Равносильные уравнения и неравенства видеоурок

Алгебра и начала математического анализа. 10 класс

Конспект урока

Алгебра и начала математического анализа, 10 класс

Урок №19. Равносильные уравнения и неравенства

Перечень вопросов, рассматриваемых в теме

1) понятие равносильного уравнения;

2) понятие равносильного неравенства;

3) понятие уравнения-следствия;

4) основные теоремы равносильности.

Глоссарий по теме

Два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2014.

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 10 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Определение. Два уравнения с одной переменной

f(х) = g(х) и р(х) = h(х) называют равносильными, если множества их корней совпадают.

Иными словами, два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.

1) Уравнения равносильны, т.к. каждое из них имеет только один корень х=3.

2) Уравнения также равносильны, т.к. у них одни и те же корни .

3) А вот уравнения не равносильны, потому что у первого уравнения корень х=2, а у второго уравнения два корня х=2 и х=-2.

Из определения равносильности следует, что два уравнения равносильны, если каждый корень первого уравнения является корнем второго уравнения, и наоборот.

Решение уравнения осуществляется в три этапа.

Первый этап — технический. На этом этапе осуществляют преобразования по схеме (1) → (2) → (3)→ (4) → . и находят корни последнего (самого простого) уравнения указанной цепочки.

Второй этап — анализ решения. На этом этапе, анализируя проведенные преобразования, отвечают на вопрос, все ли они были равносильными.

Третий этап — проверка. Если анализ, проведенный на втором этапе, показывает, что некоторые преобразования могли привести к уравнению-следствию, то обязательна проверка всех найденных корней их подстановкой в исходное уравнение.

Реализация этого плана связана с поисками ответов на четыре вопроса.

  • Как узнать, является ли переход от одного уравнения к другому равносильным преобразованием?
  • Какие преобразования могут перевести данное уравнение в уравнение-следствие?
  • Если мы в конечном итоге решили уравнение-следствие, то как сделать проверку в случае, когда она сопряжена со значительными вычислительными трудностями?
  • В каких случаях при переходе от одного уравнения к другому может произойти потеря корней и как этого не допустить?

Из курса средней школы мы знаем, что можно сделать следующие преобразования уравнений: любой член уравнения можно перенести из одной части в другую, изменив его знак на противоположный.

Обе части уравнения можно умножить или разделить на одной и то же число, не равное нулю.

Если при переходе от одного уравнения к другому потери корней не происходит, то второе уравнение называет следствием первого уравнения. Иначе, если все корни первого уравнения являются корнями второго уравнения, то второе уравнения называется следствием первого уравнения.

Из этого определения и определения равносильности уравнений следует, что:

  1. если ва уравнения равносильны, то каждое из них является следствием другого;
  2. если каждое из двух уравнений является следствием другого, то эти уравнения равносильны.

При решении уравнений главное- не потерять корни, а наличие посторонних корней можно установить проверкой. Поэтому важно следить за тем, чтобы при преобразовании уравнения каждое следующее уравнение было следствием предыдущего.

Стоит отметить, что посторонние корни могут получиться при умножении обеих частей уравнения на выражение, содержащее неизвестное; а вот потеря корней может произойти при делении обеих частей уравнения на выражение, содержащее неизвестное.

Итак, сформулируем основные теоремы, которые используются при решении равносильных уравнений:

Определение. Областью определения уравнения f(х) = g(х) или областью допустимых значений переменной (ОДЗ) называют множество тех значений переменной х, при которых одновременно имеют смысл выражения

Теорема 1. Если какой-либо член уравнения перенести из одной части уравнения в другую с противоположным знаком, то получится уравнение, равносильное данному.

Теорема 2. Если обе части уравнения возвести в одну и туже нечетную степень, то получится уравнение, равносильное данному.

Теорема 3. Показательное уравнение (где а > 0, a≠1)

равносильно уравнению f(x) = g(х).

Теорема 4. Если обе части уравнения f(x) = g(х) умножить на одно и то же выражение h(х), которое:

а) имеет смысл всюду в области определения (в области допустимых значений) уравнения f(x) = g(х)

б) нигде в этой области не обращается в 0, то получится уравнение f(x)h(x) = g(x)h(x), равносильное данному в его ОДЗ.

