Разложение на множители логарифмов уравнений

Решение логарифмических неравенств.

Логарифмические неравенства в задании 14 профильного уровня ЕГЭ по математике встречаются чаще других. Это связано, в первую очередь, с тем, что выражения с логарифмом имеют ограниченную область допустимых значений, причём задаваемую также неравенством. Последнее обстоятельство приводит к тому, что решение логарифмического неравенства во многих случаях сводится к решению систем алгебраических неравенств (рациональных и не только).

В этом разделе рассмотрены типовые логарифмические неравенства – простейшие и соответствующие профильному уровню ЕГЭ. Все неравенства даны с решениями и комментариями, поэтому будут полезны и при текущем изучении или повторении этой темы.

Если возникают вопросы — обращайтесь через форму для письма, рисунок конверта кликабелен.

Узнайте, как можно поддержать сайт и помочь его развитию.

  • Введение вспомогательной переменной
  • О разложении на множители

    Основные положения и примеры решения простейших логарифмических неравенств.

    С этим разделом могут ознакомиться и выпускники, которые планируют сдавать экзамен по математике на базовом уровне.
    На профильном экзамене встречаются более сложные неравенства, но их также тем или иным образом требуется сводить к простейшим.

    К простейшим относятся логарифмические неравенства, которые содержат неизвестную переменную в составе аргумента логарифмической функции с фиксированным основанием, т.е. это неравенства вида \(log_a > \log_a\), где \(a>0,\;a\ne1\) и неравенства, сводящиеся к этому виду.
    В более общих случаях неизвестная величина может встречаться и в основании логарифма.

    Чтобы решать как логарифмические неравенства, так и логарифмические уравнения, нужно вспомнить определение и свойства логарифмической функции как таковой.
    1) Логарифм – трансцендентная функция, т.е. аналитическая функция, которая не может быть задана с помощью алгебраического уравнения. Поэтому чтобы получить решение простейшего логарифмического неравенства, нужно сначала перейти к алгебраическим соотношениям, т.е. «убрать» логарифм.
    2) Логарифм – однозначная и монотонная функция, что означает каждому значению аргумента из области определения соответствует единственное значение функции. Поэтому её можно сравнивать саму с собой и «вычёркивать» логарифм. Как и в каких случаях это делать, рассмотрим на примерых ниже.
    3) Главное – логарифмическая функция имеет ограниченную область определения. Это означает, что при решении любых заданий с логарифмами, содержащими переменные, нужно не забывать про ОДЗ (область допустимых значений) этой переменной.

    Область значений функции E = R – всё множество действительных чисел. Т.е. сам логарифм, в отличие от его аргумента и основания, может принимать любые значения из промежутка \((-\infty; +\infty)\).

    Как уже упоминалось, логарифмическая функция монотонна. Посмотрите на её графики.

    При a > 1 функция возрастающая,

    Поэтому для решения простейших логарифмических неравенств достаточно преобразовать обе части неравенства к логарифму с одинаковым основанием и затем сравнить подлогарифмические выражения. Таким образом мы сравниваем функцию с самой собой при разных значениях её аргумента, т.е. как бы «вычёркиваем» log с обеих сторон неравенства. При этом,
    — если основание степени больше единицы, то знак неравенства без «log» будет таким же, как знак исходного неравенства, что характерно для возрастающих функций – большему значению аргумента соответствует большее значение функции;
    — если основание степени меньше единицы, то знак неравенства будет обратным по отношению к знаку исходного неравенства, что характерно для убывающих функций – большему значению аргумента соответствует меньшее значение функции.

    Пример 1.

    Решение.

    Область допустимых значений (ОДЗ) выражения \(2x+7>0.\)

    Воспользуемся определением логарифма, чтобы представить число −2 в виде значения логарифмической функции с основаением 0,2.

    \[0,2^ <-2>= \left(\frac<1><5>\right)^ <-2>= \left(\frac<5><1>\right)^ <2>= 25,\]
    следовательно \(-2 = \log_<0,2><25>,\) и заданное неравенство можно преобразовать к виду \[\log_<0,2><(2x+7)>\log_<0,2><25>.>\] Теперь можно «отбросить логарифм», изменив знак неравенства на противоположный, так как его основание 0,2 0,> \\ <2x+7 -3,5,>\\ 0\). Это ОДЗ.
    Преобразуем неравенство:
    \(\text\;-\) это сокращенное обозначение для десятичного логарифма \(\log_<10>\). Так как \(10^2 = 100,\) то \(2 = \text<100>\). Далее используем свойства логарифмов \[ \text <(x+2)>1, то логарифм «отбросили» с сохранением знака неравенства.
    Таким образом, заданное неравенство равносильно системе неравенств \[\begin x+2>0,\\[1ex] 2x-6>0,\\[1ex] (x+2)(2x-6) -2,\\ 2x>6,\\ 2x^2+4x-6x-12 — 2,>\\ 3,>\\

    Ответ: \(x \in (3; 8). \)

    Введение вспомогательной переменной

    Пример 4.

    Решение.

    Аргументом обоих логарифмов является один и тот же квадратный трёхчлен \(4+3x-x^2\), однако основания логарифмов различны – это 2 и 0,5, поэтому нужно воспользоваться свойствами логарифмической функции и привести логарифмы к одному основанию. Поскольку \(0,5 = \dfrac<1> <2>= 2^<-1>\), то приводить будем второй логарифм к основанию 2. Для этого используем формулу \(\log_b=\frac<1>\log_a\): \[\log_<0,5> <(4+3x-x^2)>= \log_<2^<-1>><(4+3x-x^2)>=\frac<1><-1>\log_2 <(4+3x-x^2)>= -\log_2<(4+3x-x^2)>\] Теперь неравенство имеет следующий вид \[\log_2^2 <(4+3x-x^2)>— 7\log_2 <(4+3x-x^2)>+10 > 0.\]

    В последнем неравенстве неизвестная величина встречается в обоих слагаемых в совершенно одинаковой форме, поэтому можно продолжить решение методом введения вспомогательной переменной.

    Пусть \(y = \log_2<(4+3x-x^2)>\), тогда логарифмическое неравенство преобразуется в обычное квадратное неравенство \[y^2 — 7y +10 > 0,\] которое решается графически (через параболу) или методом интервалов. Сделайте это самостоятельно. Ответ получится такой \(y \in (-\infty;2)\cup(5;+\infty)\) или, что то же самое \[\left[<\begin \end>\right. \] Последняя запись удобнее для возврата от вспомогательной переменной к логарифму \[\left[<\begin \log_2 <(4+3x-x^2)>5. \end>\right.\] Имеем два простейших неравенства для логарифмов с основанием \(2 > 1\), решаем их \[\log_2 <(4+3x-x^2)>5 \\ \log_2 <(4+3x-x^2)>> \log_2 <32>\\ 4+3x-x^2 > 32. \] Получившиеся два квадратных неравенства вместе с ОДЗ (не забывать о ней!) образуют совокупность двух систем неравенств, решая которые получим окончательный ответ. \[<\left[<\begin <\begin4+3x-x^2 > 0,\\ 4+3x-x^2 0 ; \end>\right. \\ <\begin4+3x-x^2 > 0,\\ 4+3x-x^2 > 32. \end > \left|<\begin x^2 -3x-4 3; \end>\right.> \end > \\ <\;\;x \in \varnothing .>\end>\right.>\] Объединяя множества решений совокупностей неравенств (обозначены квадратной скобкой «[«) и пересекая множества решений систем неравенств (обозначены фигурной скобкой скобкой «<"), делаем окончательный вывод \(x \in (-1;0) \cup (3;4).\)

    Замечание 1. Чтобы не выписывать совокупности систем и системы совокупностей, особенно, если вы путаетесь в этих скобках, можно все этапы решения реализовать схемами на числовой оси.

    Замечание 2. Заметим, что с некоторого момента решение задачи сводится к анализу неравенств, в которых один и тот же квадратный трёхчлен \(4+3x-x^2\) сравнивается с числовыми значениями. Поэтому дальнейшие действия можно свести к построению одной параболы – эскиза графика функции \(y = 4+3x-x^2\) – и посмотреть как она соотносится с горизонтальными линиями \(y = 0, \; y = 4\; и\; y =32.\) (Вспомните аналогичное задание 2-й части ОГЭ за 9-ый класс.) На это не уйдёт много времени, т.к. коэффициенты трёхчлена целые числа, корни легко вычисляются по теореме Виета, а параболу достаточно построить только по характерным точкам.
    Как быстро построить параболу можно посмотреть в видеоуроке на youtube-канале Mathematichka.

