Реактивное движение уравнение циолковского сообщение

Уравнение Циолковского: описание, история открытия, применение

Космонавтика регулярно достигает ошеломительных успехов. Искусственным спутникам Земли постоянно находятся все более разнообразные применения. Пребывание космонавта на околоземной орбите стало обычным явлением. Это было бы невозможно без главной формулы космонавтики — уравнения Циолковского.

В наше время продолжается изучение как планет и других тел нашей Солнечной системы (Венеры, Марса, Юпитера, Урана, Земли и пр.), так и удаленных объектов (астероиды, другие системы и галактики). Умозаключения о характеристике космического движения тел Циолковского положили начало теоретическим основам космонавтики, которые привели к изобретению десятков моделей электро-реактивных двигателей и крайне интересных механизмов, например, солнечного паруса.

Основные проблемы освоения космоса

В качестве проблем освоения космоса четко выделяются три области исследования и разработок в науке и технике:

  1. Полеты около Земли или конструирование искусственных спутников.
  2. Лунные полеты.
  3. Планетарные полеты и полеты к объектам Солнечной системы.

Уравнение Циолковского для реактивного движения способствовало тому, что человечество в каждой из этих областей достигло удивительных результатов. А также появилось множество новых прикладных видов наук: космическая медицина и биология, системы жизнеобеспечения на космическом аппарате, космическая связь, и др.

Достижения в космонавтике

Большинство людей сегодня слышали об основных достижениях: первая высадка на луну (США), первый спутник (СССР) и подобное. Помимо самых известных достижений, которые у всех на слуху, существует много и других. В частности, СССР принадлежат:

  • первая орбитальная станция;
  • первый облет Луны и фотографии обратной стороны;
  • первая посадка на Луну автоматизированной станции;
  • первые полеты аппаратов к другим планетам;
  • первая посадка на Венеру и Марс и пр.

Многие даже не представляют, насколько огромными были достижения СССР в сфере космонавтики. Во всяком случае, они были значительно больше, чем просто первый спутник.

Но и США внесли не меньший вклад в развитие космонавтики. В США провели:

  • Все крупные достижения в использовании околоземной орбиты (спутники и спутниковая связь) для научных целей и решения прикладных задач.
  • Множество экспедиций на Луну, исследования Марса, Юпитера, Венеры и Меркурия с расстояния пролетных траекторий.
  • Множество научных и медицинских экспериментов, проводимых в невесомости.

И хотя на данный момент достижения других стран меркнут на фоне СССР и США, но Китай, Индия и Япония активно присоединились к изучению космоса в период после 2000 года.

Однако достижения космонавтики не ограничиваются только верхними слоями планеты и высокими научными теориями. На простую жизнь она тоже оказала большое влияние. В результате изучения космоса в нашу жизнь пришли такие вещи: молния, липучка, тефлон, спутниковая связь, механические манипуляторы, беспроводные инструменты, солнечные батареи, искусственное сердце и многое другое. И именно формула скорости Циолковского, которая помогла преодолеть гравитационное притяжение и способствовала появлению в науке космической практики, помогла всего этого добиться.

Термин «космодинамика»

Уравнение Циолковского легло в основу космодинамики. Однако следует разобраться с этим термином подробнее. Особенно в вопросе близких к нему по смыслу понятий: космонавтика, небесная механика, астрономия и др. Космонавтика переводится с греческого «плавание во Вселенной». В обычном случае этим термином обозначается масса всех технических возможностей и научных достижений, позволяющих изучать комическое пространство и небесные тела.

Космические полеты — это то, о чем человечество мечтало столетиями. И эти мечты превратились в реальность, из теории — в науку, а все благодаря формуле Циолковского для скорости ракеты. Из трудов этого великого ученого нам известно, что теория космонавтики стоит на трех столпах:

  1. Теория, описывающая движение космических аппаратов.
  2. Электро-ракетные двигатели и их производство.
  3. Астрономические знания и исследования Вселенной.

