Реактивное движение уравнение мещерского реактивная сила

Движение тела с переменной массой

Для начала сформулируем, что такое переменная масса.

Переменная масса – это масса тела, которая может меняться при медленных движениях из-за частичных приобретений или потерь составляющего вещества.

Уравнение движения материальной точки с переменной массой

Чтобы записать уравнение движения для тела с такой массой, возьмем для примера движение ракеты. В основе ее перемещений лежит очень простой принцип: она движется за счет выброса вещества с большой скоростью, а также сильного воздействия, оказываемого на это вещество. В свою очередь выбрасываемые газы также оказывают воздействие на ракету, придавая ей ускорение в противоположном направлении. Кроме того, ракета находится под действием внешних сил, таких, как гравитация Солнца и других планет, земная тяжесть, сопротивление среды, в которой она совершает движение.

Обозначим массу ракеты в какой-либо момент времени t как m ( t ) , а ее скорость как v ( t ) . То количество движения, которая она при этом совершает, будет равно m v . После того, как пройдет время d t , обе эти величины получат приращение (соответственно d m и d v , причем значение d m будет меньше 0 ). Тогда количество движения, совершаемого ракетой, станет равно:

( m + d m ) ( v + d v ) .

Нам необходимо учитывать тот момент, что за время d t также происходит движение газов. Это количество тоже нужно добавить в формулу. Оно будет равно d m г а з v г а з . Первый показатель означает массу газов, которые образуются за указанное время, а второй – их скорость.

Теперь нам нужно найти разность между суммарным количеством движения за время t + d t и количеством движения системы во время t . Так мы найдем приращение данной величины за время d t , которое будет равно F d t (буквой F обозначена геометрическая сумма всех тех внешних сил, которые действуют в это время на ракету).

В итоге мы можем записать следующее:

( m + d m ) ( v + d v ) + d m г а з + v г а з — m v = F d t .

Поскольку нам важны именно предельные значения d m d t , d v d t и их производные, приравняем эти показатели к нулю. Значит, после раскрытия скобок произведение d m · d v может быть отброшено. С учетом сохранения массы получим:

d m + d m г а з = 0 .

Теперь исключим массу газов d m г а з и получим скорость, с которой газы будут покидать ракету (скорость струи вещества), выражающаяся разностью v о т н = v г а з — v . Учитывая эти преобразования, можно переписать исходное уравнение в следующем виде:

d m v = v о т н d m + F d t .

Теперь разделим его на d t и получим:

m d v d t = v о т н d m d t + F .

Уравнение Мещерского

Форма полученного уравнения точно такая же, как у уравнения, выражающего второй закон Ньютона. Но, если там мы имеем дело с постоянной массой тела, то здесь из-за потери вещества она постепенно меняется. К тому же помимо внешней силы нужно учитывать так называемую реактивную силу. В примере с ракетой это будет сила выходящей из нее газовой струи.

Уравнение m d v d t = v о т н d m d t + F впервые вывел русский механик И.В. Мещерский, поэтому оно получило его имя. Также его называют уравнением движения тела с переменной массой.

Формула Циолковского

Попробуем исключить из уравнения движения ракеты внешние силы, воздействующие на нее. Предположим, что движение ракеты прямолинейно, а направление противоположно скорости газовой струи v о т н . Будем считать направление полета положительным, тогда проекция вектора v о т н является отрицательной. Она будет равна — v о т н . Переведем предыдущее уравнение в скалярную форму:

m d v = v о т н d m .

Тогда равенство примет вид:

d v d m = — v о т н m .

Газовая струя может выходить во время полета с переменной скоростью. Проще всего, разумеется, принять ее в качестве константы. Такой случай наиболее важен для нас, поскольку так уравнение решить намного проще.

Исходя из начальных условий, определим, какое значение приобретет постоянная интегрирования С. Допустим, что в начале пути скорость ракеты будет равна 0 , а масса m 0 . Следовательно, из предыдущего уравнения можем вывести:

C = v о т н ln m 0 m .