    Ответ: \(x \in (-1;0) \cup (3;4).\)

    Решение.

    Выпишем ОДЗ неравенства.
    Условие положительности всех аргументов логарифмической функции \[\begin 64x > 0;\\ x > 0;\\ x^4 > 0 \end\] сводится к одному требованию \(x > 0\).
    Условие неравенства нулю знаменателей всех дробей \[\begin \log_4−3 \ne 0;\\ \log_4 <(64x)>\ne 0;\\ \log^2_4−9 \ne 0\\ \end\] пока запишем формально, анализировать будем в процессе решения.

    В этом примере в отличие от предыдущего, напротив, основания всех логарифмов одинаковы – логарифм по основанию 4, но отличаются аргументы. Используем свойства логарифмов, чтобы упростить выражения. \[\log_4 <(64x)>= \log_4<64>+\log_4=3+\log_4;\\ \log_4 = 4\log_4.\] Тогда неравенство приобретает вид \[\frac<3+\log_4><\log_4−3>+\frac<\log_4−3><3+\log_4>\geqslant\frac<4\log_4+16><\log^2_4−9>,\] где логарифм встречается только в виде \(\log_4\). Введём вспомогательную переменную \(y = \log_4\). \[\frac<3+y>+\frac<3+y>\geqslant\frac<4y+16>\] Получили дробно-рациональное неравенство. Дальнейшие преобразования производим с целью упростить и разложить на множители, чтобы решить методом интервалов. \[\frac<(3+y)^2 + (y-3)^2 > — \frac<4y+16>\geqslant 0,\\ \frac<9+2y+y^2 + y^2-2y+9 - 4y -16 >\geqslant 0,\\ \frac<2y^2- 4y+2 >\geqslant 0,\\ \frac<2(y-1)^2 ><(y+3)(y-3)>\geqslant 0.\] Решение на рисунке.

    Учитывая, что до сих пор все преобразования, которые производились, были равносильными, можем утверждать, что выколов точки 3 и −3 из возможных значений переменной \(y\), мы обеспечили неравенство нулю общего знаменателя дроби, а значит и всех дробей, участвовавших в равносильных преобразованиях. Тем самым выполнена вторая часть ограничений ОДЗ неравенства.

    Итак, неравенство для переменной \(y = \log_4\) выполняется при \[<\left[<\begin y 3; \end>\right.> \; <\left|<\begin \log_4 3; \end>\right.> \; <\left|<\begin \log_4 \log_4<64>; \end>\right.> \; <\left|<\begin x 64. \end>\right.>\] С учётом первого условия ОДЗ \((x>0)\), получаем окончательный ответ

    Ответ: \(x \in \left(0; \;\dfrac<1><64>\right) \cup \ <4\>\cup (64;\;+\infty)\).

    О разложении на множители

    \( \log_3\cdot\log_4 — \log_3 — \log_4 +1 0.\)\[ \log_3\cdot\log_4 — \log_3 — \log_4 +1 0; \end > \\ <\begin\log_4 — 1 > 0,\\ \log_3 — 1 1; \end > \; \left|\; <\begin < \log_4\log_3<3>; > \end> \right. \\ <\begin\log_4> 1,\\ \log_3 \log_4<4>,\\ \log_3 3; \end > \; |\; \\ <\beginx > 4,\\ x 0\), можем записать ответ.

    Решение II – вспомогательная переменная.

    ОДЗ: \(x>0.\)
    Приведём логарифмы к одному основанию, например, к основанию 3. \[\log_4 = \frac<\log_3><\log_3<4>>.\] \[\log_3\cdot\log_4 — \log_3 — \log_4 +1 1.\) Имеем \[ 1 0\), следовательно это окончательный ответ.

    Решение III – через уравнение.

    ОДЗ: \(x>0.\)
    Заменим знак » 0,\] так как \(\sqrt <3>1,\) то \(\log_4<\sqrt<3>> 1,\) то \(\log_4 <3,5>3^1\; и\; 3>1,\) то \(\log_3 <3,5>> 1.\)
    3) пусть \(x = 9; \;x \in (4;+\infty)\) \[\log_3\cdot\log_4 — \log_3 — \log_4 +1 = \\ = \log_3<9>\cdot\log_4 <9>— \log_3 <9>— \log_4 <9>+1 = \\ = 2\log_4 <9>— 2 — \log_4 <9>+ 1 = \\ = \log_4 <9>— 1 >0, \] так как \(9 > 4^1\; и\; 4>1,\) то \(\log_4 <9>> 1.\)

    По рисунку формулируем ответ.

    Сравните все три способа решения для этого вовсе не сложного неравенства и определитесь, какой вариант наиболее приемлем для вас.

    Внимание: Если вы нашли ошибку или опечатку, пожалуйста, сообщите о ней на email.

    Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

    Есть вопросы? пожелания? замечания? Обращайтесь — mathematichka@yandex.ru

    Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено.

    Решение логарифмических уравнений — примеры с решениями

    Решение простейших логарифмических уравнений

    Как известно, решение простейшего логарифмического уравнения logax=b — это x=a b . Другими словами, простейшее логарифмическое уравнение logax=b имеет единственный корень, которым является степень a b .

    Первый пример. Проще некуда.

    Решите уравнение log5x=2

    Все понятно без слов:
    log5x=2
    x=5 2
    x=25

    При решении простейших логарифмических уравнений переход от logax=b к x=a b , обычно, не представляет сложности. Часто, куда сложнее вычислить значение степени a b или упростить ее вид. Следующие примеры иллюстрируют сказанное.

    Второй пример. А вычислить значение?

    Решите логарифмическое уравнение

    Это простейшее логарифмическое уравнение. Оно имеет единственный корень . Очевидно, полученная степень нуждается в доработке.

    Сначала заменим квадратный корень из семи степенью: .

    Остается вспомнить, как определяется степень с отрицательным показателем, и закончить вычисления:

    На этом решение простейшего логарифмического уравнения завершено.

    Третий пример. Извольте упростить.

    Начинаем со стандартного при решении простейших логарифмических уравнений перехода:

    Надо бы упростить полученную степень.

    Возвести дробь в минус первую степень – это кувыркнуть ее вверх ногами:

    Теперь глаза мозолит иррациональность в знаменателе, исправим эту ситуацию:

    Таким образом, — искомое решение простейшего логарифмического уравнения.

    Решение логарифмических уравнений разными методами

    Сейчас пройдемся по всем основным методам решения логарифмических уравнений, и рассмотрим решения наиболее характерных и интересных, по нашему мнению, логарифмических уравнений.

    по определению логарифма

    По определению логарифма в первую очередь проводится решение логарифмических уравнений logaf(x)=b , где a и b — числа, причем a>0 , a≠1 , а f(x) – выражение с переменной x , таких как log2(x 2 +4·x+3)=3 , и др. Решение состоит в переходе от уравнения logaf(x)=b к уравнению f(x)=a b . Например, решение логарифмического уравнения log2(x 2 +4·x+3)=3 с опорой на определение логарифма заменяется решением уравнения x 2 +4·x+3=2 3 .

    На определение логарифма можно опираться и при решении логарифмических уравнений logh(x)f(x)=g(x) , таких как logx(x 2 −3·x+6)=2 , log2(9−2 x )=3−x , logx(3·x lgx +4)=2·lgx и др. Решение уравнения logh(x)f(x)=g(x) заключается в решении уравнения f(x)=(h(x)) g(x) на области допустимых значений (ОДЗ) для исходного уравнения. Например, чтобы решать логарифмическое уравнение logx(x 2 −3·x+6)=2 по определению логарифма, надо решить уравнение x 2 −3·x+6=x 2 , и взять все корни, принадлежащие ОДЗ для исходного уравнения.

    • Чтобы решить логарифмическое уравнение logaf(x)=b по определению логарифма, надо перейти к уравнению f(x)=a b и найти его решение.
    • А чтобы решить по определению логарифма уравнение logh(x)f(x)=g(x) , надо перейти к уравнению f(x)=(h(x)) g(x) , решить его, и взять корни, принадлежащие ОДЗ для исходного логарифмического уравнения.

    Рассмотрим примеры решения логарифмических уравнений.

    Обычно решение оформляется кратко:

    А теперь поясним, какие рассуждения за всем этим скрываются.

    Заданное логарифмическое уравнение имеет вид logaf(x)=b , где f(x)=2·x−4 , a=1/2 , b=−2 . Такое логарифмическое уравнение можно решать по определению логарифма, то есть, заменять решение уравнения logaf(x)=b решением уравнения f(x)=a b .