Следствием теоремы 4: если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Теорема 5. Если обе части уравнения f(x)=g(х) неотрицательны в ОДЗ уравнения, то после возведения обеих его частей в одну и ту же четную степень n получится уравнение равносильное данному в его ОДЗ.

Краткая запись теорем 4, 5.

4. f(x) = g(x) ⇔h(x)f(x) = h(x)g(x), где h(x) ≠0

и h(x) имеет смысл в ОДЗ данного уравнения.

5. f(x) = g(x) ⇔ , где f(x)≥0, g(x)≥0

и n=2k (чётное число).

Например, х – 1 = 3; х = 4

Умножим обе части на (х – 2):

(х – 2)(х – 1) = 3(х – 2); х = 4 и х = 2 – посторонний корень⇒ проверка!

Равносильность неравенств с неизвестным определяется аналогично.

Неравенства, имеющие одно и то же множество решений, называют равносильными. Неравенства, не имеющие решений, также являются равносильными.

Разбор решения заданий тренировочного модуля

Решим уравнение:

Возведем в квадрат обе части уравнения, получим:

, которое не будет равносильно исходному уравнению, потому что у этого уравнения два корня , а у первоначального уравнения только один корень х=4.

  1. Неравенства и x-3 x-1 не равносильны, так как решениями первого являются числа x 1, а решениями второго- числа x>-1. При решении неравенств обычно данное неравенство преобразуется в ему равносильное.

Урок алгебры в 11-м классе на тему «Равносильность преобразований»

Разделы: Математика

Цели урока:

  • Повторить основные понятия темы;
  • Проанализировать процесс решения уравнений (неравенств) и обосновать цепочку переходов от исходного уравнения (неравенства) к равносильному;
  • Способствовать познавательной активности учащихся при помощи информационных технологий;
  • Создавать условия для реализации творческих способностей учащихся.

Тип урока: Защита проекта, урок обобщения знаний, повторения.

Учитель: Решая сложные задания (особенно из части С), мы постоянно сталкиваемся с моментами, где в кажущейся простой ситуации мы допускаем ошибки. В чем проблема?

Иногда при решении уравнений случаются неприятности: появляются «лишние» корни, теряются «нужные», а иногда непонятно, что делать дальше, потому, что неизвестное исчезло, а осталось «уравнение» 0 = 2 или 1 = 1. Чтобы справляться с такими неприятностями, надо хорошо понимать, что такое уравнение, и что мы делаем с ним в процессе решения. (далее привожу выступление ученика по его проекту).

Докладчик: Начну с определения уравнения [слайд №3]

Уравнением называется запись f = g, где f и g — две функции, заданные на одном и том же множестве А. Множество А называется областью определения уравнения (или ОДЗ). Таким образом, чтобы задать уравнение, мало написать f = g, еще надо указать А — его область определения (сл.№4)

Обычно область определения уравнения не упоминается — нам говорят «решите уравнение», например, данное: х 2 + 2 = 4х и мы сразу понимаем, что область определения уравнения — любое число, т.к. при этом условии имеет смысл и f, и g.

Я разобрала на составные части процесс решения уравнения, чтобы точно узнать, откуда берутся ошибки, и какие меры предосторожности надо принимать.

Пусть дано уравнение [слайд №5]

Упростив его левую и правую части по отдельности, получим

Разделим числитель и знаменатель левой части на х 2 , а правой — на х, сделаем подстановку . Получим уравнение [слайд 6]

откуда. . Отсюда и = 0 или и = 1.

,
решений не дает.

,
x=1.

Казалось бы, уравнение решено. Если, однако, попытаться подставить в исходное уравнение х = 1, то мы убедимся, что это – не корень (на нуль делить нельзя!) [слайд№8] С другой стороны, легко проверить, что х = 0 – корень уравнения, который мы почему-то не нашли. Где же мы ошиблись? (идет обсуждение).

В уравнении: , мы делили числители и знаменатели дробей на х, что можно делать только при; стало быть, если 0 является корнем, то при этой операции мы его потеряем. В таких случаях проще всего сразу подставить х = 0 в уравнение и посмотреть, корень ли это. Убедившись, что в данном случае это – корень, и запомнив это, пойдем дальше. Но удобнее всего было бы перенести все в левую часть и привести к общему знаменателю: [слайд №9] .