Тогда мы получим соотношения следующего вида:

v = v о т н ln m 0 m или m 0 m = e v v о т н .

Это соотношение и является формулой Циолковского.

Она предназначена для расчета запаса топлива, с помощью которого ракета может набрать необходимую скорость. При этом время сгорания топлива не обусловливает величину максимальной скорости ракеты. Чтобы разогнаться до предела, нужно увеличить скорость истечения газов. Для достижения первой космической скорости следует изменить конструкцию ракеты. Она должна быть многоступенчатой, поскольку необходимо меньшее соотношение между требуемой массой топлива и массой ракеты.

Разберем несколько примеров применения данных построений на практике.

Условие: у нас есть космический корабль, скорость которого постоянна. Для изменения направления полета в ней нужно включить двигатель, который выбрасывает газовую струю со скоростью v о т н . Направление выброса перпендикулярно траектории корабля. Определите угол изменения вектора скорости при начальной массе корабля m 0 и конечной m .

Решение

Ускорение по абсолютной величине будет равно a = ω 2 r = ω v , причем v = c o n s t .

Значит, уравнение движения будет выглядеть так:

m d v d t = v о т н d m d t перейдет в m v ω d t = — v о т н d m .

Поскольку d a = ω d t является углом поворота за время d t , то после интеграции первоначального уравнения получим:

a = v о т н v ln m 0 m .

Ответ: искомый угол будет равен a = v о т н v ln m 0 m .

Условие: масса ракеты перед стартом равна 250 к г . Вычислите высоту, которую она наберет через 20 секунд после начала работы двигателя. Известно, что топливо расходуется со скоростью 4 к г / с , а скорость истечения газов постоянна и равна 1500 м / с . Поле тяготения Земли можно считать однородным.

Решение

Начнем с записи уравнения Мещерского. Оно будет иметь следующий вид:

m ∆ v 0 ∆ t = μ v о т н — m g .

Здесь m = m 0 — μ t и v 0 – скорость ракеты в заданный момент времени. Разделим переменные:

∆ v 0 = μ v о т н m 0 — μ t — g ∆ t .

Теперь решим полученное уравнение с учетом первоначальных условий:

v 0 = v о т н ln m 0 m 0 — μ t — g t .

С учетом того, что H 0 = 0 при t = 0 , у нас получится:

H = v о т н t — g t 2 2 + v о т н m 0 μ 1 — μ t m 0 ln 1 — μ t m 0 .

Добавим заданные значения и найдем ответ:

H = v о т н t — g t 2 2 + v о т н m 0 μ 1 — μ t m 0 ln 1 — μ t m 0 = 3177 , 5 м .

Ответ: через 20 секунд высота ракеты будет составлять 3177 , 5 м .

§ 5.4. Реактивное движение. Уравнение Мещерского. Реактивная сила

Какое движение называется реактивным?

Под реактивным движением понимают движение тела, возникающее при отделении некоторой его части с определенной скоростью относительно тела, например при истечении продуктов сгорания из сопла реактивного летательного аппарата. При этом появляется так называемая реактивная сила, сообщающая телу ускорение.

Наблюдать реактивное движение очень просто. Надуйте детский резиновый шарик и отпустите его. Шарик стремительно взовьется вверх (рис. 5.4). Движение, правда, будет кратковременным. Реактивная сила действует лишь до тех пор, пока продолжается истечение воздуха.

Главная особенность реактивной силы состоит в том, что она возникает без какого-либо взаимодействия с внешними телами. Происходит лишь взаимодействие между ракетой и вытекающей из нее струей вещества.

Сила же, сообщающая ускорение автомобилю или пешеходу на земле, пароходу на воде или винтовому самолету в воздухе, возникает только за счет взаимодействия этих тел с землей, водой или воздухом.