    Итак, переходим от исходного уравнения к уравнению . Это рациональное уравнение, решаем его:

    Так получено решение исходного логарифмического уравнения.

    Пример. Не забыть про проверку.

    Решите логарифмическое уравнение logx(−x 2 +5·x+3)=2

    Заданное уравнение можно рассматривать как уравнение logh(x)f(x)=g(x) , где f(x)=−x 2 +5·x+3 , h(x)=x , g(x)=2 , и мы знаем, что такие уравнения можно решать по определению логарифма. Решение этим методом на первом этапе предполагает переход от уравнения logh(x)f(x)=g(x) к уравнению f(x)=(h(x)) g(x) . Имеем −x 2 +5·x+3=x 2 .

    Теперь нам надо решить полученное уравнение −x 2 +5·x+3=x 2 . Оно сводится к квадратному уравнению 2·x 2 −5·x−3=0 . Решаем его:

    Остается пройти последний шаг решения логарифмического уравнения по определению логарифма – выяснить, какие из корней принадлежат ОДЗ для исходного уравнения. ОДЗ для исходного логарифмического уравнения logx(−x 2 +5·x+3)=2 определяется системой .

    Очевидно, не удовлетворяет второму условию, значит, это посторонний корень для исходного уравнения. А корень x2=3 удовлетворяет всем условиям: . Значит, x2=3 – это корень уравнения logx(−x 2 +5·x+3)=2 .

    На этом решение завершено. Уравнение имеет единственный корень 3 .

    Естественно, так подробно решение не описывают. Обычно его оформляют кратко, но без ущерба для логики действий, например, так:

    методом потенцирования

    Метод потенцирования применяется для решения логарифмических уравнений, части которых являются логарифмами с одинаковыми основаниями, например, log5(x−1)=log57 , и др. Решение логарифмических уравнений методом потенцирования состоит в переходе от уравнения logh(x)f(x)=logh(x)g(x) к уравнению f(x)=g(x) на ОДЗ для исходного уравнения. Так решение уравнения можно заменить решением уравнения x+1=x 2 −1 на ОДЗ для исходного уравнения.

    Название метода становится понятным, если вспомнить, что потенцирование – это восстановление выражения по его логарифму.

    Обосновать метод можно, сославшись на свойства логарифмов. Из них мы знаем, что логарифмы двух положительных чисел с одинаковыми положительными и отличными от единицы основаниями равны тогда и только тогда, когда равны сами числа, то есть, , a>0 , a≠1 , b1>0 , b2>0 . Так вот переход от логарифмического уравнения logh(x)f(x)=logh(x)g(x) к уравнению f(x)=g(x) — это аналог замены logab1=logab2 на b1=b2 , а нахождение в рамках ОДЗ для исходного уравнения – это аналог выполнения условий a>0 , a≠1 , b1>0 , b2>0 .

    Итак, чтобы решить логарифмическое уравнение logh(x)f(x)=logh(x)g(x) методом потенцирования, надо

    • Перейти к уравнению f(x)=g(x) .
    • Решить полученное уравнение.
    • И взять корни, принадлежащие ОДЗ для исходного уравнения, остальные отбросить как посторонние. Другими словами, провести отсеивание посторонних корней.

    Остается рассмотреть пример с решением.

    Мы видим, что части уравнения являются логарифмами с одинаковыми основаниями. Подобные логарифмические уравнения удобно решать методом потенцирования.

    Согласно выбранному методу, переходим от исходного уравнения к уравнению x+1=x 2 −1 .

    Теперь нам надо решить полученное уравнение x+1=x 2 −1 . Перенос слагаемых из одной части уравнения в другую с противоположным знаком и приведение подобных слагаемых дает квадратное уравнение x 2 −x−2=0 , которое можно решить, например, через дискриминант:

    Остается проверить принадлежность найденных корней области допустимых значений переменной x для исходного уравнения. Для нашего логарифмического уравнения ОДЗ определяют два условия x+1>0 и x 2 −1>0 . Очевидно, x1=−1 не удовлетворяет первому условию ( −1+1>0 — неверное), значит, это посторонний корень для решаемого уравнения. А корень x2=2 удовлетворяет обоим условиям ( 2+1>0 – верное, 2 2 −1>0 — верное). Значит, он является корнем уравнения .

    На этом решение логарифмического уравнения методом потенцирования завершено. Уравнение имеет единственный корень, им является число 2 .

    методом разложения на множители

    Пример. Все как всегда.

    Решение логарифмического уравнения можно провести методом разложения на множители, так как в левой части уравнения находится произведение двух выражений с переменной, а в правой – нуль.

    Первый шаг – переход к совокупности уравнений:

    Второй шаг – решение полученных логарифмических уравнений.

    Первое уравнение можно решить по определению логарифма, а второе — методом потенцирования, после предварительного переноса второго логарифма в правую часть со знаком «плюс»:

    На последнем шаге остается выяснить, принадлежат ли найденные корни 2 и 5 ОДЗ для решаемого логарифмического уравнения :

    На этом решение логарифмического уравнения методом разложения на множители завершено.

    путем введения новой переменной (замены переменной)

    Решение логарифмических уравнений методом введения новой переменной, как правило, проводится в следующих типичных ситуациях:

    • Когда переменная находится в составе некоторой сложной функции, как, например, в уравнении
    • Когда переменная фигурирует в нескольких одинаковых выражениях и нигде более. Вот примеры логарифмических уравнений, соответствующие сказанному:

    (часто, одинаковые выражение с переменной прячут за свойствами степеней, и приведенное выше в пример логарифмическое уравнение, скорее, будет выглядеть так или так )

  • Когда в логарифмическом уравнении переменная находится только под знаками логарифмов, которые получаются один из другого перестановкой местами выражения под его знаком и в основании. Вот такое логарифмическое уравнение
  • Пример №1. Вводить или не вводить?

    Решите логарифмическое уравнение

    Введение новой переменной 2−log2x=t позволяет перейти от логарифмического уравнения к сравнительно простому уравнению t 4 =16 с понятной структурой и очевидным решением:

    Возврат к старой переменной дает два логарифмических уравнения 2−log2x=2 и 2−log2x=−2 , решив которые находим интересующее нас решение исходного уравнения:

    Итак, логарифмическое уравнение имеет два корня 1 и 16 .

    В заключение заметим: введение новой переменной в подобных и, прямо скажем, простых ситуациях настолько прозрачно, что его проводят «в уме», и не отражают в решении:

    Пример №2. Оказывается, оно квадратное.

    Выражения 2 2·(log5x) 2 и 2 (log5x) 2 , в которых содержится переменная в заданном логарифмическом уравнении, почти одинаковые. Различие вносит лишь число 2 в показателе первой степени. Здесь несложно догадаться, что по свойству степени в степени, выражение 2 2·(log5x) 2 можно переписать как (2 (log5x) 2 ) 2 , что открывает дорогу к замене переменной 2 (log5x) 2 =t и переходу к квадратному уравнению t 2 −15·t−16=0 с новой переменной t .

    Итак, проведем решение логарифмического уравнения через замену переменной:

    Пример. Взаимно обратные логарифмы.

    Решите логарифмическое уравнение

    Здесь полезно вспомнить следствие из формулы перехода к новому основанию логарифма, которому отвечает формула logab=1/logba , a>0 , a≠1 , b>0 , b≠1 . Так возникает идея обозначить один из логарифмов в заданном логарифмическом уравнении за t , тогда другой логарифм будет выражаться через новую переменную t как 1/t .

    Остается вернуться к старой переменной x , и закончить решение. Мы принимали logx+3(3·x+13)=t и нашли t=2 , поэтому

    Итак, логарифмическое уравнение имеет единственное решение 1 .

    дробь равна нулю

    Решите логарифмическое уравнение

    Решение логарифмических уравнений, в левых частях которых находится дроби, а в правых – нули, проводится в соответствии с методом решения уравнений «дробь равна нулю». При этом надо приравнять числитель дроби к нулю, и решить это уравнение на ОДЗ для исходного уравнения.

    Итак, решение начинаем с приравнивания к нулю числителя дроби из левой части заданного уравнения. Это дает уравнение log3(x−3) 2 −4=0 , которое равносильно уравнению log3(x−3) 2 =4 . Решение полученного логарифмического уравнения можно провести по определению логарифма:

    Остается проверить, принадлежат ли найденные корни области допустимых значений переменной x для исходного логарифмического уравнения. В нашем случае условий, которые определяют ОДЗ, довольно много, поэтому, кажется, рациональнее действовать через непосредственную подстановку. Подставим найденные корни в исходное уравнение и посмотрим, что при этом получается.

