Разделите переменные в дифференциальном уравнении dy dx 3y

Дифференциальные уравнения с разделяющимися переменными

Дифференциальные уравнения, в которых переменные уже разделены

Дифференциальные уравнения, в которых выражение, зависящее от y, входит только в левую часть, а выражение, зависящее от x — только в правую часть, это дифференциальные уравнения с разделяющимися переменными, в которых переменные уже разделены.

В левой части уравнения может находиться производная от игрека и в этом случае решением дифференциального уравнения будет функция игрек, выраженная через значение интеграла от правой части уравнения. Пример такого уравнения — .

В левой части уравнения может быть и дифференциал функции от игрека и тогда для получения решения уравнения следует проинтегрировать обе части уравнения. Пример такого уравнения — .

Пример 1. Найти общее решение дифференциального уравнения

Решение. Пример очень простой. Непосредственно находим функцию по её производной, интегрируя:

Таким образом, получили функцию — решение данного уравнения.

Пример 2. Найти общее решение дифференциального уравнения

Решение. Интегрируем обе части уравнения:

.

Функция — решение уравнения — получена. Как видим, нужно только уверенно знать табличные интегралы и неплохо расправляться с дробями и корнями.

Дифференциальные уравнения, в которых требуется разделить переменные

Дифференциальные уравнения с разделяющимися переменными, в которых требуется разделить переменные, имеют вид

.

В таком уравнении и — функции только переменной x, а и — функции только переменной y.

Поделив члены уравнения на произведение , после сокращения получим

.

Как видим, левая часть уравнения зависит только от x, а правая только от y, то есть переменные разделены.

Левая часть полученного уравнения — дифференциал некоторой функции переменной x, а правая часть — дифференциал некоторой функции переменной y. Для получения решения исходного дифференциального уравнения следует интегрировать обе части уравнения. При этом при разделении переменных не обязательно переносить один его член в правую часть, можно почленно интегрировать без такого переноса.

Пример 3. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на произведение и получим

.

,

или ,

поскольку левая часть равенства есть сумма арифметических значений корней. Таким образом, получили общий интеграл данного уравнения. Выразим из него y и найдём общее решение уравнения:

.

Есть задачи, в которых для разделения переменных уравнение нужно не делить почленно на произведение некоторых функций, а почленно умножать. Таков следующий пример.

Пример 4. Найти общее решение дифференциального уравнения

.

Решение. Бывает, что забвение элементарной (школьной) математики мешает даже близко подойти к началу решения, задача выглядит абсолютно тупиковой. В нашем примере для начала всего-то нужно вспомнить свойства степеней.

Так как , то перепишем данное уравнение в виде

.

Это уже уравнение с разделяющимися переменными. Умножив его почленно на произведение , получаем

.

Первый интеграл находим интегрированием по частям, а второй — табличный. Следовательно,

.

Логарифимруя обе части равенства, получаем общее решение уравнения:

.

Решить примеры самостоятельно, а затем посмотреть правильные решения

Пример 5. Найти общее решение диффференциального уравнения

.

Пример 6. Найти общее решение диффференциального уравнения

.

Продолжаем решать примеры вместе

Пример 7. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим

.

Чтобы найти y, требуется найти интеграл. Интегрируем по частям.

Пусть , .

Тогда , .

Находим общее решение уравнения:

Пример 8. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим


или
.

Записываем производную y в виде и получаем

Разделяем dy и dx и получаем уравнение:

, которое почленно интегрируя:

,

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

В некоторых случаях ответ (функцию) можно выразить явно. Для этого следует воспользоваться тем свойством логарифма, что сумма логарифмов равна логарифму произведения логарифмируемых выражений. Обычно это следует делать в тех случаях, когда слева искомая функция под логарифмом находится вместе с каким-нибудь слагаемым. Рассмотрим два таких примера.

Пример 9. Найти общее решение дифференциального уравнения

.

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных запишем производную «игрека» в виде и получим

.