Как уже ранее отмечалось, в космическую эру появилось множество других научно-технических дисциплин, таких как: системы управления космическими кораблями, системы связи и передачи данных в космосе, навигация в космическом пространстве, космическая медицина и многое другое. Стоит отметить, что во времена зарождения основ космонавтики даже не было как такового радио. Изучение электромагнитных волн и передачи на большие расстояния с их помощью информации только начиналось. Поэтому основатели теории серьезно рассматривали в качестве способа передачи данных световые сигналы — отраженные в сторону Земли солнечные лучи. Сегодня невозможно представить космонавтику без всех смежных с ней прикладных наук. В те далекие времена воображение ряда ученых действительно поражало. Помимо способов связи ими также затрагивались такие темы, как формула Циолковского для многоступенчатой ракеты.

Можно ли выделить среди всего многообразия какую-либо дисциплину в качестве главной? Ею является теория движения космических тел. Именно она служит главным звеном, без которого невозможна космонавтика. Эту область науки принято называть космодинамикой. Хотя у нее существует множество тождественных названий: небесная или космическая баллистика, механика полета в космосе, прикладная небесная механика, наука о движении искусственных небесных тел и т. д. Все они обозначают одну и ту же область изучения. Формально космодинамика входит в небесную механику и использует ее методы, однако есть крайне важное отличие. Небесная механика только изучает орбиты у нее нет возможности выбора, а вот космодинамика призвана определять оптимальные траектории достижения тех или иных небесных тел космическими аппаратами. И уравнение Циолковского для реактивного движения позволяет кораблям определить как именно можно влиять на траекторию полета.

Космодинамика как наука

С тех пор, как К. Э. Циолковский вывел формулу, наука о движении небесных тел прочно оформилась как космодинамика. Она позволяет космическим кораблям пользоваться методами поиска оптимального перехода между разными орбитами, что называется орбитальным маневрированием, и является основой теории передвижения в космосе, точно так же как базой для полетов в атмосфере является аэродинамика. Однако она не единственная наука, занимающуюся данным вопросом. Помимо нее существует еще и ракетодинамика. Обе эти науки составляют прочную основу для современной космической техники и обе входят в раздел небесной механики.

Космодинамика состоит из двух основных разделов:

  1. Теория о движении центра инерции (масс) объекта в космосе, или теория о траекториях.
  2. Теория о движении космического тела относительно его центра инерции, или теория вращения.

Чтобы разобраться что представляет собой уравнение Циолковского, нужно хорошо понимать механику, т. е. законы Ньютона.

Первый закон Ньютона

Любое тело движется равномерно и прямолинейно или находится в покое до тех пор, пока приложенные к нему внешние силы не вынудят его изменить это состояние. Иными словами вектор скорости такого движения остается постоянным. Такое поведение тел также называется инерциальным движением.

Любой другой случай, при котором происходит какой-либо изменение вектора скорости, означает, что тело обладает ускорением. Интересным примером в данном случае является движение материальной точки по окружности или любого спутника по орбите. В данном случае происходит равномерное движение, но не прямолинейное, ведь вектор скорости постоянно меняет направление, а значит, ускорение не равно нулю. Данное изменение скорости можно вычислить по формуле v 2 / r, где v — постоянная величина скорости, а r — радиус орбиты. Ускорение в этом примере будет направлено к центру окружности в любой точки траектории движения тела.

Исходя из определения закона, причиной изменения направления материальной точки может быть только сила. В ее роли (для случая со спутником) выступает гравитация планеты. Притяжение планет и звезд, как легко можно догадаться, имеет большое значение в космодинамике в целом и при использовании уравнения Циолковского, в частности.

Второй закон Ньютона

Ускорение прямо пропорционально силе и обратно пропорционально массе тела. Или в математической форме: a = F / m, или более привычно — F = ma, где m — это коэффициент пропорциональности, который представляет собой меру для инерции тела.

Так как любая ракета представляется, как движение тела с переменной массой, уравнение Циолковского будет изменяться каждую единицу времени. В вышеописанном примере о спутнике, движущемся вокруг планеты, зная его массу m, можно легко выяснить силу, под действием которой он вращается по орбите, а именно: F = mv 2 /r. Очевидно, что данная сила будет направлена к центру планеты.