    Подстановка x1=12 дает верное числовое равенство

    Поэтому, 12 является корнем.

    При подстановке x2=−6 получается не имеющее смысла выражение , так как под знаками логарифмов в знаменателе – отрицательные числа. Значит, −6 – посторонний корень.

    методом логарифмирования

    Решение логарифмических уравнений в определенных случаях приходится проводить через логарифмирование обеих частей уравнения. Обычно, к логарифмированию прибегают тогда, когда в одной части уравнения находится показательно степенное выражение, а в другой – положительное число, как в следующих уравнениях , и т.п.

    Давайте решим одно из них, чтобы стало понятно, что дает логарифмирование уравнения.

    Пример. Дожили, лог уравнения логарифмируем

    Данное уравнение – это типичный представитель уравнений, для решения которых используется метод логарифмирования. В левой части уравнения – степень, на ОДЗ для уравнения эта степень принимает только положительные значения. Это открывает возможность прологарифмировать обе части заданного уравнения. В нашем случае логарифмирование целесообразно проводить по основанию 2 , так как в исходном уравнении присутствует логарифм с таким основанием. Так и поступим:

    Для нашего уравнения ОДЗ определяется условием x>0 . Поэтому, мы спокойно можем вынести степень из-под знака логарифма, оперевшись на соответствующее свойство логарифмов (подробнее про решение логарифмических уравнений через преобразования поговорим в одном из следующих пунктов):

    И это, собственно, то, ради чего логарифмирование затевалось – привести логарифмическое уравнение к более простому и привычному виду. Дальнейшие преобразования не требуют комментирования:

    Полученное логарифмическое уравнение, очевидно, можно решить методом замены переменной:

    графическим методом

    К решению логарифмических уравнений графическим методом обычно прибегают тогда, когда, во-первых, функции, отвечающие частям заданного логарифмического уравнения, довольно простые в плане построения их графиков, и, во-вторых, не видно других более простых вариантов получить решение.

    Пример. Графически так графически.

    Сколько корней имеет уравнение

    Сама формулировка задания подсказывает, что, скорее всего, решить уравнение, что называется, в лоб, и указать не только количеств корней, но и сами эти корни, не выйдет. Иначе бы вопрос стоял «решить уравнение». Действительно, путей решения этого уравнения не видно.

    Однако, количество корней удобно определять по графикам функций, соответствующих частям уравнения. Более того, в данном случае построить графики этих функций довольно просто. Нам хорошо известны функции и y=log2x и их графики. Графики интересующих нас функций и y=log2(x−2) будут иметь схожую геометрию с точностью до преобразований растяжения и симметрии. Поэтому, нам достаточно взять несколько опорных точек, чтобы изобразить нужные кривые. Давайте получим их, учитывая, что область определения функции — это x≤15/4 , а область определения функции y=log2(x−2) — это x>2 .

    Отмечаем эти точки на плоскости в прямоугольной системе координат, соединяем их плавными линиями, и чертеж готов:

    Видно, что графики имеют одну точку пересечения на отрезке от трех до пятнадцати четвертых. Больше их быть не может, так как функция убывает на указанном отрезке от до нуля, а функция y=log2(x−2) возрастает на этом отрезке от нуля до log2(7/4) .

    Это позволяет нам утверждать, что уравнение имеет один корень.

    через подбор корня и возрастание-убывание функций

    Решение логарифмических уравнений иногда приходится проводить, основываясь на возрастании и убывании функций, соответствующих частям уравнения. Это касается ситуаций, когда простые и привычные пути решения не просматриваются, но зато очевиден или легко подбирается корень логарифмического уравнения, а также легко обосновывается возрастание и убывание соответствующих функций. Приведем пример.

    Пример. Подбор и единственность.

    Для заданного уравнения не видно других подходов к решению, кроме как обращаться к функциям и их свойствам. Можно строить графики, но делать это для функции, отвечающей правой части уравнения, не очень приятно из-за довольно «большого» числа 11 и довольно «высокой» степени 5 . Попробуем обойтись без чертежа.

    Вместо этого обопремся на возрастание логарифмической функции, отвечающей левой части уравнения, и убывание функции, отвечающей правой части уравнения (она убывает, как возрастающая от убывающей). Это позволяет утверждать, что если уравнение имеет корень, то он единственный. А найти корень позволяет подбор по рекомендациям, данным в статье, посвященной методу решения уравнений через возрастание-убывание, – им является число 10 .

    На этом решение логарифмического уравнения завершено.

    методом оценки

    Пример. Оценить и дорешать.

    Своего рода оценочная классика: логарифм, синус, косинус, корень – все в одном уравнении. Итак, пробуем провести решение уравнения методом оценки. Но сначала, все же, квадратный корень из квадрата заменим модулем:

    Теперь к оценкам.

    Косинус принимает значения из отрезка −1 до 1 , а его модуль – [0, 1] . Следовательно, . С другой стороны, как четная степень, откуда . Таким образом, значения выражения из левой части уравнения не превосходят 1 , а значения выражения из правой части уравнения не меньше 1 . Это позволяет нам заменить решение исходного уравнения решением следующей системы

    Что делать с первым уравнением системы — сразу не понятно, зато вполне реально получить решение второго логарифмического уравнения:

    Теперь путем подстановки выясним, удовлетворяют ли найденные корни логарифмического уравнения 2 и 3 первому уравнению системы, а значит, системе в целом, и исходному уравнению.

    Давайте начнем с числа 3 , с ним все просто:

    Это верное равенство, следовательно, 3 – решение системы и корень исходного уравнения.

    А вот с числом 2 придется повозиться.

    Это равенство неверное (обоснуем чуть ниже), следовательно, 2 – не является решением системы, и не является корнем исходного уравнения.

    Таким образом, уравнение имеет один единственный корень 3 .

    А вот обещанное обоснование.

    Модуль косинуса равен единице, если аргумент косинуса равен . А не равно sin10 ни при каком целом k . Действительно, при k=0 , очевидно, sin10≠0 . При любом другом целом k равенство неверное, так как значения синуса находятся в отрезке от −1 до 1 .

    через ОДЗ

    Решение логарифмических уравнений часто требует нахождения ОДЗ: когда для проведения преобразований, когда для проверки. А порою ОДЗ позволяет даже получить решение.

    Пример. ОДЗ от безысходности.

    Беглый анализ уравнения, можно сказать, ставит в тупик относительно способа его решения. И почти единственным и, так или иначе, адекватным мероприятием выглядит нахождение ОДЗ. Что называется, в любом случае пригодится.

    Вот как все обернулось: ОДЗ есть пустое множество. Следовательно, уравнение не имеет корней.

    методом освобождения от внешней функции

    Признаемся, почти никогда для решения логарифмических уравнений не приходилось прибегать к методу освобождения от внешней функции. Однако для полноты картины не помешает привести решение соответствующего примера.

    Пример. Попробуй разгляди.

    Найдите решение уравнения

    Как тут действовать? Непонятно, что здесь можно предложить в альтернативу методу освобождения от внешней функции.

    А так заданное логарифмическое уравнение можно рассматривать как уравнение , где функция f такая, что . Очевидно, f – возрастающая функция как сумма двух возрастающих. Это позволяет освободиться от внешней функции f в уравнении , то есть, на ОДЗ перейти к уравнению .

    Здесь заметим, что область допустимых значений переменной для полученного уравнения совпадает с ОДЗ для исходного уравнения (она такова ). Значит, решение полученного уравнения является решением исходного уравнения.

    Остается решить логарифмическое уравнение , что можно сделать через потенцирование:

    Решение логарифмических уравнений через преобразование

    Редкий раз решение логарифмических уравнений обходится без проведения преобразований. Характерными для логарифмических уравнений являются преобразования, проводящиеся на базе свойств корней и степеней. Все они по отдельности разобраны в статье «Преобразование логарифмических уравнений». Здесь мы рассмотрим примеры решения логарифмических уравнений со сравнительно сложными последовательностями преобразований.

    Для начала напомним о необходимости использования модулей при вынесении четных показателей степеней из-под знаков логарифмов, а также при переходе от логарифмов произведений (частных) к суммам (разностям) логарифмов.

    Пример. Про модуль не забыть.

    Решите логарифмическое уравнение

    Просматривается возможность прийти к одинаковым логарифмам в левой части уравнения. Для начала вынесем показатель 2 из-под знака логарифма, и так как он есть четное число, то не забудем про модуль:

    Для раскрытия модуля нам потребуется ОДЗ для исходного уравнения:

    С учетом этого, имеем

    Дальше все просто:

    Теперь еще раз обратим внимание на преобразование квадратов, кубов и других степеней логарифмов. Уж очень часто приходится видеть неверные преобразования, типа , вместо , или , вместо и т.п.