Разделяем «игреки» и «иксы»:

.

Почленно интегрируем и, так как в левой части «игрек» присутствует со слагаемым, в правой части константу интегрирования записываем также под знаком логарифма:

.

Теперь по свойству логарифма имеем

.

Находим общее решение уравнения:

Пример 10. Найти частное решение дифференциального уравнения

,

удовлетворяющее условию .

Это уравнение с разделяющимися переменными. Решение. Для разделения переменных поделим уравнение почленно на и получим


или
.

Разделяем dy и dx и получаем уравнение:


которое почленно интегрируя:

находим общее решение уравнения:

.

Чтобы найти частное решение уравнения, подставляем в общее решение значения y и x из начального условия:

.

Таким образом частное решение данного дифференциального уравнения:

.

Выводы. В дифференциальных уравнениях с разделяющимися переменными, как в тех, в которых переменные уже разделены, так и в тех, где переменные требуется разделить, существуют однозначные способы решения, на основе которых может быть построен простой алгоритм. Если недостаточно уверенно освоен материал по нахождению производной и решению интегралов, то требуется его повторить. Во многих задачах на путь к решению уравнения наводят знания и приёмы из элементарной (школьной) математики.

Дифференциальные уравнения по-шагам

Результат

Примеры дифференциальных уравнений

  • Простейшие дифференциальные ур-ния 1-порядка
  • Дифференциальные ур-ния с разделяющимися переменными
  • Линейные неоднородные дифференциальные ур-ния 1-го порядка
  • Линейные однородные дифференциальные ур-ния 2-го порядка
  • Уравнения в полных дифференциалах
  • Решение дифференциального уравнения заменой
  • Смена y(x) на x в уравнении
  • Другие

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Дифференциальные уравнения с разделяющимися переменными и их интегрирование

п.1. Понятие дифференциального уравнения с разделяющимися переменными

Например:
\(y»+y’-4=5cos⁡x\) — ДУ второго порядка первой степени
\((y’)^3+5y^2=19\) – ДУ первого порядка третьей степени
\(\sqrt=y’x\) — ДУ первого порядка первой степени

Самыми простыми для решения будут такие уравнения, у которых можно разделить переменные, т.е. собрать всё, что связано с функцией \(y\), по одну сторону знака равенства, и всё, что связано с независимой переменной \(x\), — по другую сторону.

Например:
Уравнение \(\sqrt=y’x\) является уравнением с разделяющимися переменными, т.к. $$ y’=\frac<\sqrt>=g(x)\cdot h(y),\ \ \text<где>\ g(x)=\frac1x,\ h(y)=\sqrt $$

Алгоритм решения ДУ с разделяющимися переменными
На входе: уравнение первого порядка \(y’=f(x,y)\), для которого \(f(x,y)=g(x)\cdot h(y)\)
Шаг 1. Записать производную в форме Лейбница \(y’=\frac\)
Шаг 2. Преобразовать уравнение
$$ \frac=g(x)\cdot h(y)\Rightarrow \frac=g(x)dx $$ Шаг 3. Проинтегрировать левую и правую части уравнения: $$ \int\frac=\int g(x)dx+C $$ Шаг 4. Результат интегрирования \(H(y)=G(x)+C\) — общее решение данного уравнения.
На выходе: выражение \(H(y)=G(x)+C\)

Например:
Решим уравнение \(\sqrt=y’x\)
1) Пусть \(x\ne 0\). Тогда: $$ y’=\frac<\sqrt>\Rightarrow\frac=\frac<\sqrt>\Rightarrow\frac<\sqrt>=\frac $$ Находим интегралы (константу запишем в конце): $$ \int\frac<\sqrt>=\frac<(y+1)^<\frac32>><\frac32>=\frac23\sqrt<(y+1)^3>,\ \ \int\frac=\ln|x| $$ Получаем общее решение: $$ \frac23\sqrt<(y+1)^3>=\ln|x|+C,\ x\ne 0 $$ 2) Пусть \(x=0\). Тогда по условию: \(\sqrt=0\Rightarrow y=-1\)
Точка (0;-1) – особое решение данного уравнения.