Возникает вопрос: почему спутник не падает на планету? Он не падает, так как его траектория движения не пересекается с поверхностью планеты, потому что природа не заставляет его двигаться вдоль действия силы, ибо ей сонаправлен только вектор ускорения, а не скорости.

Также следует отметить, что в условиях, когда известна сила, действующая на тело, и его масса, можно выяснить ускорение тела. А по нему математическими методами определяется путь, по которому двигается это тело. Здесь мы приходим к двум основным задачам, решением которых занимается космодинамика:

  1. Выявление сил, при помощи которых можно манипулировать движением космического корабля.
  2. Определение движения этого корабля, если известны действующие на него силы.

Вторая задача является классическим вопросом для небесной механики в то время, как первая показывает исключительную роль космодинамики. Поэтому в данной области физики помимо формулы Циолковского для реактивного движения крайне важно понимать ньютоновскую механику.

Третий закон Ньютона

Причиной силы, действующей на какое-либо тело, всегда является другое тело. Но верно также и обратное. В этом заключается суть третьего закона Ньютона, который гласит, что всякому действию есть действие, равное по величине, но противоположно направленное, называемое противодействием. Другими словами, если тело А действует с силой F на тело B, то тело B действует на тело А с силой -F.

В примере со спутником и планетой третий закон Ньютона приводит нас к пониманию того, что с какой силой планета притягивает спутник, точно с такой же спутник притягивает планету. Данная сила притяжения ответственна за придание ускорения спутнику. Но она также придает ускорение и планете, но ее масса так велика, что данное изменение скорости ничтожно мало для нее.

Формула Циолковского для реактивного движения полностью строится на понимании последнего закона Ньютона. Ведь именно за счет выбрасываемой массы газов основное тело ракеты приобретает ускорение, которое позволяет ему двигаться в нужном направление.

Немного о системах отсчета

Рассматривая какие-либо физические явления, сложно не затрагивать такую тему, как систему отсчета. Движение космического корабля, как и любого другого тела в пространстве, может фиксироваться в разных координатах. Не существует неправильных систем отсчета, есть лишь более удобные и менее. Например, движение тел в Солнечной системе лучше всего описывать в гелиоцентрической системе отсчета, то есть в координатах, связанных с Солнцем, также именуемых системой Коперника. Однако движение Луны в данной системе рассматривать менее удобно, поэтому ее изучают в геоцентрических координатах — отсчет ведется относительно Земли, это называется системой Птолемея. А вот, если стоит вопрос в том, попадет ли пролетающий рядом астероид в Луну, удобнее будет использовать опять гелиоцентрические координаты. Важно уметь пользоваться всеми координатными системами и быть способным смотреть на задачу с разных точек зрения.

Ракетное движение

Основным и единственным способом передвижения в космическом пространстве является ракета. Впервые этот принцип был выражен, по данным сайта «Хабр», формулой Циолковского в 1903 году. С тех пор инженеры космонавтики изобрели десятки видов ракетных двигателей, использующих самые разнообразные виды энергии, но все они объединены одним принципом работы: выбрасывание части массы из запасов рабочего тела для получения ускорения. Силу, которая образуется в результате данного процесса, принято называть силой тяги. Приведем некоторые умозаключения, которые позволят прийти к уравнению Циолковского и выводу его основной формы.

Очевидно, что тяговая сила будет увеличиваться в зависимости от объемов выбрасываемой из ракеты массы в единицу времени и той скорости, которую удается этой массе сообщить. Таким образом, получается соотношение F = w * q, где F — тяговая сила, w — скорость отбрасываемой массы (м/с) и q — масса, расходуемая в единицу времени (кг/с). Стоит отдельно отметить важность системы отсчета, связанной именно с самой ракетой. В противном случае невозможно характеризовать силу тяги ракетного двигателя, если измерять все относительно Земли или других тел.

