства определение

Равносильные неравенства, преобразование неравенств

В процессе решения неравенств зачастую происходит переход от заданного неравенства к неравенствам иного вида, имеющим то же решение, но определяемое проще. Иными словами, в результате преобразований заданное неравенство возможно заменить равносильным ему, облегчающим поиск решения. Данная статья посвящена способам равносильных преобразований. Сформулируем определение, рассмотрим основные виды преобразований.

Равносильные неравенства: определение, примеры

Равносильные неравенства – неравенства, имеющие одни и те же решения. В частном случае, неравенства, не имеющие решений, тоже называются равносильными.

Иными словами, если неравенства равносильны и имеют решения, то любое решение первого будет являться и решением второго. Ни одно из равносильных неравенств не имеет решений, не являющихся решениями других, равносильных ему неравенств.

Даны три равносильных неравенства: x > 2 , 2 · x : 2 > 2 и x > 3 — 1 . В самом деле, множества решений этих неравенств одинаковые, решение каждого их них – числовой промежуток ( 2 , + ∞ ) .

Неравенства х 6 ≥ — 2 и | х + 7 | 0 являются равносильными, поскольку оба не имеют решений.

Неравенства х > 3 и х ≥ 3 – не равносильные: х = 3 служит решением второго из этих равенств, но не служит решением первого.

Отметим, что указанное определение относится к неравенствам как с одной переменной, так и с двумя, тремя и более.

Равносильные преобразования неравенств

Возможно совершить некоторые действия с правой и левой частью неравенств, что даст возможность получать новые неравенства, имеющие решения, как и у исходного.

Равносильное преобразование неравенства – это замена исходного неравенства равносильным ему, т.е. таким, которое имеет то же множество решений. Сами действия-преобразования, приводящие к равносильному неравенству, тоже называют равносильными преобразованиями.

Равносильные преобразования дают возможность находить решения неравенств, преобразуя заданное неравенство в равносильное ему, но более простое и удобное для решения.

Рассмотрим основные виды равносильных преобразований: по сути без них не обходится решение ни одного неравенства. Отметим также, что равносильные преобразования неравенств очень похожи на равносильные преобразования уравнений. Схожи и принципы доказательства, только, конечно, в данном случае доказательства будут строиться на основе свойств числовых неравенств.

Итак, перечислим основные виды равносильных преобразований неравенств:

  1. Замена выражений в обоих частях неравенства тождественно равными выражениями на области допустимых значений (ОДЗ) переменных заданного неравенства есть равносильное преобразование неравенства.

Доказательство 1

Докажем утверждение. Пусть дано неравенство с одной переменной A ( x ) B ( x ) , где A ( x ) и B ( x ) — некие выражения с переменной x . Допустим, выражение C ( x ) является тождественно равным выражению A ( x ) , а выражение D ( x ) является тождественно равным B ( x ) на ОДЗ заданного неравенства. Найдем доказательство, что неравенство C ( x ) D ( x ) служит равносильным неравенству A ( x ) B ( x ) . С этой целью нам нужно продемонстрировать тот факт, что любое решение q заданного неравенства будет также решением неравенства C ( x ) D ( x ) , и наоборот: любое решение неравенства C ( x ) D ( x ) будет решением заданного неравенства A ( x ) B ( x ) .

Мы приняли, что q – решение неравенства A ( x ) B ( x ) , тогда верным будет числовое неравенство A ( q ) B ( q ) . Отсюда по разностному определению неравенства выводим, что A ( q ) − B ( q ) 0 .

Выражение A ( q ) − B ( q ) можно записать в виде A ( q ) + ( C ( q ) − C ( q ) ) − B ( q ) + ( D ( q ) − D ( q ) ) , что является тем же самым, ( A ( q ) − C ( q ) ) + C ( q ) − ( B ( q ) − D ( q ) ) − D ( q ) . Выражения A ( x ) и C ( x ) , B ( x ) и D ( x ) по условию тождественно равны, тогда: A ( q ) = C ( q ) и B ( q ) = D ( q ) , откуда A ( q ) − C ( q ) = 0 и B ( q ) − D ( q ) = 0 . Таким образом, ( A ( q ) − C ( q ) ) + C ( q ) − ( B ( q ) − D ( q ) ) − D ( q ) = 0 + C ( q ) − 0 − D ( q ) = C ( q ) − D ( q ) . Мы продемонстрировали, что значение выражения A ( q ) − B ( q ) равно значению выражения C ( q ) − D ( q ) , а поскольку A ( q ) − B ( q ) 0 , то и C ( q ) − D ( q ) 0 . Отсюда делаем вывод, что C ( q ) D ( q ) . И крайнее неравенство означает, что q – решение неравенства C ( x ) D ( x ) .

