Разностное уравнение с постоянными коэффициентами

Решения разностных уравнений

Разностные уравнения для чайников

На этой странице мы рассмотрим примеры решения типовых задач, встречающихся в курсе дифференциальных и разностных уравнений, а именно нахождение общего или частного решения линейного разностного уравнения с постоянными коэффициентами. Чаще всего в контрольных встречаются уравнения второго или третьего порядка:

$$ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)=f(x), \\ a_0 y(x) + a_1 y(x+1) + a_2 y(x+2)+ a_3 y(x+3)=f(x). $$

Здесь $a_i$ — постоянные коэффициенты, $f(x)$ — правая часть (неоднородность уравнения), $y(x)$ — искомая неизвестная функция.

Решение разностных уравнений практически полностью аналогично решению линейных дифференциальных уравнений с постоянными коэффициентами (см. тут примеры): ищется решение однородного уравнения через составление характеристического уравнения, и частное решение неоднородного уравнения по виду правой части.

Примеры решений разностных уравнений

Задача 1. Решить разностное уравнение: $y(x+2)-4y(x+1)+4y(x)=2^x$

Задача 2. Найти общее решение линейного разностного неоднородного уравнения второго порядка с постоянными коэффициентами.

Задача 3. Решить разностное уравнение третьего порядка

$$ y(x+3)-16y(x+2)+83y(x+1)-140y(x)=0, \quad y(0)=3, y(1)=18, y(2)=120. $$

Задача 4. Найти частное решение однородного разностного уравнения:

Помощь с разностными уравнениями

Если вам нужна помощь с решением задач и контрольных по дифференциальным и разностным уравнениям (и другим разделам математического анализа), обращайтесь в МатБюро. Стоимость подробной консультации от 100 рублей , оформление производится в Word, срок от 1 дня.

Разностные уравнения

Содержание:

Разностные уравнения

Понятие разницы и разностного уравнения

Если для значений переменной x1, x2, x3, . функция f (x) принимает значения f (x1), f (x2), f (x3) . , то приращения функции составляют f (x2) – f (x1), f (x3) – f (x2), .

Приращение функции при переходе от значения xi к значению xi+1 будем обозначать: В частности можно взять в качестве значения независимых переменных x и x + 1 . Разность Δf (x) = f (x + 1) — f (x) называется первой разностью или разностью первого порядка. Она может рассматриваться в свою очередь как функция от x, а потому и для нее можно определить разницу:

Введем обозначения ΔΔf (x) = Δ 2 f (x), тогда Δ 2 f (x) = f (x + 2) — 2 f (x + 1) + f (x) и называется разностью второго порядка.

Аналогично можно найти разности третьего, четвертого и т. д. порядков.

Определим разности некоторых важнейших функций.

1) Если f (x) = С, где С — постоянная величина, то
Δf (x) = f (x + 1) – f (x) = С – С = 0.

Понятно, что и все разности следующих порядков будут также равняться нулю.

2) Если f (x) = ax + b, то
Δf = Δf (x + 1) — f (x) = a (x + 1) + b — ax — b = a.

Разница первого порядка линейной функции равна постоянной, а все остальные будут равны нулю.

3) Если f (x) = ax 2 + bx + c, то

Поскольку разница первого порядка является линейной функцией, то разница второго порядка — постоянная, а все последующие разности равны нулю.

4) Если f (x) = a x , то

В экономических исследованиях часто встречаются задачи, в которых время t является независимой переменной, а зависимая переменная определяется для времени t, t + 1, t + 2 и т. д.

Обозначим yt — значение функции y в момент времени t; yt+1 — значение функции в момент, сдвинутый на одну единицу, например, на следующий час, на следующую неделю и т. д., yt+2 — значение функции y в момент, сдвинутый на две единицы и т. д.

Очевидно, что

Откуда:

За разность второго порядка, имеем или
поэтому

Аналогично можно доказать, что

Итак, любую функцию

можно представить в виде: (7.50)
и наоборот.

Определение. Уравнение
(7.51)
называется разностным уравнением n-го порядка.

Решить разностное уравнение n-го порядка — это значит найти такую ​​функцию yt, которая превращает уравнение (7.50) или (7.51) в тождество.

Решение, в котором есть произвольная постоянная, называется общим; решение, в котором постоянная отсутствует, называется частным.

Определение. Уравнение
(7.52)
где a0, a1, . an — постоянные числа, называется неоднородным разностным
уравнением n-го порядка с постоянными коэффициентами.