    Пример. Квадраты логарифмов.

    Просматривается возможность упростить вид заданного логарифмического уравнения. Для начала перепишем его как , чтобы не наделать ошибок при преобразовании квадратов логарифмов. Дальше все довольно прозрачно:

    Теперь пора ввести новую переменную:

    Остается вернуться к старой переменной:

    Наконец, рассмотрим пример решения довольно сложного логарифмического уравнения, где сильно переплетены степени и логарифмы.

    Просматриваются черты основного логарифмического тождества. Сейчас поработаем в этом направлении. Но сначала давайте найдем область допустимых значений переменной x – она бывает нужна при проведении преобразований и при проведении проверки. Тем более, в нашем случае ОДЗ находится легко:

    Теперь приступаем к преобразованию:

    А дальше все легко:

    При найденных значениях переменной знаменатели дробей в уравнении в нуль не обращаются, а также 0 и 2 принадлежат ОДЗ для исходного уравнения, следовательно, являются его корнями.

    Решение однородных логарифмических уравнений

    В задачниках встречаются логарифмические уравнения, которые являются однородными уравнениями относительно некоторых логарифмов. Например, lg 2 (x+1)−lg(x+1)·lg(x−1)−2·lg 2 (x−1)=0 – это логарифмическое уравнение, однородное относительно логарифмов lg(x+1) и lg(x−1) .

    Решение однородных логарифмических уравнений завязано на преобразовании, заключающемся в делении обеих частей уравнения на «старшую» степень одного из логарифмов, что в дальнейшем позволяет ввести новую переменную. При этом необходимо отдельно проверять, не являются ли корнями уравнения те значения переменной, при которых обращается в нуль логарифм, на который планируется проводить деление. Давайте обратимся к конкретному примеру.

    Возьмем наше уравнение lg 2 (x+1)−lg(x+1)·lg(x−1)−2·lg 2 (x−1)=0 . Оно, как мы отметили, является однородным относительно логарифмов lg(x+1) и lg(x−1) . Давайте разделим обе части этого уравнения на старшую степень второго из этих логарифмов, то есть, на lg 2 (x−1) . Но, как известно, делить обе части уравнения мы имеем право только на выражение, не обращающееся в нуль, в противном случае можно потерять корни. Поэтому, стоит отдельно проверить, не являются ли корнями уравнения значения переменной, при которых lg 2 (x−1)=0 , а уже после этого спокойно проводить задуманное деление, не опасаясь потерять корни. В нашем случае lg 2 (x−1)=0 только при x=2 . Но x=2 не является решением исходного уравнения, так как его подстановка в исходное уравнение дает неверное числовое равенство. Теперь можно переходить к делению, считая lg 2 (x−1)≠0 . Имеем:

    Дальше напрашиваются следующие преобразования

    Остается закончить решение, воспользовавшись методом введения новой переменной. Приняв , имеем

    Вычисление логарифмов: способы, примеры, решения

    Вычисление логарифмов по определению

    В простейших случаях возможно достаточно быстро и легко выполнить нахождение логарифма по определению. Давайте подробно рассмотрим, как происходит этот процесс.

    Его суть состоит в представлении числа b в виде a c , откуда по определению логарифма число c является значением логарифма. То есть, нахождению логарифма по определению отвечает следующая цепочка равенств: logab=logaa c =c .

    Итак, вычисление логарифма по определению сводится к нахождению такого числа c , что a c =b , а само число c есть искомое значение логарифма.

    Учитывая информацию предыдущих абзацев, когда число под знаком логарифма задано некоторой степенью основания логарифма, то можно сразу указать, чему равен логарифм – он равен показателю степени. Покажем решения примеров.

    Найдите log22 −3 , а также вычислите натуральный логарифм числа e 5,3 .

    Определение логарифма позволяет нам сразу сказать, что log22 −3 =−3 . Действительно, число под знаком логарифма равно основанию 2 в −3 степени.

    Аналогично находим второй логарифм: lne 5,3 =5,3 .

    log22 −3 =−3 и lne 5,3 =5,3 .

    Если же число b под знаком логарифма не задано как степень основания логарифма, то нужно внимательно посмотреть, нельзя ли прийти к представлению числа b в виде a c . Часто такое представление бывает достаточно очевидно, особенно когда число под знаком логарифма равно основанию в степени 1 , или 2 , или 3 , …

    Вычислите логарифмы log525 , и .

    Несложно заметить, что 25=5 2 , это позволяет вычислять первый логарифм: log525=log55 2 =2 .

    Переходим к вычислению второго логарифма . Число можно представить в виде степени числа 7 : (при необходимости смотрите степень с дробным показателем ). Следовательно, .

    Перепишем третий логарифм в следующем виде . Теперь можно увидеть, что , откуда заключаем, что . Следовательно, по определению логарифма .

    Коротко решение можно было записать так: .

    log525=2 , и .

    Когда под знаком логарифма находится достаточно большое натуральное число, то его не помешает разложить на простые множители. Это часто помогает представить такое число в виде некоторой степени основания логарифма, а значит, вычислить этот логарифм по определению.

    Найдите значение логарифма .

    Разложение на простые множители числа под знаком логарифма имеет вид 7776=2 5 ·3 5 , откуда следует, что 7776=6 5 . Полученное выражение несложно представить в виде степени числа . Так как , то (в последнем переходе мы использовали свойство степени в степени ). Таким образом, . На этом вычисление логарифма завершено.

    .

    В заключение этого пункта отметим, что мы не ставили целью рассмотреть все способы представления числа под знаком логарифма в виде некоторой степени основания. Наша цель заключалась в том, чтобы дать самые часто используемые варианты действий, приводящие к результату при вычислении логарифмов по определению.

    Как решать «вложенные» логарифмические уравнения

    Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого логарифма. Оба уравнения мы будем решать с помощью канонической формы.Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого. Оба уравнения мы будем решать с помощью канонической формы. Напомню, если у нас есть простейшее логарифмическое уравнение вида log a f ( x ) = b , то для решения такого уравнения мы выполняем следующие шаги. В первую очередь, нам нужно заменить число b :

    Заметьте: a b — это аргумент. Точно так же в исходном уравнении аргументом является функция f ( x ). Затем мы переписываем уравнение и получаем вот такую конструкцию:

    log a f ( x ) = log a a b

    Уже затем мы можем выполнить третий шаг — избавится от знака логарифма и просто записать:

    В результате мы получим новое уравнение. При этом никаких ограничений на функцию f ( x ) не накладывается. Например, на ее месте также может стоять логарифмическая функция. И тогда мы вновь получим логарифмическое уравнение, которое снова сведем к простейшему и решим через каноническую форму.

    Впрочем, хватит лирики. Давайте решим настоящую задачу. Итак, задача № 1:

    Как видим, перед нами простейшее логарифмическое уравнение. В роли f ( x ) выступает конструкция 1 + 3 log2 x , а в роли числа b выступает число 2 (в роли a также выступает двойка). Давайте перепишем эту двойку следующим образом:

    Важно понимать, что первые две двойки пришли к нам из основания логарифма, т. е. если бы в исходном уравнении стояла 5, то мы бы получили, что 2 = log5 5 2 . В общем, основание зависит исключительно от логарифма, который изначально дан в задаче. И в нашем случае это число 2.

    Итак, переписываем наше логарифмическое уравнение с учетом того, что двойка, которая стоит справа, на самом деле тоже является логарифмом. Получим:

    Переходим к последнему шагу нашей схемы — избавляемся от канонической формы. Можно сказать, просто зачеркиваем знаки log. Однако с точки зрения математики «зачеркнуть log» невозможно — правильнее сказать, что мы просто просто приравниваем аргументы:

    Отсюда легко находится 3 log2 x :

    Мы вновь получили простейшее логарифмическое уравнение, давайте снова приведем его к канонической форме. Для этого нам необходимо провести следующие изменения:

    Почему в основании именно двойка? Потому что в нашем каноническом уравнении слева стоит логарифм именно по основанию 2. Переписываем задачу с учетом этого факта:

    Снова избавляемся от знака логарифма, т. е. просто приравниваем аргументы. Мы вправе это сделать, потому что основания одинаковые, и больше никаких дополнительных действий ни справа, ни слева не выполнялось:

    Вот и все! Задача решена. Мы нашли решение логарифмического уравнения.