п.2. Задача Коши

Например:
Найдем решение задачи Коши для уравнения \(\sqrt=y’x\) при начальном условии \(y(1)=3\).
Общее решение нами уже найдено: \(\frac23\sqrt<(y+1)^3>=\ln|x|+C\) — этим выражением задано бесконечное множество кривых. Решить задачу Коши означает найти единственную кривую, проходящую через точку (1;3), т.е. конкретное значение C для заданных начальных условий.
Подставляем \(x=1\) и \(y=3:\frac23\sqrt<(3+1)^3>=\underbrace<\ln 1>_<=0>+C\Rightarrow C=\frac23\sqrt<4^3>=\frac<16><3>\)
Решение задачи Коши: \(\frac23\sqrt<(y+1)^3>=\ln|x|+\frac<16><3>\)
Выразим y в явном виде, что всегда приходится делать на практике: $$ \sqrt<(y+1)^3>=\frac32\ln|x|+8\Rightarrow y+1=\left(\frac32\ln|x|+8\right)^<\frac23>\Rightarrow y=\left(\frac32\ln|x|+8\right)^<\frac23>-1 $$ Ограничения ОДЗ: \( \begin y\geq -1\\ \frac32\ln|x|+8\geq 0 \end \Rightarrow |x|\geq -\frac<16><3>\Rightarrow |x|\geq e^<-\frac<16><3>> \)
Начальная точка \(x=1\gt e^<-\frac<16><3>>\), требования ОДЗ выполняются.
Т.к. \(x=1\gt 0\) в решении также можно убрать модуль.

п.3. Закон радиоактивного распада

В многочисленных экспериментах по определению радиоактивности вещества был установлен следующий факт:

Число распадов ΔN, которые произошли за интервал времени Δt, пропорционально числу атомов N в образце.

Перейдем к бесконечно малым \(dN\) и \(dt\) и запишем соответствующее этому факту дифференциальное уравнение: $$ \frac

=-\lambda N $$ где знак «-» учитывает уменьшение числа атомов N со временем.
Полученное ДУ является уравнением с разделяющимися переменными.
Найдем его общее решение: $$ \frac=-\lambda dt\Rightarrow\int\frac=-\lambda\int dt\Rightarrow \ln N=-\lambda t+C $$ Пусть в начальный момент времени \(t=0\) в образце было \(N_0\) атомов.
Решаем задачу Коши, находим \(C:\ \ln N_0=-\lambda\cdot 0+C\Rightarrow C=\ln N_0\)
Подставляем найденное C в общее решение. Получаем: $$ \ln N=-\lambda N+\ln N_0\Rightarrow \ln N-\ln N_0=-\lambda t\Rightarrow\ln\frac=-\lambda t\Rightarrow\frac=e^ <-\lambda t>$$

п.4. Зарядка конденсатора

Соберем цепь, состоящую из конденсатора C, резистора R, источника ЭДС E и ключа K.
Пусть в начальный момент времени конденсатор разряжен, напряжение на обкладках: \(U(0)=0\)
Замкнем ключ и начнем зарядку конденсатора.

По закону Ома для замкнутой цепи можем записать: $$ I(R+r_0)+U=\varepsilon $$ где \(I\) — ток в цепи, \(I(R+r_0)\) – падение напряжения на резисторе и источнике, \(U\) — напряжение на конденсаторе, \(\varepsilon\) – ЭДС источника.
Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ C\frac
\cdot (R+r_0)=\varepsilon-U $$ Получили ДУ с разделяющимися переменными: $$ \frac<\varepsilon-U>=\frac
$$ Интегрируем (не забываем про минус перед U в знаменателе): $$ \int\frac<\varepsilon-U>=-\ln(\varepsilon-U),\ \ \int\frac = \frac $$ Общее решение: $$ \ln(\varepsilon-U)=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln(\varepsilon-0)=-\frac<0>+B\Rightarrow B=\ln\varepsilon $$ Решение задачи Коши: \begin \ln(\varepsilon-U)=-\frac+\ln\varepsilon\\ \ln(\varepsilon-U)-\ln\varepsilon=-\frac\\ \ln\frac<\varepsilon-U><\varepsilon>=-\frac\Rightarrow\frac<\varepsilon-U><\varepsilon>=e^<-\frac>\Rightarrow \varepsilon e^<-\frac> \end