Если в уравнении (7.52) f (t) = 0, то уравнение называется однородным разностным уравнением n-го порядка с постоянными коэффициентами:
(7.53)

Уравнение есть однородное разностное уравнение первого порядка с постоянными коэффициентами a и b, а уравнение неоднородное разностное уравнение второго порядка с постоянными коэффициентами a, b, c.

ТЕОРЕМА 1. Если решениями однородного разностного уравнения (7.53) является y1 (t) и y2 (t), то его решением будет также функция y1 (t) + y2 (t).

ТЕОРЕМА 2. Если y (t) является решением однородного разностного уравнения (7.53), то его решением будет также функция Ay (t), где А — произвольная постоянная.

ТЕОРЕМА 3. Если y (t) — частное решение неоднородного уравнения (7.52) и y (t, A1, A2, . An) — общее решение однородного уравнения (7.53), то общим решением неоднородного разностного уравнения будет функция: y (t) + y (t, A1, A2, . An).

Эти теоремы схожи с теоремами для дифференциальных уравнений, которые были приведены нами в предыдущем разделе.

Разностные уравнения первого порядка с постоянными коэффициентами

Рассмотрим неоднородное разностное уравнение
(7.54)

Соответствующее ему однородное уравнение будет:
(7.55)

Возьмем функцию и убедимся, что она будет решением уравнения (7.55). Поскольку , тогда . Подставим yt и yt-1 в уравнение (7.55):
Итак, является решением уравнения (7.55).

По теореме (2) общее решение однородного разностного уравнения (7.55) является функция , где А — произвольная постоянная.

Пусть — частное решение неоднородного разностного уравнения (7.54). По теореме (3) общим решением неоднородного разностного уравнения (7.54) будет функция

Частное решение найти нетрудно, если f (t) = α, где α — некоторая постоянная. На самом деле, если где u — постоянная. Подставим в уравнение (7.54), имеем: u — au = α, откуда
Итак, общее решение уравнения (7.54) запишем в виде: .

Разностные уравнения второго порядка с постоянными коэффициентами

Пусть задано неоднородное разностное уравнение второго порядка с постоянными коэффициентами:
(7.56)
и соответствующее ему однородное уравнение
(7.57)

Убедимся, что функция будет решением уравнения (7.58). Подставим в уравнение (7.57) (λ ≠ 0), получим Поскольку λ ≠ 0, то поделим на λ t-2 , имеем λ 2 + aλ + b = 0 (7.58)

Это уравнение называется характеристическим уравнением для уравнения (7.57).

Здесь могут иметь место следующие три случая:

1. D = a 2 – 4b > 0, тогда уравнение (7.58) будет иметь два действительных различных корня.
Общее решение уравнения (7.57) запишется в виде:

а общее решение неоднородного уравнения (7.56) запишется так:

2. D = a 2 – 4b = 0, тогда и и

В этом случае однородное уравнение (7.57) примет вид:
(7.59)
Тогда

Легко убедиться, что решением уравнения (7.59) является также функция
Поэтому общим решением уравнения (7.59) является функция а общим решением неоднородного уравнения (7.56) функция

3. D = a 2 – 4b 2 – 5λ + 6 = 0 будет иметь действительные разные корни (D = 25 – 24 = 1 > 0), λ1 =2, λ2 = 3.
Общим решением однородного уравнения является функция

Далее положим, что yt = y — частное решение неоднородного уравнения, тогда

Таким образом, общим решением неоднородного уравнения является функция Постоянные A1 и A2 определим из начальных условий: y0 = 5, y1 = 9. Тогда для t = 0 и t = 1 соответственно будем иметь:

Решим эту систему уравнений относительно A1 и A2:

Откуда

Итак, — общее решение заданного в условии разностного уравнения.

Примеры применения разностных уравнений в экономических задачах

Пример 1. Пусть некоторая сумма средств выдается под сложный процент p, то к концу t-го года ее размер будет составлять:
Это однородное разностное уравнение первого порядка. Его решением будет функция , где A — некоторая постоянная, которую можно найти из начальных условий.

Если положить y0 = F , то A = F, откуда

Это известная формула величины фонда F, который выдается под сложный процент.

Пример 2. Пусть величина предложения сельскохозяйственной продукции в t-м году есть функция цены прошлого года а спрос на эту продукцию есть функция цены в этом году. Следовательно, спрос: а предложение

Цена равновесия для данной продукции определяется равенством:
а это разностное уравнение первого порядка.

Положим, что функция спроса определяется формулой а функция предложения — формулой

Цена равновесия запишется: то есть Решением этого уравнения является функция Постоянная A определяется из начальных условий, для t = 0 цена составляет p0.