Исследования и эксперименты показали, что соотношение F = w * q остается справедливым только для случаев, когда выбрасываемая масса представляет собой жидкость или твердое тело. Но в ракетах используется струя раскаленного газа. Поэтому в соотношение нужно ввести ряд поправок, и тогда получим дополнительный член соотношения S * (pr — pa), который суммируется с изначальным w * q. Здесь pr — давление, оказываемое газом, на срезе сопла; pa — атмосферное давление и S — площадь сопла. Таким образом, уточненная формула будет выглядеть следующим образом:

Откуда видно, что по мере набора высоты ракетой атмосферное давление будет становиться меньше, а сила тяги — возрастать. Однако физики любят удобные формулы. Поэтому зачастую используется формула, похожая на свою первоначальную форму F = wэ * q, где wэ — эффективная скорость истечения массы. Она определяется экспериментальным путем во время испытания двигательной установки и численно равна выражению w + (Spr — Spa) / q.

Рассмотрим понятие, тождественное wэ — удельный импульс тяги. Удельный — значит относящийся к чему-то. В данном случае это к гравитации Земли. Для этого в вышеописанной формуле правая часть умножается и делится на g (9,81 м/с 2 ):

F = wэ * q = (wэ / g) * q * g или F = Iуд * q * g

Измеряется данная величина Iуд в Н*с/кг или что тоже самое м/с. Иными словами удельный импульс тяги измеряется в единицах скорости.

Формула Циолковского

Как легко можно догадаться, помимо тяги двигателя на ракету действует множество других сил: притяжение Земли, гравитация других объектов Солнечной системы, атмосферное сопротивление, давление света и т. д. Каждая из этих сил придает свое ускорение ракете, а суммарное из действие сказывается на итоговом ускорение. Поэтому удобно ввести понятие реактивного ускорения или ar = Fт / M, где М — масса ракеты в определенный период времени. Реактивное ускорение — это ускорение, с которым двигалась бы ракета при отсутствии действующих на нее сил из вне. Очевидно, что по мере расходования массы, ускорение будет увеличиваться. Поэтому есть еще одна удобная характеристика — начальное реактивное ускорение ar0 = Fт * M0, где М0 — это масса ракеты в момент начала движения.

Логичным будет звучать вопрос о том, какую скорость способна развить ракета в подобном пустом пространстве, после того как израсходует какое-то количество массы рабочего тела. Пусть масса ракеты изменилась от m0 до m1. Тогда скорость ракеты после равномерного израсходования массы до значения m1 кг будет определяться формулой:

Это не что иное, как формула движения тел с переменной массой или уравнение Циолковского. Она характеризует энергетический ресурс ракеты. А скорость, получаемая данной формулой, называется идеальной. Можно записать данную формулу в ином тождественном варианте:

Стоит отметить, применение Формулы Циолковского для расчета топлива. Точнее сказать, массы ракеты носителя, которая потребуется для выведения определенного веса на орбиту Земли.

В конце следует сказать и о таком великом ученом, как Мещерский. Вместе с Циолковским они являются праотцами космонавтики. Мещерский внес огромный вклад в создание теории движения объектов переменной массы. В частности, формула Мещерского и Циолковского выглядит следующим образом:

m * (dv / dt) + u * (dm / dt) = 0,

где v — скорость материальной точки, u — скорость отброшенной массы относительно ракеты. Данная соотношение также называется дифференциальным уравнением Мещерского, тогда формула Циолковского получается из нее как частное решение для материальной точки.

Движение тела с переменной массой

Для начала сформулируем, что такое переменная масса.

Переменная масса – это масса тела, которая может меняться при медленных движениях из-за частичных приобретений или потерь составляющего вещества.

Уравнение движения материальной точки с переменной массой

Чтобы записать уравнение движения для тела с такой массой, возьмем для примера движение ракеты. В основе ее перемещений лежит очень простой принцип: она движется за счет выброса вещества с большой скоростью, а также сильного воздействия, оказываемого на это вещество. В свою очередь выбрасываемые газы также оказывают воздействие на ракету, придавая ей ускорение в противоположном направлении. Кроме того, ракета находится под действием внешних сил, таких, как гравитация Солнца и других планет, земная тяжесть, сопротивление среды, в которой она совершает движение.