При истечении продуктов сгорания топлива они за счет давления в камере сгорания приобретают некоторую скорость относительно ракеты и, следовательно, некоторый импульс. Поэтому в соответствии с законом сохранения импульса сама ракета получает такой же по модулю импульс, но направленный в противоположную сторону.

Масса ракеты с течением времени убывает. Ракета в полете является телом переменной массы. Для расчета ее движения удобно применить закон сохранения импульса.

Уравнение Мещерского

Выведем уравнение движения ракеты и найдем выражение для реактивной силы. Будем считать, что скорость вытекающих из ракеты газов относительно ракеты постоянна и равна . Внешние силы на ракету не действуют: она находится в космическом пространстве вдали от звезд и планет.

Пусть в некоторый момент времени скорость ракеты относительно инерциальной системы, связанной со звездами, равна (рис. 5.5, а), а масса ракеты равна М. Через малый интервал времени Δt масса ракеты станет равной

где μ — расход топлива(1).

За этот лее промежуток времени скорость ракеты изменится на Δ и станет равной 1 = + Δ. Скорость истечения газов относительно выбранной инерциальной системы отсчета равна + (рис. 5.5,б), так как до начала сгорания топливо имело ту же скорость, что и ракета.

Запишем закон сохранения импульса для системы ракета — газ:

Раскрыв скобки, получим:

Слагаемым μΔtΔ можно пренебречь по сравнению с остальными, так как оно содержит произведение двух малых величин (это величина, как говорят, второго порядка малости). После приведения подобных членов будем иметь:

Это одно из уравнений Мещерского(2) для движения тела переменной массы, полученное им в 1897 г.

Если ввести обозначение р = -μ, то уравнение (5.4.1) совпадет по форме записи со вторым законом Ньютона. Однако масса тела М здесь не постоянна, а убывает со временем из-за потери вещества.

Величина р = -μ носит название реактивной силы. Она появляется вследствие истечения газов из ракеты, приложена к ракете и направлена противоположно скорости газов относительно ракеты. Реактивная сила определяется лишь скоростью истечения газов относительно ракеты и расходом топлива. Существенно, что она не зависит от деталей устройства двигателя. Важно лишь, чтобы двигатель обеспечивал истечение газов из ракеты со скоростью при расходе топлива μ. Реактивная сила космических ракет достигает 1000 кН.

Если на ракету действуют внешние силы, то ее движение определяется реактивной силой и суммой внешних сил. В этом случае уравнение (5.4.1) запишется так:

Принцип реактивного движения основан на том, что истекающие из реактивного двигателя газы получают импульс. Такой же по модулю импульс приобретает ракета.

Вопросы для самопроверки

  1. Реактивное движение совершает кальмар (рис. 5.6). Как это ему удается?

Рис. 5.6

  • Может ли парусная лодка приводиться в движение с помощью компрессора, установленного на лодке, если струя воздуха направлена на паруса? Что произойдет, если поток воздуха будет направлен мимо парусов?
  • Будет ли увеличиваться скорость ракеты, если скорость истечения газов относительно ракеты меньше скорости самой ракеты и вытекающие из сопла газы летят вслед за ракетой?
  • (1) Расходом топлива называется отношение массы сгоревшего топлива ко времени его сгорания.

    (2) Мещерский И. В. (1859—1935) — профессор Петербургского политехнического института. Его труды по механике тел переменной массы стали теоретической основой ракетной техники.

    Реактивное движение уравнение мещерского реактивная сила

    § 15. РЕАКТИВНОЕ ДВИЖЕНИЕ: УРАВНЕНИЕ МЕЩЕРСКОГО, РАБОТЫ ЦИОЛКОВСКОГО И ОСВОЕНИЕ КОСМОСА

    Реактивным движением называют движение тела, возникающее при отделении какой-либо его части.

