Разложить на множители корни уравнения

Разложение квадратного корня на множители: внесение и вынесение

На первый взгляд может показаться, что процедура разложения квадратного корня на множители сложная и неприступная. Но это не так. В этой статье мы расскажем вам, как подступиться к квадратному корню и множителям, а также легко и просто разложить квадратный корень, воспользовавшись двумя проверенными методами.

Разложение корня на множители

Для начала определим цель процедуры разложения квадратного корня на множители. Цель — упростить квадратный корень и записать его в удобном для вычислений виде.

Разложение квадратного корня на множители — нахождение двух или нескольких чисел, которые, при условии перемножения их друг на друга, дадут число равное исходному. Например: 4×4 = 16.

Если вы найдете множители, то сможете легко упростить выражение с квадратным корнем или вовсе его упразднить:

Разделите подкоренное число на 2, если оно четное.

Подкоренное число всегда следует делить на простые числа, поскольку любое значение простого числа можно разложить на простые множители. Если у вас нечетное число, то попробуйте разделить его на 3. Не делится на 3? Делите дальше на 5, 7, 9 и т.д.

Запишите выражение в виде корня произведения двух чисел.

Например, можно упростить таким способом 98 : = 98 ÷ 2 = 49 . Из этого следует, что 2 × 49 = 98 , поэтому можно переписать задачу следующим образом: 98 = ( 2 × 49 ) .

Продолжите раскладывать числа, пока под корнем не останется произведение двух одинаковых чисел и других чисел.

Возьмем наш пример ( 2 × 49 ) :

Поскольку 2 уже и так максимально упрощено, необходимо упростить 49 . Ищем простое число, на которое можно разделить 49 . Очевидно, что ни 3 , ни 5 не подходят. Остается 7 : 49 ÷ 7 = 7 , поэтому 7 × 7 = 49 .

Записываем пример в следующем виде: ( 2 × 49 ) = ( 2 × 7 × 7 ) .

Упростите выражение с квадратным корнем.

Поскольку в скобках у нас произведение 2 и двух одинаковых чисел ( 7 ) , то мы можем вынести за знак корня число 7 .

( 2 × 7 × 7 ) = ( 2 ) × ( 7 × 7 ) = ( 2 ) × 7 = 7 ( 2 ) .

В тот момент, когда под корнем оказалось два одинаковых числа, останавливайтесь с разложением чисел на множители. Конечно, если вы использовали все возможности по максимуму.

Запомните: существуют корни, которые можно упрощать многократно.

В таком случае, числа, которые мы выносим из-под корня, и числа, которые стоят перед ним, перемножаются.

180 = ( 2 × 90 ) 180 = ( 2 × 2 × 45 ) 180 = 2 45

но 45 можно разложить на множители и еще раз упростить корень.

180 = 2 ( 3 × 15 ) 180 = 2 ( 3 × 3 × 5 ) 180 = 2 × 3 5 180 = 6 5

Когда невозможно получить два одинаковых числа под знаком корня, это значит, что упростить такой корень нельзя.

Если после разложения подкоренного выражения на произведение простых чисел, у вас не получилось получить два одинаковых числа, то такой корень упростить нельзя.

70 = 35 × 2 , поэтому 70 = ( 35 × 2 )

35 = 7 × 5 , поэтому ( 35 × 2 ) = ( 7 × 5 × 2 )

Как видим, все три множителя — простые числа, которые нельзя разложить на множители. Среди них нет одинаковых чисел, поэтому не представляется возможным вынести целое число из-под корня. Упростить 70 нельзя.

Полный квадрат

Запомните несколько квадратов простых чисел.

Квадрат числа получается, если умножить его на самого себя, т.е. при возведении в квадрат. Если вы запомните десяток квадратов простых чисел, то это очень упростить вам жизнь в дальнейшем упрощении корней.

1 2 = 1 2 2 = 4 3 2 = 9 4 2 = 16 5 2 = 25 6 2 = 36 7 2 = 49 8 2 = 64 9 2 = 81 10 2 = 100

В случае если под знаком корня квадратного корня находится полный квадрат, то стоит убрать знак корня и записать квадратный корень данного полного квадрата.

1 = 1 4 = 2 9 = 3 16 = 4 25 = 5 36 = 6 49 = 7 64 = 8 81 = 9 100 = 10

Попробуйте разложить число под знаком корня на произведения полного квадрата и другого числа.

Если вы видите, что подкоренное выражение раскладывается на произведение полного квадрата и какого-либо числа, то, запомнив несколько примеров, вы существенно сэкономите время и нервы:

50 = ( 25 × 2 ) = 5 2 . Если подкоренное число оканчивается на 25, 50 или 75, вы всегда можете разложить его на произведение 25 и какого-то числа.