Если внутренне сопротивление источника пренебрежимо мало по сравнению с внешним сопротивлением, \(r_0\lt\lt R\), то получаем: $$ u(t)=\varepsilon\left(1-e^<-\frac>\right) $$ При \(t\rightarrow +\infty\) показатель экспоненты стремится к (\(-\infty\)), а сама экспонента стремится к нулю: \(U(t\rightarrow +\infty)=\varepsilon(1-e^<-\infty>)\), т.е. напряжение на обкладках конденсатора стремится к значению ЭДС источника.

Например:
При \(\varepsilon=5В,\ RC=0,01\) с график зарядки конденсатора имеет вид:

п.5. Примеры

Пример 1. Решите уравнение:
a) \(y’=e^\) \begin \frac=e^x\cdot e^y\Rightarrow e^<-y>dy=e^x dx\Rightarrow\int e^<-y>dy=\int e^x dx\Rightarrow -e^<-y>=e^x+C \end \(e^<-y>=-e^x+C\) (на константу, определенную от минус до плюс бесконечности, перемена знака не влияет).
\(-y=\ln⁡(-e^x+C) \)
\(y=-\ln⁡(C-e^x)\)
Ответ: \(y=\ln⁡(C-e^x)\)

б) \(xy+(x+1)y’=0\) \begin (x+1)y’=-xy\Rightarrow\frac=-\frac\Rightarrow\frac=-\fracdx\\ \int\frac=\ln|y|\\ -\int\fracdx=-\int\frac<(x+1)-1>dx=-\int\left(1-\frac<1>\right)dx=-x+\ln|x+1| \end Получаем: \(\ln|y|=-x+\ln|x+1|\)
Запишем константу немного по-другому, как \(\ln ⁡C\). Это удобно для потенцирования: \begin \ln|y|-x+\ln|x+1|+\ln C\\ \ln|y|-\ln C=-x+\ln|x+1|\\ \ln\frac<|y|>=-x+\ln|x+1|\\ e^<\ln\frac<|y|>>=e^<-x+\ln|x+1|>\\ \frac yC=e^<-x>\cdot (x+1)\\ y=Ce^<-x>(x+1) \end При преобразованиях мы делили на \((x+1)\) и \(y\), считая, что \(x\ne -1\) и \(y\ne 0\). Если подставить \(x=-1\) в решение, получим \(y=0\), т.е. эта точка не является особой, она входит в общее решение.
Ответ: \(y=Ce^<-x>(x+1)\)

Пример 2*. Найдите решение задачи Коши:
a) \(\frac+e^y=0,\ y(1)=0\) \begin \frac=-e^y\Rightarrow\frac=-x^2e^y\Rightarrow e^<-y>dy=-x^2dx\\ \int e^<-y>dy=-e^<-y>,\ \ -\int x^2dx=-\frac <3>\end Получаем: \begin -e^<-y>=-\frac<3>+C\Rightarrow e^<-y>=\frac<3>+C\Rightarrow -y=\ln\left|\frac<3>+C\right|\Rightarrow y=-\ln\left|\frac<3>+C\right| \end Общее решение: \(y=-\ln\left|\frac<3>+C\right|\)
Решаем задачу Коши. Подставляем начальные условия: $$ 0-\ln\left|\frac13+C\right|\Rightarrow\frac13+C=1\Rightarrow C=\frac23 $$ Решение задачи Коши: \(y=-\ln\left|\frac<3>\right|\)
Ответ: \(y=-\ln\left|\frac<3>\right|\)