    Движение большинства современных самолётов является реактивным, т.к. происходит в результате истечения с огромной скоростью нагретых в двигателе газов. При этом самолёт движется в сторону, противоположную скорости истечения газов. Так же движутся и ракеты, выбрасывая из сопла продукты сгорания топлива. Примером реактивного движения может служить и отдача ствола пушки при выстреле (см. §14).

    Силу, действующую на тело при реактивном движении, называют реактивной силой. Рассмотрим, от чего зависит её величина для ракеты, движущейся в космическом пространстве вдалеке от других тел. В таких условиях систему «ракета с истекающими из неё газами» можно считать замкнутой и для определения реактивной силы воспользоваться законом сохранения импульса.

    Пусть в момент времени t ракета имеет массу m и движется со скоростью v относительно выбранной нами инерциальной системы. Значит, импульс системы в момент t равен mv . Из сопла ракеты истекают продукты горения, и её масса уменьшается на m кг в единицу времени, поэтому в момент времени t — D t она будет равна m — m . D t , а импульс ракеты станет равным ( m — m . D t )( v + D v ). Если считать, что скорость истечения газов из ракеты относительно его сопла равна u , то импульс выброшенных из ракеты газов за промежуток времени D t составит m . D t ( u + v ). Приравнивая импульс системы в моменты t и t + D t , получаем:

    Раскрывая скобки в (15.1), приводя подобные члены и пренебрегая m . D t . D v , по сравнению с остальными членами, получим следующее уравнение:

    Если разделить обе части уравнения (15.2) на D t , то оно преобразуется в уравнение Мещерского:

    Левая часть уравнения Мещерского представляет собой произведение массы ракеты на её ускорение, что, согласно второму закону Ньютона, равняется силе, действующей на ракету. Таким образом, из (15.3) следует, что реактивная сила равна произведению расхода топлива в единицу времени на скорость истечения газов и направлена в сторону противоположную вектору этой скорости.

    Применение реактивной силы дало возможность человеку летать со скоростями, б óльшими скорости звука (330 м/с), и начать освоение космического пространства. Существуют два типа реактивных двигателей – ракетные и воздушно-реактивные. Ракетный двигатель (рис. 15а) создаёт реактивную силу, выбрасывая из сопла (1) продукты горения топлива и окислителя, нагнетаемых с помощью насосов (2) в камеру сгорания (3). В воздушно-реактивном двигателе (рис. 15б) для горения используется кислород, содержащийся в атмосфере. Эти двигатели оснащены компрессорами (4), которые засасывают и сжимают атмосферный воздух, подавая его в камеру сгорания (3). Горение топлива в форсунках (5) разогревает воздух, увеличивает его давление, и он с огромной скоростью вырывается из сопла (1), создавая реактивную силу и вращая ось, на которой находится лопасти компрессора. Воздушно-реактивными двигателями оснащены практически все современные самолёты.

    Большой вклад в развитие теории реактивного движения сделал К.Э. Циолковский, доказав что с помощью реактивной тяги человек способен достичь космических скоростей (см. §12), навсегда оторвавшись от Земли. Ему же принадлежит идея создания многоступенчатых ракет, позволяющих экономить топливо на пути в космос, и космических станций.

    Теория реактивного движения в космосе была практически воплощена во второй половине XX -го века, когда СССР осуществил запуск первого искусственного спутника Земли. 12 апреля 1961 года Ю.А. Гагарин совершил первый полёт в космос, а 20 июля 1969 года американские космонавты Н. Армстронг и Э. Олдрин впервые высадились на поверхности Луны. В настоящее время на околоземной орбите находится международная космическая станция, на борту которой работают специалисты из России, США и других стран мира.

    Вопросы для повторения:

    · Что такое реактивное движение и реактивная сила?

    · От чего зависит реактивная сила?

    · Какие бывают реактивные двигатели?

    Рис. 15.Схематическое изображение ракетного (а) и воздушно-реактивного (б) двигателей.


    источники:

    http://tepka.ru/fizika_10/79.html

    http://kaf-fiz-1586.narod.ru/10bf/uchebnik/15.htm