1700 = ( 100 × 17 ) = 10 17 . Если подкоренное число оканчивается на 00, вы всегда можете разложить его на произведение 100 и какого-то числа.

72 = ( 9 × 8 ) = 3 8 . Если сумма цифр подкоренного числа равна 9, вы всегда можете разложить его на произведение 9 и какого-то числа.

Попробуйте разложить подкоренное число на произведение нескольких полных квадратов: вынесите их из-под знака корня и перемножьте.

72 = ( 9 × 8 ) 72 = ( 9 × 4 × 2 ) 72 = 9 × 4 × 2 72 = 3 × 2 × 2 72 = 6 2

Разложение квадратного трёхчлена на множители

Как разложить на множители квадратный трёхчлен

Квадратный трёхчлен — это многочлен вида ax 2 + bx + c .

В прошлых уроках мы решали квадратные уравнения. Общий вид таких уравнений выглядел так:

Левая часть этого уравнения является квадратным трёхчленом.

Одним из полезных преобразований при решении задач является разложение квадратного трёхчлена на множители. Для этого исходный квадратный трёхчлен приравнивают к нулю и решают квадратное уравнение. В этом случае говорят, что выполняется поиск корней квадратного трёхчлена.

Полученные корни x1 и x2 следует подстáвить в следующее выражение, которое и станет разложением:

Таким образом, чтобы разложить квадратный трёхчлен на множители при помощи решения квадратного уравнения, нужно воспользоваться следующей готовой формулой:

Где левая часть — исходный квадратный трёхчлен.

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена. Для этого приравняем данный квадратный трёхчлен к нулю и решим квадратное уравнение:

В данном случае коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента. Чтобы сэкономить время, некоторые подробные вычисления можно пропустить:

Итак, x1 = 6 , x2 = 2 . Теперь воспользуемся формулой ax 2 + bx + c = a(xx1)(xx2). В левой части вместо выражения ax 2 + bx + c напишем свой квадратный трёхчлен x 2 8x + 12. А в правой части подставим имеющиеся у нас значения. В данном случае a = 1, x1 = 6, x2 = 2

Если a равно единице (как в данном примере), то решение можно записать покороче:

Чтобы проверить правильно ли разложен квадратный трёхчлен на множители, нужно раскрыть скобки у правой части получившегося равенства.

Раскроем скобки у правой части равенства, то есть в выражении (x − 6)(x − 2) . Если мы всё сделали правильно, то должен получиться квадратный трёхчлен x 2 8x + 12

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Приравняем данный квадратный трёхчлен к нулю и решим уравнение:

Как и в прошлом примере коэффициент b является чётным. Поэтому можно воспользоваться формулами для чётного второго коэффициента:

Итак, x1 = 4 , x2 = 3 . Приравняем квадратный трехчлен 2x 2 − 14x + 24 к выражению a(xx1)(xx2) , где вместо переменных a , x1 и x2 подстáвим соответствующие значения. В данном случае a = 2

Выполним проверку. Для этого раскроем скобки у правой части получившегося равенства. Если мы всё сделали правильно, то должен получиться квадратный трёхчлен 2x 2 − 14x + 24

Как это работает

Разложение квадратного трёхчлена на множители происходит, если вместо коэффициентов квадратного трёхчлена подстáвить теорему Виета и выполнить тождественные преобразования.

Для начала рассмотрим случай, когда коэффициент a квадратного трёхчлена равен единице:

Вспоминаем, что если квадратное уравнение является приведённым, то теорема Виета имеет вид:

Тогда приведённый квадратный трехчлен x 2 + bx + c можно разложить на множители следующим образом. Сначала выразим b из уравнения x1 + x2 = −b . Для этого можно умножить обе его части на −1

Переменную c из теоремы Виета выражать не нужно — она уже выражена. Достаточно поменять местами левую и правую часть:

Теперь подставим выраженные переменные b и c в квадратный трёхчлен x 2 + bx + c

Раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Из первых скобок вынесем общий множитель x , из вторых скобок — общий множитель −x2

Далее замечаем, что выражение ( xx1 ) является общим множителем. Вынесем его за скобки:

Но это был случай, когда исходный квадратный трёхчлен является приведённым. В нём коэффициент a равен единице. И соответственно, в формуле разложения такого квадратного трехчлена коэффициент a можно опустить.