Обозначим массу ракеты в какой-либо момент времени t как m ( t ) , а ее скорость как v ( t ) . То количество движения, которая она при этом совершает, будет равно m v . После того, как пройдет время d t , обе эти величины получат приращение (соответственно d m и d v , причем значение d m будет меньше 0 ). Тогда количество движения, совершаемого ракетой, станет равно:

( m + d m ) ( v + d v ) .

Нам необходимо учитывать тот момент, что за время d t также происходит движение газов. Это количество тоже нужно добавить в формулу. Оно будет равно d m г а з v г а з . Первый показатель означает массу газов, которые образуются за указанное время, а второй – их скорость.

Теперь нам нужно найти разность между суммарным количеством движения за время t + d t и количеством движения системы во время t . Так мы найдем приращение данной величины за время d t , которое будет равно F d t (буквой F обозначена геометрическая сумма всех тех внешних сил, которые действуют в это время на ракету).

В итоге мы можем записать следующее:

( m + d m ) ( v + d v ) + d m г а з + v г а з — m v = F d t .

Поскольку нам важны именно предельные значения d m d t , d v d t и их производные, приравняем эти показатели к нулю. Значит, после раскрытия скобок произведение d m · d v может быть отброшено. С учетом сохранения массы получим:

d m + d m г а з = 0 .

Теперь исключим массу газов d m г а з и получим скорость, с которой газы будут покидать ракету (скорость струи вещества), выражающаяся разностью v о т н = v г а з — v . Учитывая эти преобразования, можно переписать исходное уравнение в следующем виде:

d m v = v о т н d m + F d t .

Теперь разделим его на d t и получим:

m d v d t = v о т н d m d t + F .

Уравнение Мещерского

Форма полученного уравнения точно такая же, как у уравнения, выражающего второй закон Ньютона. Но, если там мы имеем дело с постоянной массой тела, то здесь из-за потери вещества она постепенно меняется. К тому же помимо внешней силы нужно учитывать так называемую реактивную силу. В примере с ракетой это будет сила выходящей из нее газовой струи.

Уравнение m d v d t = v о т н d m d t + F впервые вывел русский механик И.В. Мещерский, поэтому оно получило его имя. Также его называют уравнением движения тела с переменной массой.

Формула Циолковского

Попробуем исключить из уравнения движения ракеты внешние силы, воздействующие на нее. Предположим, что движение ракеты прямолинейно, а направление противоположно скорости газовой струи v о т н . Будем считать направление полета положительным, тогда проекция вектора v о т н является отрицательной. Она будет равна — v о т н . Переведем предыдущее уравнение в скалярную форму:

m d v = v о т н d m .

Тогда равенство примет вид:

d v d m = — v о т н m .

Газовая струя может выходить во время полета с переменной скоростью. Проще всего, разумеется, принять ее в качестве константы. Такой случай наиболее важен для нас, поскольку так уравнение решить намного проще.

Исходя из начальных условий, определим, какое значение приобретет постоянная интегрирования С. Допустим, что в начале пути скорость ракеты будет равна 0 , а масса m 0 . Следовательно, из предыдущего уравнения можем вывести:

C = v о т н ln m 0 m .

Тогда мы получим соотношения следующего вида:

v = v о т н ln m 0 m или m 0 m = e v v о т н .

Это соотношение и является формулой Циолковского.

Она предназначена для расчета запаса топлива, с помощью которого ракета может набрать необходимую скорость. При этом время сгорания топлива не обусловливает величину максимальной скорости ракеты. Чтобы разогнаться до предела, нужно увеличить скорость истечения газов. Для достижения первой космической скорости следует изменить конструкцию ракеты. Она должна быть многоступенчатой, поскольку необходимо меньшее соотношение между требуемой массой топлива и массой ракеты.

Разберем несколько примеров применения данных построений на практике.