Таким же образом доказывается, что любое решение неравенства C ( x ) D ( x ) будет решением и неравенства A ( x ) B ( x ) , тем самым будет доказано и исходное утверждение.

Подобные преобразования не должны сужать ОДЗ заданного неравенства, тогда возможно совершать тождественные преобразования обеих сторон неравенства.

Покажем пример использования.

Рассмотрим неравенство x > 2 + 6 . В правой части возможно заменить сумму значением так, чтобы получилось равносильное неравенство x > 8 .

В неравенстве 3 · ( x + 1 ) − 2 · x + 11 ≤ 2 · y + 3 · ( y + 1 ) + x , в обоих его частях мы раскроем скобки и приведем подобные слагаемые, получив в итоге равносильное неравенство x + 14 ≤ 5 · y + 3 + x . Если детально разобрать наши действия, то мы заменили левую часть данного неравенства тождественно равным ей выражением x + 14 , а правую часть – тождественно равным ей выражением 5 · y + 3 + x на области допустимых значений переменных x и y заданного неравенства.

Еще раз особенно укажем, как важен учет ОДЗ (область допустимых значений) при совершении замены частей неравенства тождественными выражениями. В случае, когда ОДЗ нового неравенства будет отлична от ОДЗ исходного, неравенство не может считаться равносильным. Это крайне важный аспект, пренебрежение им приводит к неверным ответам при решении неравенств.

  1. Прибавление или вычитание из обеих частей неравенства одного и того же числа является равносильным преобразованием.

Доказательство 2

Приведем обоснование указанного утверждения. Допустим, задано неравенство A ( x ) B ( x ) и некое число c . Необходимо доказать, что заданному равносильно неравенство A ( x ) + c B ( x ) + c , которое мы получим, прибавив к обеим частям исходного неравенства число c . Продемонстрируем, что любое решение q заданного неравенства будет также и решением неравенства A ( x ) + c B ( x ) + c , и наоборот.

Мы приняли, что q – решение неравенства A ( x ) B ( x ) , тогда верно следующее: A ( q ) B ( q ) . Из свойств числовых неравенств следует, что к обеим частям верного числового неравенства можно прибавить любое число. Мы прибавим число c к обеим частям крайнего неравенства, получим A ( q ) + c B ( q ) + c , и это означает, что q служит решением неравенства A ( x ) + c B ( x ) + c .

Подобным же образом можно доказать, что любое решение неравенства A ( x ) + c B ( x ) + c будет являться и решением неравенства A ( x ) B ( x ) . Мы приняли, что q — решение неравенства A ( x ) + c B ( x ) + c , тогда A ( q ) + c B ( q ) + c , из обеих частей вычтем число c , получим A ( q ) B ( q ) , где q – решение неравенства A ( x ) B ( x ) .

Таким образом, неравенства A ( x ) B ( x ) и A ( x ) + c B ( x ) + c являются равносильными. Для наглядности укажем пример: x > 2 и x − 5 > 2 − 5 – равносильные неравенства, а, учитывая рассматриваемое выше утверждение, равносильным им является и неравенство x − 5 > − 3 .

  1. Свойство, которое мы доказали выше, возможно расширить: прибавив к левой и правой частям неравенства одно и то же выражение с учетом соблюдения ОДЗ данного неравенства, получим равносильное неравенство.

Пример 3

Исходному неравенству x 7 будет равносильно неравенство x + ( 12 · x − 1 ) 7 + ( 12 · x − 1 ) .

  1. Указанные выше равносильные преобразования дают как следствие еще одно действие, пожалуй, основное в процессе преобразования неравенств: перенос любого слагаемого из одной части неравенства в другую с противоположным знаком служит равносильным преобразованием.

Пример 4

Исходному неравенству 3 · x − 5 · y > 12 равносильно неравенство 3 · x > 12 + 5 · y .

  1. Равносильным преобразованием также является умножение или деление обеих частей неравенства на одно и то же положительное число. И, умножив (или разделив) обе части неравенства на одно и то же отрицательное число, поменяв при этом знак неравенства на противоположный ( на > , > на , ≤ на ≥ , а ≥ на ≤ ), получим равносильное неравенство.

Доказательство 3

Докажем сначала первую часть утверждения. Допустим, задано неравенство A ( x ) B ( x ) и c – некое положительное число. Приведем доказательство, что A ( x ) B ( x ) и A ( x ) · c B ( x ) · c — равносильные неравенства. Примем q как решение заданного неравенства, в таком случае верным будет числовое неравенство A ( q ) B ( q ) . Опираясь на свойства числовых неравенств, можем утверждать, что, умножив обе части верного числового неравенства на положительное число, получим верное числовое неравенство. Производим умножение на заданное число c , что дает нам A ( q ) · c B ( q ) · c . Это значит, что q — решение неравенства A ( x ) · c B ( x ) · c .