    Обратите внимание! Хотя переменная х и стоит в аргументе (т. е. возникают требования к области определения), мы никаких дополнительных требований предъявлять не будем.

    Как я уже говорил выше, данная проверка является избыточной, если переменная встречается лишь в одном аргументе лишь одного логарифма. В нашем случае х действительно стоит лишь в аргументе и лишь под одним знаком log. Следовательно, никаких дополнительных проверок выполнять не требуется.

    Тем не менее, если вы не доверяете данному методу, то легко можете убедиться, что х = 2 действительно является корнем. Достаточно подставить это число в исходное уравнение.

    Давайте перейдем ко второму уравнению, оно чуть интересней:

    Если обозначить выражение внутри большого логарифма функцией f ( x ), получим простейшее логарифмическое уравнение, с которого мы начинали сегодняшний видеоурок. Следовательно, можно применить каноническую форму, для чего придется представить единицу в виде log2 2 1 = log2 2.

    Переписываем наше большое уравнение:

    Изваляемся от знака логарифма, приравнивая аргументы. Мы вправе это сделать, потому что и слева, и справа основания одинаковые. Кроме того, заметим, что log2 4 = 2:

    log1/2 (2 x − 1) + 2 = 2

    Перед нами снова простейшее логарифмическое уравнение вида log a f ( x ) = b . Переходим к канонической форме, т. е. представляем ноль в виде log1/2 (1/2)0 = log1/2 1.

    Переписываем наше уравнение и избавляемся от знака log, приравнивая аргументы:

    Опять же мы сразу получили ответ. Никаких дополнительных проверок не требуется, потому что в исходном уравнении лишь один логарифм содержит функцию в аргументе.

    Следовательно, никаких дополнительных проверок выполнять не требуется. Мы можем смело утверждать, что х = 1 является единственным корнем данного уравнения.

    А вот если бы во втором логарифме вместо четверки стояла бы какая-то функция от х (либо 2х стояло бы не в аргументе, а в основании) — вот тогда потребовалось бы проверять область определения. Иначе велик шанс нарваться на лишние корни.

    Откуда возникают такие лишние корни? Этот момент нужно очень четко понимать. Взгляните на исходные уравнения: везде функция х стоит под знаком логарифма. Следовательно, поскольку мы записали log2 x , то автоматически выставляем требование х > 0. Иначе данная запись просто не имеет смысла.

    Однако по мере решения логарифмического уравнения мы избавляемся от всех знаков log и получаем простенькие конструкции. Здесь уже никаких ограничений не выставляется, потому что линейная функция определена при любом значении х.

    Именно эта проблема, когда итоговая функция определена везде и всегда, а исходная — отнюдь не везде и не всегда, и является причиной, по которой в решении логарифмических уравнениях очень часто возникают лишние корни.

    Но повторю еще раз: такое происходить лишь в ситуации, когда функция стоит либо в нескольких логарифмах, либо в основании одного из них. В тех задачах, которые мы рассматриваем сегодня, проблем с расширением области определения в принципе не существует.

    Тонкости и хитрости решения

    Сегодня мы переходим к более сложным задачам и будем решать логарифмическое уравнение, в основании которого стоит не число, а функция.

    И пусть даже эта функция линейна — в схему решения придется внести небольшие изменения, смысл которых сводится к дополнительным требованиям, накладываемым на область определения логарифма.

    Логарифмические уравнения. Методы решения

    На самом деле существует целая масса подходов: это и разложение на множители, и потенцирование, и замена, и работа с основаниями…

    Но все методы решения логарифмических уравнения роднит одно: их цель свести логарифмические уравнения к простейшему виду::

    Если уравнение сведено к такому, что слева и справа от знака «равно» стоят логарифмы с одним основанием, то логарифмы мы «зачеркиваем» и решаем оставшееся уравнение.

    Однако, тут есть один подводный камень: поскольку логарифм определен только тогда, когда

    то после нахождения корней логарифмического уравнения, мы обязаны сделать проверку. Я не поленюсь и повторю еще раз:

    В ЛОГАРИФМИЧЕСКИХ УРАВНЕНИЯХ МЫ ВСЕГДА ДЕЛАЕМ ПРОВЕРКУ ПОЛУЧЕННЫХ КОРНЕЙ!!

    Те учащиеся, которые игнорируют это требование, как правило допускают глупейшие и непростительные ошибки!

    Согласись, обидно решить правильно уравнение, а потом не сделать самую малость: проверку, и записать лишние корни, и записать из-за этого неправильный ответ!

    Формулы логарифмов. Логарифмы примеры решения



    Теперь на основе этих формул(свойств), покажем примеры решения логарифмов.

    Примеры решения логарифмов на основании формул

    Логарифм положительного числа b по основанию a (обозначается logab) — это показатель степени, в которую надо возвести a, чтобы получить b, при этом b > 0, a > 0, а 1.

    Согласно определения logab = x, что равносильно ax = b, поэтому logaax = x.

    log749 = 2, т.к. 72 = 49

    Десятичный логарифм — это обычный логарифм, в основании которого находится 10. Обозначается как lg.

    log10100 = 2, т.к. 102 = 100

    Натуральный логарифм — также обычный логарифм логарифм, но уже с основанием е (е = 2,71828… — иррациональное число). Обозначается как ln.

    Формулы или свойства логарифмов желательно запомнить, потому что они понадобятся нам в дальнейшем при решении логарифмов, логарифмических уравнений и неравенств. Давайте еще раз отработаем каждую формулу на примерах.

    Основное логарифмическое тождество
    a logab = b
    Пример.
    82log83 = (82log83)2 = 32 = 9

    Логарифм произведения равен сумме логарифмов loga (bc) = logab + logac
    Пример.
    log38,1 + log310 = log3 (8,1*10) = log381 = 4

    Логарифм частного равен разности логарифмов
    loga (b/c) = logab — logac
    Пример.
    9 log550/9 log52 = 9 log550- log52 = 9 log525 = 9 2 = 81

    Свойства степени логарифмируемого числа и основания логарифма

    Показатель степени логарифмируемого числа logab m = mlogab

    Показатель степени основания логарифма loganb =1/n*logab

    loganb m = m/n*logab,

    если m = n, получим loganb n = logab

    log49 = log223 2 = log23

    Переход к новому основанию
    logab = logcb/logca,

    если c = b, получим logbb = 1

    тогда logab = 1/logba

    log0,83*log31,25 = log0,83*log0,81,25/log0,83 = log0,81,25 = log4/55/4 = -1

    Как видите, формулы логарифмов не так сложны как кажутся. Теперь рассмотрев примеры решения логарифмов мы можем переходить к логарифмическим уравнениям.

    Область допустимых значений (ОДЗ) логарифма

    Теперь поговорим об ограничениях (ОДЗ – область допустимых значений переменных).

    Мы помним, что, например, квадратный корень нельзя извлекать из отрицательных чисел; или если у нас дробь, то знаменатель не может быть равен нулю. Подобные ограничения есть и у логарифмов:

    То есть и аргумент, и основание должны быть больше нуля, а основание еще и не может равняться .

    Начнем с простого: допустим, что . Тогда, например, число не существует, так как в какую бы степень мы не возводили , всегда получается . Более того, не существует ни для какого . Но при этом может равняться чему угодно (по той же причине – в любой степени равно ). Поэтому объект не представляет никакого интереса, и его просто выбросили из математики.

    Похожая проблема у нас и в случае : в любой положительной степени – это , а в отрицательную его вообще нельзя возводить, так как получится деление на ноль (напомню, что ).

    При мы столкнемся с проблемой возведения в дробную степень (которая представляется в виде корня: . Например, (то есть ), а вот не существует.

    Поэтому и отрицательные основания проще выбросить, чем возиться с ними.

    Ну а поскольку основание a у нас бывает только положительное, то в какую бы степень мы его ни возводили, всегда получим число строго положительное. Значит, аргумент должен быть положительным. Например, не существует, так как ни в какой степени не будет отрицательным числом (и даже нулем, поэтому тоже не существует).

    В задачах с логарифмами первым делом нужно записать ОДЗ. Приведу пример:

    Вспомним определение: логарифм – это степень, в которую надо возвести основание , чтобы получить аргумент . И по условию, эта степень равна : .

    Получаем обычное квадратное уравнение: . Решим его с помощью теоремы Виета: сумма корней равна , а произведение . Легко подобрать, это числа и .

    Но если сразу взять и записать оба этих числа в ответе, можно получить 0 баллов за задачу. Почему? Давайте подумаем, что будет, если подставить эти корни в начальное уравнение?