Теперь рассмотрим случай, когда коэффициент a квадратного трёхчлена не равен единице. Это как раз тот случай, когда в формуле разложения присутствует перед скобками коэффициент a

Вспоминаем, что если квадратное уравнение не является приведённым, то есть имеет вид ax 2 + bx + c = 0 , то теорема Виета принимает следующий вид:

Это потому что теорема Виета работает только для приведённых квадратных уравнений. А чтобы уравнение ax 2 + bx + c = 0 стало приведённым, нужно разделить обе его части на a

Далее чтобы квадратный трёхчлен вида ax 2 + bx + c разложить на множители, нужно вместо b и c подставить соответствующие выражения из теоремы Виета. Но в этот раз нам следует использовать равенства и

Для начала выразим b и c . В первом равенстве умножим обе части на a . Затем обе части получившегося равенства умножим на −1

Теперь из второго равенства выразим c . Для этого умножим обе его части на a

Теперь подставим выраженные переменные b и с в квадратный трёхчлен ax 2 + bx + c . Для наглядности каждое преобразование будем выполнять на новой строчке:

Здесь вместо переменных b и c были подставлены выражения −ax1 − ax2 и ax1x2 , которые мы ранее выразили из теоремы Виета. Теперь раскроем скобки там где это можно:

В получившемся выражении выполним разложение многочлена на множители способом группировки. В данном случае удобно сгруппировать первый член со вторым, а третий с четвёртым:

Теперь из первых скобок вынесем общий множитель ax , а из вторых — общий множитель −ax2

Далее замечаем, что выражение x − x1 тоже является общим множителем. Вынесем его за скобки:

Вторые скобки содержат общий множитель a . Вынесем его за скобки. Его можно расположить в самом начале выражения:

Отметим, что если квадратный трехчлен не имеет корней, то его нельзя разложить на множители. Действительно, если не найдены корни квадратного трёхчлена, то нéчего будет подставлять в выражение a(xx1)(xx2) вместо переменных x1 и x2 .

Если квадратный трёхчлен имеет только один корень, то этот корень одновременно подставляется в x1 и x2 . Например, квадратный трёхчлен x 2 + 4x + 4 имеет только один корень −2

Тогда значение −2 в процессе разложения на множители будет подставлено вместо x1 и x2 . А значение a в данном случае равно единице. Её можно не записывать, поскольку это ничего не даст:

Скобки внутри скобок можно раскрыть. Тогда получим следующее:

При этом если нужно получить короткий ответ, последнее выражение можно записать в виде (x + 2) 2 поскольку выражение (x + 2)(x + 2) это перемножение двух сомножителей, каждый из которых равен (x + 2)

Примеры разложений

Пример 1. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения. В левой части напишем квадратный трёхчлен 3x 2 − 2x − 1 , а в правой части — его разложение в виде a(xx1)(xx2) , где вместо a , x1 и x2 подстáвим соответствующие значения:

Во вторых скобках можно заменить вычитание сложением:

Пример 2. Разложить на множители следующий квадратный трёхчлен:

Упорядочим члены так, чтобы старший коэффициент располагался первым, средний — вторым, свободный член — третьим:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Упростим получившееся разложение. Вынесем за первые скобки общий множитель 3

Теперь воспользуемся сочетательным законом умножения. Напомним, что он позволяет перемножать сомножители в любом порядке. Умножим 3 на вторые скобки. Это позвóлит избавиться от дроби в этих скобках:

Пример 3. Разложить на множители следующий квадратный трёхчлен:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Пример 4. Найдите значение k , при котором разложение на множители трёхчлена 3x 2 − 8x + k содержит множитель (x − 2)

Если разложение содержит множитель (x − 2) , то один из корней квадратного трёхчлена равен 2 . Пусть корень 2 это значение переменной x1

Чтобы найти значение k , нужно знать чему равен второй корень. Для его определения воспользуемся теоремой Виета.

В данном случае квадратный трёхчлен не является приведённым, поэтому сумма его корней будет равна дроби , а произведение корней — дроби

Выразим из первого равенства переменную x2 и сразу подстáвим найденное значение во второе равенство вместо x2

Теперь из второго равенства выразим k . Так мы найдём его значение.

Пример 5. Разложить на множители следующий квадратный трёхчлен:

Перепишем данный трёхчлен в удобный для нас вид. Если в первом члене заменить деление умножением, то получим . Если поменять местами сомножители, то получится . То есть коэффициент a станет равным

Коэффициент b можно перевести в обыкновенную дробь. Так проще будет искать дискриминант:

Найдём корни квадратного трёхчлена:

Воспользуемся формулой разложения:

Задания для самостоятельного решения

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Возникло желание поддержать проект?
Используй кнопку ниже

Разложение квадратного трёхчлена на множители

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы с вами научимся раскладывать квадратные трёхчлены на линейные множители. Для этого необходимо вспомнить теорему Виета и обратную ей. Данное умение поможет нам быстро и удобно раскладывать квадратные трёхчлены на линейные множители, а также упростит сокращение дробей, состоящих из выражений.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»


источники:

http://spacemath.xyz/razlozhenie-kvadratnogo-tryohchlena-na-mnozhiteli/

http://interneturok.ru/lesson/algebra/8-klass/kvadratnye-uravneniya-prodolzhenie/razlozhenie-kvadratnogo-tryohchlena-na-mnozhiteli