Теперь в обратную сторону: примем q как решение неравенства A ( x ) · c B ( x ) · c , в таком случае: A ( q ) · c B ( q ) · c . Разделим обе части этого числового неравенства на положительное число c (опираясь на свойства числовых неравенств), что даст нам верное числовое неравенство A ( q ) B ( q ) . Отсюда можно сделать вывод, что q — решение неравенства A ( x ) B ( x ) . Так, мы доказали, что при положительном числе c неравенства A ( x ) B ( x ) и A ( x ) · c B ( x ) · c являются равносильными.

Таким же образом приводится доказательство второй части утверждения. Здесь можно опереться на свойство умножения и деления числовых неравенств на отрицательное число при смене знака неравенства на противоположный.

Задано неравенство 2 · x ≤ 5 . Умножим его левую и правую части на положительное число 3 , что даст нам равносильное неравенство 6 · x ≤ 15 .

Задано неравенство — 2 3 · z 1 . Разделим левую и правую его части на отрицательное число — 2 3 , сменив знак неравенства. Получим z > — 1 1 2 — неравенство, равносильное заданному.

Расширим и это свойство неравенств:

  • умножив обе части заданного неравенства на одно и то же выражение, положительное при любых значениях переменных из ОДЗ заданного неравенства, не изменяющее ОДЗ, получим равносильное неравенство;
  • умножив обе части неравенства на одно и то же выражение, отрицательное при любых значениях переменных из ОДЗ заданного неравенства и не изменяющее ОДЗ, а также изменив знак равенства на противоположный, получим равносильное неравенство.

Пример 7

Задано неравенство x > 1 . Умножим его правую и левую части на выражение x 2 + 1 , положительное на всей ОДЗ, и получим равносильное неравенство x · ( x 2 + 1 ) > 1 · ( x 2 + 1 ) .

В целом, есть и другие равносильные преобразования, однако, они не так распространены и скорее имеют отношение к конкретному виду неравенств, например, к логарифмическим неравенствам. Познакомиться с ними можно подробнее в соответствующей теме.

Результат неравносильных преобразований неравенств

Сколь уж существуют равносильные преобразования, имеют место и неравносильные. Такие действия приводят к искажению заданного неравенства и дают в итоге решение, не являющееся истинным для исходного неравенства. Случается, что и при неравносильных преобразованиях получается верный ответ, но это не более чем случайность.

Собственно, вывод очевиден: решая неравенства, производить только равносильные преобразования.

Разберем примеры для лучшего понимания теории.

Пусть заданы неравенства x > − 2 и 1 x — 1 x + x > — 2 . Решением первого будет числовой промежуток ( − 2 , + ∞ ) , а второго – множество — 2 , 0 ∪ 0 , + ∞ .

Пусть необходимо решить второе неравенство.

Конечно, сазу приходит мысль об упрощении левой части приведением слагаемых, произведя замену просто на х, что даст переход к простому неравенству x > − 2 . Однако мы намеренно не учтем, что переход надо осуществить на ОДЗ переменной х ( х ≠ 0 ) , тогда предложенное выше преобразование даст нам неравносильное неравенство x > − 2 , а следовательно – неверный ответ ( − 2 , + ∞ ) взамен нужного — 2 , 0 ∪ 0 , + ∞ .

Посмотрим с другой стороны:

Мы решим неравенство x > − 2 . При этом нам захотелось заменить его якобы равносильным неравенством 1 x — 1 x + x > — 2 . Однако оно не является таковым: нуль не служит его решением, однако служит решением исходного неравенства. Суть в том, что выражение в его левой части тождественно равно не на всей области допустимых значений исходного неравенства: когда х = 0 , неравенство не равно x (при х = 0 оно не определено). Совершенные действия приведут нас к неверному ответу — 2 , 0 ∪ 0 , + ∞ взамен правильного ( − 2 , + ∞ ) .

Признак вероятного неравносильного преобразования – сужение области допустимых значений. Вновь обратимся к примеру выше: когда мы производили переход от неравенства x > − 2 к неравенству 1 x — 1 x + x > — 2 , произошло сужение ОДЗ со всего множества действительных чисел до множества без нуля. Такое положение вещей точно указывает на то, что полученное в итоге неравенство никак не будет равносильным исходному, т.е. такой переход не приведет к необходимому верному результату.

Неравносильные преобразования чаще всего происходят при невнимательном использовании свойств корней, логарифмов и модуля. Эти моменты будут детально рассмотрены в темах о решении неравенств соответствующих видов.