    – это явно неверно, так как основание не может быть отрицательным, то есть корень – «сторонний».

    Чтобы избежать таких неприятных подвохов, нужно записать ОДЗ еще до начала решения уравнения:

    Тогда, получив корни и , сразу отбросим корень , и напишем правильный ответ.

    Использование свойств логарифмов при вычислении

    Мощным инструментом вычисления логарифмов является использование свойств логарифмов .

    Некоторые свойства логарифмов позволяют сразу указать значение логарифмов. К таким свойствам относятся свойство логарифма единицы и свойство логарифма числа, равного основанию: log11=logaa 0 =0 и logaa=logaa 1 =1 . То есть, когда под знаком логарифма находится число 1 или число a , равное основанию логарифма, то в этих случаях логарифмы равны 0 и 1 соответственно.

    Чему равны логарифмы и lg10 ?

    Так как , то из определения логарифма следует .

    Во втором примере число 10 под знаком логарифма совпадает с его основанием, поэтому десятичный логарифм десяти равен единице, то есть, lg10=lg10 1 =1 .

    и lg10=1 .

    Отметим, что вычисление логарифмов по определению (которое мы разобрали в предыдущем пункте) подразумевает использование равенства logaa p =p , которое является одним из свойств логарифмов.

    На практике, когда число под знаком логарифма и основание логарифма легко представляются в виде степени некоторого числа, очень удобно использовать формулу , которая соответствует одному из свойств логарифмов. Рассмотрим пример нахождения логарифма, иллюстрирующий использование этой формулы.

    Вычислите логарифм .

    Число под знаком логарифма и основание логарифма можно записать в виде степени двойки: и . Таким образом, . Для вычисления полученного логарифма воспользуемся свойством логарифма , получаем (при затруднениях с вычислениями смотрите статью действия с обыкновенными дробями ).

    .

    Не упомянутые выше свойства логарифмов также используются при вычислении, но об этом поговорим в следующих пунктах.

    Зачем в жизни нужны логарифмы?

    Я уже говорил, что математики СУПЕРленивые люди? Это правда.

    Вот представь себе, им лень умножать и они придумали логарифмы, которые позволяют заменить умножение сложением!

    Им еще больше лень возводить в степень и они используют логарифмы, чтобы заменить возведение в степень умножением или делением!

    То есть они используют логарифмы, чтобы быстро проделывать громоздкие вычисления.

    Пример Найдите корень уравнения.

    Здесь для решения данного логарифмического уравнения будем использовать свойство логарифма:

    То есть внесем число 3 справа под знак логарифма.

    Если показатели степени равны, основания степени равны, то равны числа, получаемые в результате, то есть получим

    Делаем проверку:

    Получаем:

    Ответ:

    Степень можно выносить за знак логарифма

    log a b p =p log a b (a>0,a≠1,b>0) (7)

    И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

    log a (f (x) 2 =2 log a f(x)

    Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть — только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

    Формула перехода к новому основанию

    log a b= log c b log c a (a>0,a≠1,b>0,c>0,c≠1) (8)

    Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

    Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

    log a b= 1 log b a (a>0,a≠1,b>0,b≠1) (9)

    Десятичным логарифмом числа x называется логарифм по основанию 10. Десятичные логарифмы используются довольно часто, поэтому для них введено специальное обозначение: log10x = lg x. Все перечисленные выше формулы сохраняют актуальность для десятичных логарифмов. Например, lg(xy)=lgx+lgy (x>0,y>0) .

    Натуральным логарифмом числа x (обозначение lnx) называется логарифм х по основанию e. Число e — иррациональное, приближенно равно 2,71. Например, ln e = 1. Пользуясь формулой (8), можно любой логарифм свести к десятичным или натуральным логарифмам: log a b= lgb lga = lnb lna (a>0,a≠1,b>0)

    Несколько простых примеров с логарифмами

    Пример 1. Вычислите: lg2 + lg50. Решение. lg2 + lg50 = lg100 = 2. Мы воспользовались формулой суммы логарифмов (5) и определением десятичного логарифма.

    Пример 2. Вычислите: lg125/lg5. Решение. lg125/lg5 = log5125 = 3. Мы использовали формулу перехода к новому основанию (8).

    a log a b =b (a>0,a≠1)
    log a a=1 (a>0,a≠1)
    log a 1=0 (a>0,a≠1)
    log a (bc)= log a b+ log a c (a>0,a≠1,b>0,c>0)
    log a b c = log a b− log a c (a>0,a≠1,b>0,c>0)
    log a b p =p log a b (a>0,a≠1,b>0)
    log a b= log c b log c a (a>0,a≠1,b>0,c>0,c≠1)
    log a b= 1 log b a (a>0,a≠1,b>0,b≠1)

    Сложные задачи

    Этот урок будет довольно длинным. В нем мы разберем два довольно серьезных логарифмических уравнения, при решении которых многие ученики допускают ошибки. За свою практику работы репетитором по математике я постоянно сталкивался с двумя видами ошибок:

    1. Возникновение лишних корней из-за расширения области определения логарифмов. Чтобы не допускать такие обидные ошибки, просто внимательно следите за каждым преобразованием;
    2. Потери корней из-за того, что ученик забыл рассмотреть некоторые «тонкие» случаи — именно на таких ситуациях мы сегодня и сосредоточимся.

    Это последний урок, посвященный логарифмическим уравнениям. Он будет длинным, мы разберем сложные логарифмические уравнения. Устраивайтесь поудобней, заварите себе чай, и мы начинаем.

    Первое уравнение выглядит вполне стандартно:

    Сразу заметим, что оба логарифма являются перевернутыми копиями друг друга. Вспоминаем замечательную формулу:

    Однако у этой формулы есть ряд ограничений, которые возникают в том случае, если вместо чисел а и b стоят функции от переменной х:

    Эти требования накладываются на основание логарифма. С другой стороны, в дроби от нас требуется 1 ≠ a > 0, поскольку не только переменная a стоит в аргументе логарифма ( следовательно, a > 0), но и сам логарифм находится в знаменателе дроби. Но log b 1 = 0, а знаменатель должен быть отличным от нуля, поэтому a ≠ 1.

    Итак, ограничения на переменную a сохраняется. Но что происходит с переменной b ? С одной стороны, из основания следует b > 0, с другой — переменная b ≠ 1, потому что основание логарифма должно быть отлично от 1. Итого из правой части формулы следует, что 1 ≠ b > 0.

    Но вот беда: второе требование ( b ≠ 1) отсутствует в первом неравенстве, посвященном левому логарифму. Другими словами, при выполнении данного преобразования мы должны отдельно проверить, что аргумент b отличен от единицы!

    Вот давайте и проверим. Применим нашу формулу:

    [Подпись к рисунку]

    А теперь, прежде чем идти дальше, выпишем все требования области определения, накладываемые на исходную задачу:

    1 ≠ х − 0,5 > 0; 1 ≠ х + 1 > 0

    Вот мы и получили, что уже из исходного логарифмического уравнения следует, что и а, и b должны быть больше 0 и не равны 1. Значит, мы спокойно можем переворачивать логарифмическое уравнение:

    Предлагаю ввести новую переменную:

    В этом случае наша конструкция перепишется следующим образом:

    Заметим, что в числителе у нас стоит разность квадратов. Раскрываем разность квадратов по формуле сокращенного умножения:

    Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Но в числителе стоит произведение, поэтому приравниваем к нулю каждый множитель:

    Как видим, оба значения переменной t нас устраивают. Однако на этом решение не заканчивается, ведь нам требуется найти не t , а значение x . Возвращаемся к логарифму и получаем:

    Давайте приведем каждое из этих уравнений к канонической форме:

    Избавляемся от знака логарифма в первом случае и приравниваем аргументы:

    Такое уравнение не имеет корней, следовательно, первое логарифмическое уравнение также не имеет корней. А вот со вторым уравнением все намного интересней:

    Решаем пропорцию — получим:

    Напоминаю, что при решении логарифмических уравнений гораздо удобней приводить все десятичные дроби обычные, поэтому давайте перепишем наше уравнение следующим образом:

    x 2 + x − 1/2 x − 1/2 − 1 = 0;

    x 2 + 1/2 x − 3/2 = 0.

    Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

    Получили два корня — они являются кандидатами на решение исходного логарифмического уравнения. Для того чтобы понять, какие корни действительно пойдут в ответ, давайте вернемся к исходной задаче. Сейчас мы проверим каждый из наших корней на предмет соответствия области определения:

    1,5 ≠ х > 0,5; 0 ≠ х > −1.