Решение этого уравнения очевидно (дробь равна нулю, если ее числитель равен нулю, а знаменатель не равен нулю). Рассмотрим простейшее иррациональное уравнение. [слайд № 10]

Пример 1. (1)

Решение. Возведя обе части в квадрат, получим квадратное уравнение(2). Все решения исходного уравнения (1) являются решениями уравнения (2) (если числа равны, то и их квадраты равны). Иными словами, уравнение (2) является следствием уравнения (1). Однако среди решений уравнения (2) могут быть не только нужные нам числа: ведь и данное (3):после возведения в квадрат даст то же самое уравнение (2), а значит, все корни этого «постороннего» уравнения, если таковые есть, также будут корнями (2). [Слайд №11]. Поэтому, решив уравнение (2), надо еще отобрать среди найденных корней те, которые удовлетворяют нашему уравнению (1). В нашем случае это сделать совсем просто: решая (2), квадратное, находим ; подстановкой в (1) убеждаемся, что подходит, а нет.

Но часто бывает ситуация, когда подстановкой проверить корни почти невозможно.

Пример 2. (слайд №12) (1) Возводим в квадрат, получаем уравнение:

(2). Находим корни: .

Мы выполнили неравносильные преобразования, возможно получили посторонние корни (решения уравнения (3), которое тоже при возведении в кв. дает (2), но как же теперь выбрать то, что нам нужно? Во всяком случае, подставлять такие числа в исходное уравнение (1) — занятие бесперспективное. Обратите внимание, что все корни квадратного уравнения – это либо корни нашего исходного уравнения, либо корни «постороннего» уравнения (3).

Т.к.. , то всякий корень уравнения– неотрицательное число, а всякий корень уравнения– неположительное число. А нам нужен корень только исходного, значит неотрицательное число. И в ответ выходит положительный корень. Ответ. .

[Слайд №13] Итак, уравнение равносильно системе:

Уравнение Б является следствием уравнения А, если все корни уравнения А являются корнями уравнения Б. Уравнения А и Б равносильны, если множества их корней совпадают. [слайд №14].

Считаю, что лучше тщательно изучить ход решения и выяснить, на каком этапе могли появиться «лишние» корни, и какие именно. Конечно, желательно, чтобы каждое новое уравнение было бы равносильно исходному (тогда лишних корней появиться не может), но этого можно добиться не всегда.

Я проанализировала некоторые ситуации при выполнении преобразований и выделила главные моменты. Что произойдет с естественной областью определения уравнения, если в нем заменить:

a) (ОДЗ сужается: была: , стала: )
б) (ОДЗ расширилась: была: , стала: x-любой)
г) ( )
д) (идет обсуждение)

Кстати, к этому сводится известная шутка – «доказательство» равенства 2 = 4: [слайд №16]

Поэтому, чтобы избежать таких «шуток», надо пользоваться равенствами: [слайд №17]

Решая уравнение из домашнего задания

я столкнулась с проблемами.

(Уравнение решается у доски и в тетрадях, затем докладчик продолжает).

0) Выпишем ОДЗ: .

1) Перейдем в левой части к логарифму по основанию 2 и разложим квадратные трехчлены на линейные множители:

.

2) Т.К. в ОДЗ , разделим обе части на и прологарифмируем степень в правой части: , получим:

.

3) Перенесем все в левую часть и вынесем за скобки [слайд№19]

или .

4) Приравнивая к нулю сомножители, получим совокупность уравнений:

а) ;
.
Ответ: .

б) ;
;
;

В данном случае на каждом из шагов выполнялись равносильные преобразования, учитывая ОДЗ. Значит, проверку можно не выполнять.

Проанализируем, какие ошибки возможны при решении: [слайд №20] (идет обсуждение).

0) Забудем про ОДЗ.

1)
2) , (допущены ошибки при логарифмировании степени).
3) или .

Здесь уже приобретен посторонний корень (мы же не учли ОДЗ) и подготовлена потеря корней. (Применение неверной формулы сузило ОДЗ: изначально , теперь строго > 4).