Уравнения и неравенства Равносильность уравнений и неравенств

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

«Актуальность создания школьных служб примирения/медиации в образовательных организациях»

Свидетельство и скидка на обучение каждому участнику

Уравнения и неравенства

1. Равносильность уравнений и неравенств

Определение. Уравнением с одной переменной называется равенство, содержащее эту переменную. Значение переменной, при подстановке которого в уравнение получается верное числовое равенство, называется корнем (или решением) уравнения. Решить уравнение — это значит найти все его корни или доказать, что их нет.

Определение. Областью определения уравнения (или ОДЗ — областью допустимых значений) f(x) —g(x) называется множество тех значений переменной х, при которых одновременно имеют смысл выpaжeнияf(x2 и g(x).

Определение. Два уравнения называются равносильными, если совпадают множества их решений. (В частности, уравнения, не имеющие корней равносильны.) При решении уравнений часто используют понятие равносильности уравнений на множестве: два уравнения называются равносильными на множестве А, если совпадают множества их корней, принадлежащих множеству А (или они оба не имеют корней на множестве А).

Определение. Уравнение равносильно совокупности уравнений (неравенств, систем) на множестве А, если множество всех корней уравнения, принадлежащих А, совпадает с множеством всех решений совокупности уравнений (неравенств, систем), принадлежащих множеству А.

В определении равносильности двух уравнений ничего не говорится об ОДЗ этих уравнений. Равносильные уравнения могут иметь различные области допустимых значений.

Например, уравнение x=1 равносильно уравнению 1, так как число 1 является единственным корнем каждого из уравнений. ОДЗ первого уравнения — множество всех действительных чисел, а ОДЗ второго уравнения — множество неотрицательных действительных чисел.

В процессе решения используют следующие правила преобразования уравнения в равносильное ему:

— если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному;

— если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному;

— если обе части уравнения умножить на одно и то же выражение h (х), которое имеет смысл всюду в области определения данного уравнения и нигде в этой области не обращается в нуль, то получится уравнение, равносильное данному.

/(х) = 0,

— 0 р авносильно системе g х) 0

Если функции f(x) и g(x) определены на всей числовой оси, то уравнение вида

Равносильные уравнения и неравенства определение

§1. Понятие равносильности уравнений и неравенств

Областью допустимых значений (ОДЗ) неравенства или уравнения называют множество всех значений переменной x x , при которых одновременно определены обе части неравенства или уравнения, т. е. пересечение множеств Х 1 , Х 2 Х_1,\;Х_2 .

При решении неравенств и уравнений фундаментальное значение имеет понятие равносильности, и в нашем задании это будет играть большую роль.

или два уравнения

Отсюда следует, что вместо того, чтобы решать данное неравенство (уравнение), можно решать любое другое, равносильное данному. Замену одного неравенства (уравнения) другим, равносильным данному на X X , называют равносильным переходом на X X . Равносильный переход обозначают двойной стрелкой ⇔ \Leftrightarrow .

Важно понимать, что для доказательства неравносильности двух неравенств (уравнений) нет необходимости решать каждое из неравенств (уравнений), а затем убеждаться в том, что множества их решений не совпадают – достаточно указать одно решение одного из неравенств (уравнений), которое не является решением другого неравенства (уравнения).

Равносильны ли уравнения 2 x + 3 = x \sqrt<2x+3>=x и 2 x + 3 = x 2 2x+3=x^2 ?

Равносильны ли уравнения sin x = 3 \sin\;x=3 и — x 2 = 1 \sqrt<-x^2>=1 ?

Да, равносильны, т. к. ни одно из них не имеет решения.

Приведём несколько примеров операций, приводящих к равносильным уравнениям или неравенствам.

2. Если h ( x ) > 0 h(x) >0 на X X , то на X X

f ( x ) g ( x ) ⇔ f ( x ) h ( x ) g ( x ) h ( x ) f(x) ,

т. е. при умножении неравенства на положительную функцию знак неравенства не меняется

3. Если h ( x ) ≠ 0 h(x)\neq0 на X X , то на X X

4. Если h ( x ) 0 h(x) на X X , то на X X

f ( x ) g ( x ) ⇔ f ( x ) h ( x ) > g ( x ) h ( x ) f(x) g(x)h(x) ,

т. е. при умножении неравенства на отрицательную функцию знак неравенства меняется на противоположный.

5. Если f ( x ) ≥ 0 , g ( x ) ≥ 0 f(x)\geq0,g(x)\geq0 на X X , то на X X

а) f ( x ) g ( x ) ⇔ f 2 ( x ) g 2 ( x ) f(x) ,

т. е. если обе части неравенства неотрицательны, то возведение в квадрат обеих частей приводит к равносильному неравенству.


источники:

http://infourok.ru/uravneniya-i-neravenstva-ravnosilnost-uravnenij-i-neravenstv-5728723.html

http://zftsh.online/articles/5289