    Эти требования равносильны двойному неравенству:

    Отсюда сразу видим, что корень х = −1,5 нас не устраивает, а вот х = 1 вполне устраивает. Поэтому х = 1 — окончательное решение логарифмического уравнения.

    Переходим ко второй задаче:

    На первый взгляд может показаться, что у всех логарифмов разные основания и разные аргументы. Что делать с такими конструкциями? В первую очередь заметим, что числа 25, 5 и 625 — это степени 5:

    А теперь воспользуемся замечательным свойством логарифма. Дело в том, что можно выносить степени из аргумента в виде множителей:

    На данное преобразование также накладываются ограничения в том случае, когда на месте b стоит функция. Но у нас b — это просто число, и никаких дополнительных ограничений не возникает. Перепишем наше уравнение:

    Получили уравнение с тремя слагаемыми, содержащими знак log. Причем аргументы всех трех логарифмов равны.

    Самое время перевернуть логарифмы, чтобы привести их к одному основанию — 5. Поскольку в роли переменной b выступает константа, никаких изменений области определения не возникает. Просто переписываем:

    Как и предполагалось, в знаменателе «вылезли» одни и те же логарифмы. Предлагаю выполнить замену переменной:

    В этом случае наше уравнение будет переписано следующим образом:

    Выпишем числитель и раскроем скобки:

    2 ( t + 3) ( t + 2) + t ( t + 2) − 4 t ( t + 3) = 2 ( t 2 + 5 t + 6) + t 2 + 2 t − 4 t 2 − 12 t = 2 t 2 + 10 t + 12 + t 2 + 2 t − 4 t 2 − 12 t = − t 2 + 12

    Возвращаемся к нашей дроби. Числитель должен быть равен нулю:

    А знаменатель — отличен от нуля:

    Последние требования выполняются автоматически, поскольку все они «завязаны» на целые числа, а все ответы — иррациональные.

    Итак, дробно-рациональное уравнение решено, значения переменной t найдены. Возвращаемся к решению логарифмического уравнения и вспоминаем, что такое t :

    Приводим это уравнение к канонической форме, получим число с иррациональной степенью. Пусть это вас не смущает — даже такие аргументы можно приравнять:

    У нас получилось два корня. Точнее, два кандидата в ответы — проверим их на соответствие области определения. Поскольку в основании логарифма стоит переменная х, потребуем следующее:

    С тем же успехом утверждаем, что х ≠ 1/125, иначе основание второго логарифма обратится в единицу. Наконец, х ≠ 1/25 для третьего логарифма.

    Итого мы получили четыре ограничения:

    1 ≠ х > 0; х ≠ 1/125; х ≠ 1/25

    А теперь вопрос: удовлетворяют ли наши корни указанным требованиям? Конечно удовлетворяют! Потому что 5 в любой степени будет больше нуля, и требование х > 0 выполняется автоматически.

    С другой стороны, 1 = 5 0 , 1/25 = 5 −2 , 1/125 = 5 −3 , а это значит, что данные ограничения для наших корней (у которых, напомню, в показателе стоит иррациональное число) также выполнены, и оба ответа являются решениями задачи.

    Итак, мы получили окончательный ответ. Ключевых моментов в данной задаче два:

    1. Будьте внимательны при перевороте логарифма, когда аргумент и основание меняются местами. Подобные преобразования накладывают лишние ограничения на область определения.
    2. Не бойтесь преобразовывать логарифмы: их можно не только переворачивать, но и раскрывать по формуле суммы и вообще менять по любым формулам, которые вы изучали при решении логарифмических выражений. Однако при этом всегда помните: некоторые преобразования расширяют область определения, а некоторые — сужают.

    Логарифм: что это? Все формулы. Простейшие уравнения и неравенства

    Сейчас речь пойдет о трех страшных буквах: l o g.Существовать в нашем бытии они просто так не могут. Обязательно должен быть какой-нибудь индекс — число снизу (основание логарифма) и число после букв (аргумент логарифма).

    Прежде, чем мы перейдем к тому, что такое логарифм, решим парочку подводящих примеров.

    Чтобы справиться с этим примером, мы проговариваем в голове: какое число нужно дважды (т.к. корень квадратный) умножить само на себя, чтобы получить 81.

    А этот пример можно решить по алгоритму (решения показательных уравнений), а можно так же провести разговор с самим собой (главное не вслух, я считаю это нормально, но кого-то вы можете напугать разговором с самим собой): сколько раз нужно число 3 умножить само на себя, чтобы получить 27. Постепенным перемножением мы дойдем до ответа.

    Тогда, если дело касается логарифма:

    можно сказать так: в какую степень нужно возвести 3 (число снизу — основание логарифма), чтобы получить 27 (число слева — аргумент логарифма). Не напоминает выше стоящий пример?

    На самом деле в этом и заключается основная формула (определение логарифма):

    Логарифм говорит нам (кому-то кричит): логарифм числа «b» по основанию «a» равняется числу «c». Тогда без логарифма это можно сформулировать так: чтобы получить число «b», требуется число «a» возвести в степень «c». Логарифм — это действие, обратное возведению в степень.

    У отца log есть два родных сына: ln и lg. Так же, как сыновья отличаются возрастом (мы говорим о максимальной точности), так и эти логарифмы отличаются основанием (числовым индексом снизу).

    Данные логарифмы придумали для упрощения записи. На самом деле в прикладной математики именно логарифмы по такому основанию встречаются чаще всех остальных. А мы все в глубине души народ ленивый, так что почему бы себе жизнь не упростить?

    Что нужно запомнить: ln — это обычный логарифм только по основанию e ( e — это число Эйлера, e = 2,7182…, мой номер телефона, кстати, — это последние 11 цифр числа Эйлера, так что буду ждать звонка).

    А lg — это обычный логарифм по основанию 10 (10ая система — это система счисления, в которой мы живем, столько пальцев на руках у среднего человека. В общем 10 — это как 9, только на 1 больше).

    Как мы не можем существовать без еды, воды, интернета… Так и логарифм не представляет свое существование без ОДЗ.

    Всегда, когда существует логарифм, должно быть:

    «Почему это так?» — это первый вопрос, который я предоставляю тебе. Советую начать с того, что логарифм — это обратное действие от возведения в степень.

    А теперь разберем теорию на практике:

    В какую степень нужно возвести два (число в основании), чтобы получить шестнадцать (аргумент логарифма).

    Два нужно четыре раза умножить само на себя, чтобы получить 16.

    Нахождение логарифмов через другие известные логарифмы

    Информация этого пункта продолжает тему использования свойств логарифмов при их вычислении. Но здесь основное отличие состоит в том, что свойства логарифмов используются для того, чтобы выразить исходный логарифм через другой логарифм, значение которого известно. Приведем пример для пояснения. Допустим, мы знаем, что log23≈1,584963 , тогда мы можем найти, например, log26 , выполнив небольшое преобразование с помощью свойств логарифма: log26=log2(2·3)=log22+log23≈ 1+1,584963=2,584963 .

    В приведенном примере нам было достаточно использовать свойство логарифма произведения. Однако намного чаще приходится применять более широкий арсенал свойств логарифмов, чтобы вычислить исходный логарифм через заданные.

    Вычислите логарифм 27 по основанию 60 , если известно, что log602=a и log605=b .

    Итак, нам нужно найти log6027 . Несложно заметить, что 27=3 3 , и исходный логарифм в силу свойства логарифма степени можно переписать как 3·log603 .

    Теперь посмотрим, как log603 выразить через известные логарифмы. Свойство логарифма числа, равного основанию, позволяет записать равенство log6060=1 . С другой стороны log6060=log60(2 2 ·3·5)= log602 2 +log603+log605= 2·log602+log603+log605 . Таким образом, 2·log602+log603+log605=1 . Следовательно, log603=1−2·log602−log605=1−2·a−b .

    Наконец, вычисляем исходный логарифм: log6027=3·log603= 3·(1−2·a−b)=3−6·a−3·b .

    Отдельно стоит сказать о значении формулы перехода к новому основанию логарифма вида . Она позволяет от логарифмов с любыми основаниями переходить к логарифмам с конкретным основанием, значения которых известны или есть возможность их отыскать. Обычно от исходного логарифма по формуле перехода переходят к логарифмам по одному из оснований 2 , e или 10 , так как по этим основаниям существуют таблицы логарифмов, позволяющие с определенной степенью точности вычислять их значения. В следующем пункте мы покажем, как это делается.


    источники:

    http://www.cleverstudents.ru/equations/solving_logarithmic_equations.html

    http://exceltut.ru/vychislenie-logarifmov-sposoby-primery-resheniya/