Условие: у нас есть космический корабль, скорость которого постоянна. Для изменения направления полета в ней нужно включить двигатель, который выбрасывает газовую струю со скоростью v о т н . Направление выброса перпендикулярно траектории корабля. Определите угол изменения вектора скорости при начальной массе корабля m 0 и конечной m .

Решение

Ускорение по абсолютной величине будет равно a = ω 2 r = ω v , причем v = c o n s t .

Значит, уравнение движения будет выглядеть так:

m d v d t = v о т н d m d t перейдет в m v ω d t = — v о т н d m .

Поскольку d a = ω d t является углом поворота за время d t , то после интеграции первоначального уравнения получим:

a = v о т н v ln m 0 m .

Ответ: искомый угол будет равен a = v о т н v ln m 0 m .

Условие: масса ракеты перед стартом равна 250 к г . Вычислите высоту, которую она наберет через 20 секунд после начала работы двигателя. Известно, что топливо расходуется со скоростью 4 к г / с , а скорость истечения газов постоянна и равна 1500 м / с . Поле тяготения Земли можно считать однородным.

Решение

Начнем с записи уравнения Мещерского. Оно будет иметь следующий вид:

m ∆ v 0 ∆ t = μ v о т н — m g .

Здесь m = m 0 — μ t и v 0 – скорость ракеты в заданный момент времени. Разделим переменные:

∆ v 0 = μ v о т н m 0 — μ t — g ∆ t .

Теперь решим полученное уравнение с учетом первоначальных условий:

v 0 = v о т н ln m 0 m 0 — μ t — g t .

С учетом того, что H 0 = 0 при t = 0 , у нас получится:

H = v о т н t — g t 2 2 + v о т н m 0 μ 1 — μ t m 0 ln 1 — μ t m 0 .

Добавим заданные значения и найдем ответ:

H = v о т н t — g t 2 2 + v о т н m 0 μ 1 — μ t m 0 ln 1 — μ t m 0 = 3177 , 5 м .

Ответ: через 20 секунд высота ракеты будет составлять 3177 , 5 м .

Формула Циолковского: использование и пример

Формула Константина Эдуардовича Циолковского выражает максимальную скорость летательного аппарата, которой он достигает во время полета при реактивном движении. Она получается при интегрировании уравнения Мещерского.

Формула Циолковского

Эта формула выражает скорость ракеты, переданную газами от сожженного топлива. Уравнение Мещерского и формула Циолковского неразрывно связаны — уравнение Мещерского описывает массу материальной точки, которая изменяется со временем, в то время как при реактивном движении ракеты постоянно идет уменьшение ее массы из-за сгорания топлива. Изменение скорости при изменяющейся массе (уменьшающейся в нашем случае) движущегося тела — вот что подразумевает под собой реактивное движение. Формула Циолковского основывается именно на нем.

Для решения ряда задач теоретической механики в области реактивного движения используют уравнение Мещерского (основное уравнение материальной точки переменной массы) и формулу Циолковского (формула конечной скорости летательного аппарата), которые называются основными соотношениям теории реактивного движения.

Основой при проектировании и планировании в области космических полетов является именно формула Циолковского, вывод которой стал настоящим прорывом для освоения космоса.

Задачи Циолковского

Для того, чтобы разрешить проблему межпланетных перелетов, К. Э. Циолковский рассмотрел в качестве средства перелета ракету. Он вывел формулу, с помощью которой можно получить зависимость массы летательного аппарата с топливом и скорости отдаления продуктов сгорания используемого топлива ракеты относительно нее. Покажем две его задачи:

  • Исследование движения тела с переменной массы с действующей на него одной реактивной силы.
  • Исследование движение тела в однородном поле силы тяжести переменной массы вблизи поверхности Земли.

Предисловие

Для всех космических полетов изначальной и основополагающей стала формула Циолковского для скорости ракеты, вывод которой представлен ниже.