4) [Слайд №21] Тогда ;

а) если сократить на , то произойдет потеря корня и мы получим данный неверный ответ а) ,
б) если вынести за скобки, то , все равно уйдем от правильного ответа б) .

Я СДЕЛАЛА ВЫВОДЫ ИЗ РЕШЕННОГО ПРИМЕРА. [слайд №22]

1) Опасно делить обе части уравнения на выражение, содержащее неизвестное (можно потерять корни).
2) Если уравнение содержит общий множитель c неизвестным, его следует вынести за скобки и привести уравнение к совокупности двух, равных нулю.
3) При решении уравнений нельзя делать ошибок типа – они могут привести к потере корней (из-за сужения ОДЗ).

Рассмотрим конкретный пример из задания С1 ЕГЭ прошлого 2007 года.

Задание: найти точки максимума функции

Решение: (решение у доски, в тетрадях, затем продолжает докладчик) [слайды №23-24]

1) Найдем ОДЗ:
2) Преобразуем функцию:
3) Для нахождения точек максимума, найдем производную функции: . И стационарные точки: x= -1, x= 0, x=2
4) Определим знаки производной и поведение функции:

Выходит, что точек максимума две: x= -1 и x= 2. Но x= -1 не входит в область определения функции. Поэтому точка максимума одна: x=2.

Вывод: необходимо учитывать ОДЗ при решении любых задач, а особенно в тех случаях, когда выполняются неравносильные преобразования. Как в данном примере: область определения расширилась после того, как мы упростили функцию.

[Слайд №26] Ход решения неравенств устроен примерно так же, как и ход решения уравнений. Стоит добавить, что множество решений неравенства обычно бесконечно. Проверить все найденные числа трудно, поэтому необходимо избегать переходов к неравносильным неравенствам.

Пример 1. [слайд №27]

Хотелось бы, конечно, возвести обе части в квадрат, это возможно только при неотрицательности обеих частей. Но что же нам делать с теми х, для которых правая часть отрицательна? А ничего не делать, для всякого решения неравенства правая часть больше левой, являющейся неотрицательным числом в ОДЗ, и, стало быть, сама неотрицательна. Итак, следствием нашего неравенства будет такая система:

, где возведенное в квадрат неравенство, неотрицательность правой части ОДЗ

Пример 2. [слайд №28]

Решение. Здесь опять же заведомо можно возвести в квадрат только тогда, когда . Однако теперь уже нельзя отбросить тех, для которых правая часть отрицательна:

Итак, у нас получилось два случая: если правая часть неотрицательна , то из нашего неравенства следует система Если же правая часть отрицательна, то нер-во верно на ОДЗ (ведь тогда отрицательная правая часть должна быть меньше положительной левой, а это верно на ОДЗ) и следует система где неотрицательность меньшей части и ОДЗ.

Неравенство равносильно такой совокупности двух систем:

Пример 3. [слайд №29]

Решение. На сей раз обе части неравенства всегда неотрицательны, так что возведение в квадрат дает неравенство, равносильное исходному на его естественной области определения. Возведение в квадрат дает неравенство: , (8) область определения дает неравенства: (9) и (10).

Мы не учитываем (10), т.к. если правое, меньшее, подкоренное выражение неотрицательно, то левое и подавно неотрицательно. Стало быть, из неравенства следует такая система:

, возведенное в кв. нер-во и неотрицательность меньшей части.

Неравенство равносильно системе: [слайд № 30]

Учитель: Используя результаты ваших исследовательских работ, в данном случае Оксаны, мы проанализировали различные ситуации, выяснили причины появления таких неприятных моментов в нашей практике, как “лишние” корни, потеря нужных. Рекомендую всем заинтересованным в качественном решении использовать эти выводы.

2. Решить уравнения, неравенства:

1. 12 — 7х + х 2 = 4(х-3) .
2. log2(x 3 -4) – log4(x 3 — 4) = log2 \/ x 6 -11x 3 +28
3. (21х-2х 2 +65) * * log3 |x-9|.>0.

Алгебра

План урока:

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3


источники:

http://urok.1sept.ru/articles/522194

http://100urokov.ru/predmety/urok-11-uravneniya-irracionalnye