б) \(x^2(y^2+5)+y^2(x^2+r)y’=0,\ y(0)=\sqrt<5>\) \begin y^2(x^2+5)y’=-x^2(y^2+5)\\ y’=\frac=-\frac\Rightarrow \fracdy=-\fracdx \end Используем табличный интеграл: \(\int\frac=\frac1a arctg\frac xa+C\) \begin \int\fracdy=\int\frac<(y^2+5)-5>dy=\int\left(1-\frac<5>\right)dy=y-5\cdot\frac<1><\sqrt<5>>arctg\frac<\sqrt<5>>=\\ =y-\sqrt<5>arctg\frac<\sqrt<5>> \end Аналогично: \(-\int\fracdx=-x+\sqrt<5>arctg\frac<\sqrt<5>>\)
Общее решение: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+C\)
Решаем задачу Коши. Подставляем начальные условия: $$ \sqrt<5>-\sqrt<5>arctg1=-0+0+C\Rightarrow C=\sqrt<5>-\frac<\pi\sqrt<5>><4>=\sqrt<5>\left(1-\frac\pi 4\right) $$ Решение задачи Коши: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)
Ответ: \(y-\sqrt<5>arctg\frac<\sqrt<5>>=-x+\sqrt<5>arctg\frac<\sqrt<5>>+\sqrt<5>\left(1-\frac\pi 4\right)\)

Пример 3. Найдите массу радиоактивного вещества спустя время, равное четырем периодам полураспада, если начальная масса составляла 64 г.
При радиоактивном распаде атомы одного элемента превращаются в атомы другого, поэтому для массы вещества справедлив тот же закон, что и для количества атомов этого вещества: $$ m(t)=m_0 e^ <-\lambda t>$$ Период полураспада – это время, за которое масса уменьшается в 2 раза: $$ \frac\right)>=\frac12 $$ За время, равное 4 периодам полураспада, масса уменьшится: $$ \frac\right)>=\left(\frac12\right)^4=\frac<1> <16>$$ в 16 раз.
Получаем: $$ m\left(4T_<\frac12>\right)=\frac<16>,\ \ m\left(4T_<\frac12>\right)=\frac<64><16>=4\ \text <(г)>$$ Ответ: 4 г

Пример 4. Выведите зависимость \(U(t)\) на обкладках конденсатора при его разрядке в RC-цепи.

Разрядка конденсатора происходит в цепи без источника ЭДС.
Пусть в начальный момент заряд на обкладках \(U(0)=U_0.\)
Замкнем ключ и начнем разрядку конденсатора.

По закону Ома для замкнутой цепи: $$ IR+U=0 $$ Ток в цепи равен производной от заряда по времени: $$ I=\frac

=\frac
=C\frac
$$ Подставляем: $$ RC\frac
=-U $$ Получили ДУ с разделяющимися переменными: $$ \frac=-\frac
$$ Интегрируем: $$ \int\frac=\ln U,\ \ \int
=\frac $$ Общее решение: $$ \ln U=-\frac+B $$ где \(B\) константа, которую мы обозначили так, чтобы не путать с емкостью.
Начальное условие \(U(0)=0\). Подставляем: $$ \ln U_0=-\frac<0>+B\Rightarrow B=\ln U_0 $$ Решение задачи Коши: \begin \ln U=-\frac+\ln U_0\Rightarrow\ln U-\ln U_0=-\frac\Rightarrow \ln\frac=-\frac\\ \frac=e^<-\frac> \end
Изменение напряжение на обкладках конденсатора при разрядке: $$ U(t)=U_0 e^<-\frac> $$

Например, \(при U_0=5В,\ RC=0,01 с\) график разрядки конденсатора имеет вид:


источники:

http://mrexam.ru/differentialequation

http://reshator.com/sprav/algebra/10-11-klass/differencialnye-uravneniya-s-razdelyayushchimisya-peremennymi-i-ih-integrirovanie/