Для начала необходимо приняв ее, грубо говоря, за материальную точку. На нее будут действовать силы притяжения Земли и других небесных тел (в момент взлета сила гравитации Земли будет, конечно же, наиболее сильной), сила сопротивления воздуха с одной стороны и противоположно им направленная реактивная сила, возникающая из-за выброса сгоревшего газа у основания тела. Ракета с большой силой выбрасывает эти газы, которые сообщают ей ускорение, направленное противоположно стороне выброса. Теперь необходимо представить эти рассуждения в виде формулы.

Сам принцип полета ракеты достаточно простой. С большой скоростью из ракеты вырывается газ, полученный при сгорании топлива, который сообщает самой ракете определенную силу, которая действует противоположно направлению движения. Так как считается, что внешние силы не действуют на ракету, то система будет замкнутой, и импульс ее не зависит от времени.

Уравнение Мещерского

Одним из основных примеров движения тела с изменяющейся массой является ракета с одной ступень, масса которой изменяется только из-за сжигания топлива, содержащегося в ней. Масса такой ракеты складывается из неизменяющейся (сама ракета и ее полезная нагрузка) и изменяющейся (топливо). Такой пример является упрощенной моделью.

Однако в современном ракетостроении используются многоступенчатые ракеты. Принцип их работы заключается в том, что благодаря большому объему ступеней они способны перевозить и использовать после взлета гораздо большее количество топлива. После его сгорания, ракете сообщается значительный импульс (гораздо больший, чем тот, которого можно добиться, используя одну ступень), а ставшие ненужными части открепляются от основы, уменьшая общий вес на 80-90%. Тем не менее, для расчета параметров многоступенчатой ракеты необходимо сложить показатели каждой из ее составляющей.

Дифференциальное уравнение Мещерского описывает движение материальной точки с переменной массой.

(m+dm)(υ+dυ) + dm′ υ′ — mυ = Fdt — в момент времени dt (разность между силой в момент времени t и dt+t и будет приращением).

Где m и υ зависят от времени, dt — какое-то время полета. За его образуется сила перемещения газа — dm′ υ′, dm′ — масса образованного из топлива газа. F — равнодействующая сила.

В описанном выше выражении приращения массы ракеты и газа и скорости устремляется к нулю, поэтому выражение принимает следующий вид:

причем υ′′ равняется разности скорости газа и скорости и является скоростью истечения газа.

Оно и называется уравнением Мещерского.

Вывод формулы Циолковского

Необходимо вывести формулу, описывающую движение тела с переменной массой. Формула Циолковского таковой и является. Вывод представлен ниже.

В данных вычислениях считается, что на движущееся тело не действуют внешние силы, то есть F = 0.

Так как воздействие внешних сил на летящую ракету равно нулю, то она движется прямолинейно, а скорость движения противоположно направлена скорости выхода газа. Соответственно, υ = -υ′′

Получается выражение, которое необходимо проинтегрировать.

Необходимо найти константу. Для этого достаточно подставить в уравнение начальные условия — скорость равна нулю, а масса — сумме массы топлива и массы ракеты (m0 + m)

Вообще говоря, m в формуле складывается из двух параметров — из полезной нагрузки и конструкции ракеты. Полезной нагрузкой называется общая масса груза и экипажа.

Подставляем найденную константу в формулу. В результате и получается выражение искомой формулы.

Это и есть один из вариантов формулы Циолковского для скорости. Однако иногда необходимо принять во внимание именно массу. Поэтому ее иногда записывают следующим образом:

Данная формула используется для расчета массы топлива, которая требуется для развития определенной скорости при заданных условиях.

Рассмотрю далее небольшую задачу. Предположим, ракете необходимо развить первую космическую скорость для вращения по орбите Земли. Тогда для этого необходимо в первую очередь рассчитать массу топлива, конечно же. Тогда ее очень просто выразить из формулы Циолковского.

Релятивистская механика

Все вышеописанные формулы могут применяться только в том случае, когда скорость ракеты много меньше скорости света (υ


источники:

http://zaochnik.com/spravochnik/fizika/osnovy-dinamiki/dvizhenie-tela-s-peremennoj-massoj/

http://www.syl.ru/article/306458/formula-tsiolkovskogo-ispolzovanie-i-primer