Тогда p0 = A и решением уравнения является функция
Если начальная цена p0 = 0, то pt = 0 для всех значений t.

Следовательно, цена не подлежит изменению.

Вообще говоря, функция предложения — возрастающая, а потому b > 0; а функция спроса — убывающая, и поэтому a

Присылайте задания в любое время дня и ночи в ➔

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Решение обыкновенных линейных разностных уравнений с постоянными коэффициентами

Страницы работы

Содержание работы

Решение обыкновенных линейных разностных уравнений

с постоянными коэффициентами

Связь выхода и входа линейной дискретной системы может быть описана обыкновенным линейным разностным уравнением с постоянными коэффициентами

,

где y[n]— выходной сигнал в момент n,

x[n] — входной сигнал в момент n,

Для решения таких уравнений могут использоваться два метода

  • Прямой метод,
  • Метод Z – преобразования.

Вначале рассмотрим решение линейного разностного уравнения с помощью прямого метода.

Общее решение неоднородного (с отличной от нуля правой частью) линейного разностного уравнения равно сумме общего решения линейного однородного разностного уравнения и частного решения неоднородного уравнения

Общее решение однородного разностного уравнения (zero-input response) yh[n]

определяется в виде

.

Подставляя это решение в однородное уравнение, получаем

или .

Такой полином называют характеристическим полиномом системы. Он имеет N корней . Корни могут быть действительными или комплексными и некоторые корни — совпадающими (кратными).

Если корни являются действительными и разными, то решение однородного уравнения имеет вид

,

где коэффициенты определяются по начальным условиям.

Если некоторый корень, например, λ1 имеет кратность m, то соответствующий ему член решения приобретает форму

.

Если все коэффициенты однородного уравнения и соответственно характеристического многочлена действительны, то два члена решения, соответствующие простым комплексно сопряженным корням можно представить (записать) в виде , при этом коэффициенты A, B определяются по начальным условиям.

Вид частного решения yp[n] уравнения зависит от правой части (входного сигнала) и определяется согласно нижеприведенной таблице

Таблица 1. Вид частного решения для различного характера правой части

Решение линейного разностного уравнения методом Z – преобразования заключается в применении Z – преобразования к уравнению с использованием свойств линейности и временного сдвига. В результате получается линейное алгебраическое уравнение относительно Z — изображения искомой функции. Обратное Z – преобразование дает искомое решение во временной области. Для получения обратного Z – преобразования чаще всего используется разложение рационального выражения на простые (элементарные) дроби, так как обратное преобразование от отдельной элементарной дроби имеет простой вид.

Заметим, что для перехода во временную область могут использоваться и другие методы вычисления обратного Z – преобразования.

Пример. Определим отклик (выходной сигнал) системы, описываемой линейным разностным уравнением , на входной сигнал

1. Прямой метод решения уравнения.

Однородное уравнение . Его характеристический полином .

Корни полинома .

Решение однородного уравнения .

Поскольку ,то частное решение определяем в виде .

Подставляем его в уравнение

.

Для нахождения константы К примем n = 2. Тогда

, или , К=2,33

Отсюда частное решение и общее решение разностного уравнения (1)

Найдем константы С1 и С2. Для этого положим n = 0, тогда из исходного разностного уравнения получаем . Для данного уравнения

, поэтому . Из выражения (1)

, следовательно,

.

Далее положим n = 1, при этом из уравнения следует . Поскольку , то

. Из выражения (1) для n = 1 имеем .
Получаем следующие два уравнения для С1 и С2

.

Решение этой системы дает следующие значения: С1 =0,486 и С2 = -0,816.

Следовательно, общее решение данного уравнения

2. Решение методом Z – преобразования.

Возьмем Z – преобразование от исходного разностного уравнения , учитывая свойство (теорему) временного сдвига . Получаем

Для данного уравнения , в связи с этим

. Разрешая это уравнение относительно Y(z), имеем

.
Для данного случая его Z — преобразование .

Подставляя его в предыдущее выражение, получаем решение уравнения в Z – области

.

Найдем корни полинома

.

Для получения решения уравнения во временной области представим Y(z) в виде суммы элементарных дробей

.

Определим коэффициенты A, B, C

, ,

.

Поэтому представление Y(z) как суммы элементарных дробей имеет вид

.

Обратное Z – преобразование от равно

Следовательно, решение уравнения во временной области имеет вид

Составил: доц. Щетинин Ю.И.


источники:

http://natalibrilenova.ru/raznostnyie-uravneniya/

http://vunivere.ru/work11372