Реакции 1 порядка и их кинетическое уравнение

Химическая кинетика. Скорость химических реакций

Темы кодификатора ЕГЭ: Скорость реакции. Ее зависимость от разных факторов.

Скорость химической реакции показывает, как быстро происходит та или иная реакция. Взаимодействие происходит при столкновении частиц в пространстве. При этом реакция происходит не при каждом столкновении, а только когда частица обладают соответствующей энергией.

Скорость реакции – количество элементарных соударений взаимодействующих частиц, заканчивающихся химическим превращением, за единицу времени.

Определение скорости химической реакции связано с условиями ее проведения. Если реакция гомогенная – т.е. продукты и реагенты находятся в одной фазе – то скорость химической реакции определяется, как изменение концентрации вещества в единицу времени:

υ = ΔC / Δt

Если реагенты, или продукты находятся в разных фазах, и столкновение частиц происходит только на границе раздела фаз, то реакция называется гетерогенной, и скорость ее определяется изменением количества вещества в единицу времени на единицу реакционной поверхности:

υ = Δν / (S·Δt)

Факторы, влияющие на скорость химической реакции

1. Температура

Самый простой способ изменить скорость реакции – изменить температуру . Как вам, должно быть, известно из курса физики, температура – это мера средней кинетической энергии движения частиц вещества. Если мы повышаем температуру, то частицы любого вещества начинают двигаться быстрее, а следовательно, сталкиваться чаще.

Однако при повышении температуры скорость химических реакций увеличивается в основном благодаря тому, что увеличивается число эффективных соударений. При повышении температуры резко увеличивается число активных частиц, которые могут преодолеть энергетический барьер реакции. Если понижаем температуру – частицы начинают двигаться медленнее, число активных частиц уменьшается, и количество эффективных соударений в секунду уменьшается. Таким образом, при повышении температуры скорость химической реакции повышается, а при понижении температуры — уменьшается .

Обратите внимание! Это правило работает одинаково для всех химических реакций (в том числе для экзотермических и эндотермических). Скорость реакции не зависит от теплового эффекта. Скорость экзотермических реакций при повышении температуры возрастает, а при понижении температуры – уменьшается. Скорость эндотермических реакций также возрастает при повышении температуры, и уменьшается при понижении температуры.

Более того, еще в XIX веке голландский физик Вант-Гофф экспериментально установил, что скорость большинства реакций примерно одинаково изменяется (примерно в 2-4 раза) при изменении температуры на 10 о С.

Правило Вант-Гоффа звучит так: повышение температуры на 10 о С приводит к увеличению скорости химической реакции в 2-4 раза (эту величину называют температурный коэффициент скорости химической реакции γ).

Точное значение температурного коэффициента определяется для каждой реакции.

здесь v2 — скорость реакции при температуре T2,

v1 — скорость реакции при температуре T1,

γ — температурный коэффициент скорости реакции, коэффициент Вант-Гоффа.

В некоторых ситуациях повысить скорость реакции с помощью температуры не всегда удается, т.к. некоторые вещества разлагаются при повышении температуры, некоторые вещества или растворители испаряются при повышенной температуре, т.е. нарушаются условия проведения процесса.

2. Концентрация

Также изменить число эффективных соударений можно, изменив концентрацию реагирующих веществ . Понятие концентрации, как правило, используется для газов и жидкостей, т.к. в газах и жидкостях частицы быстро двигаются и активно перемешиваются. Чем больше концентрация реагирующих веществ (жидкостей, газов), тем больше число эффективных соударений, и тем выше скорость химической реакции.

На основании большого числа экспериментов в 1867 году в работах норвежских ученых П. Гульденберга и П. Вааге и, независимо от них, в 1865 году русским ученым Н.И. Бекетовым был выведен основной закон химической кинетики, устанавливающий зависимость скорости химической реакции от концентрации реагирующих веществ:

Скорость химической реакции прямо пропорциональна произведению концентраций реагирующих веществ в степенях, равных их коэффициентам в уравнении химической реакции.

Для химической реакции вида: aA + bB = cC + dD закон действующих масс записывается так:

здесь v — скорость химической реакции,

CA и CB — концентрации веществ А и В, соответственно, моль/л

k – коэффициент пропорциональности, константа скорости реакции.

Например , для реакции образования аммиака:

закон действующих масс выглядит так:

Константа скорости реакции k показывает, с какой скоростью будут реагировать вещества, если их концентрации равны 1 моль/л, или их произведение равно 1. Константа скорости химической реакции зависит от температуры и не зависит от концентрации реагирующих веществ.

В законе действующих масс не учитываются концентрации твердых веществ, т.к. они реагируют, как правило, на поверхности, и количество реагирующих частиц на единицу поверхности при этом не меняется.

В большинстве случаев химическая реакция состоит из нескольких простых этапов, в таком случае уравнение химической реакции показывает лишь суммарное или итоговое уравнение происходящих процессов. При этом скорость химической реакции сложным образом зависит (или не зависит) от концентрации реагирующих веществ, полупродуктов или катализатора, поэтому точная форма кинетического уравнения определяется экспериментально, или на основании анализа предполагаемого механизма реакции. Как правило, скорость сложной химической реакции определяется скоростью его самого медленного этапа (лимитирующей стадии).

3. Давление

Концентрация газов напрямую зависит от давления . При повышении давления повышается концентрация газов. Математическое выражение этой зависимости (для идеального газа) — уравнение Менделеева-Клапейрона:

pV = νRT

Таким образом, если среди реагентов есть газообразное вещество, то при повышении давления скорость химической реакции увеличивается, при понижении давления — уменьшается .

Например. Как изменится скорость реакции сплавления извести с оксидом кремния:

при повышении давления?

Правильным ответом будет – никак, т.к. среди реагентов нет газов, а карбонат кальция – твердая соль, нерастворимая в воде, оксид кремния – твердое вещество. Газом будет продукт – углекислый газ. Но продукты не влияют на скорость прямой реакции.

4. Катализатор

Еще один способ увеличить скорость химической реакции – направить ее по другому пути, заменив прямое взаимодействие, например, веществ А и В серией последовательных реакций с третьим веществом К, которые требуют гораздо меньших затрат энергии (имеют более низкий активационный энергетический барьер) и протекают при данных условиях быстрее, чем прямая реакция. Это третье вещество называют катализатором .

Катализаторы – это химические вещества, участвующие в химической реакции, изменяющие ее скорость и направление, но не расходующиеся в ходе реакции (по окончании реакции не изменяющиеся ни по количеству, ни по составу). Примерный механизм работы катализатора для реакции вида А + В можно представить так:

A + K = AK

AK + B = AB + K

Процесс изменения скорости реакции при взаимодействии с катализатором называют катализом. Катализаторы широко применяют в промышленности, когда необходимо увеличить скорость реакции, либо направить ее по определенному пути.

По фазовому состоянию катализатора различают гомогенный и гетерогенный катализ.

Гомогенный катализ – это когда реагирующие вещества и катализатор находятся в одной фазе (газ, раствор). Типичные гомогенные катализаторы – кислоты и основания. органические амины и др.

Гетерогенный катализ – это когда реагирующие вещества и катализатор находятся в разных фазах. Как правило, гетерогенные катализаторы – твердые вещества. Т.к. взаимодействие в таких катализаторах идет только на поверхности вещества, важным требованием для катализаторов является большая площадь поверхности. Гетерогенные катализаторы отличает высокая пористость, которая увеличивает площадь поверхности катализатора. Так, суммарная площадь поверхности некоторых катализаторов иногда достигает 500 квадратных метров на 1 г катализатора. Большая площадь и пористость обеспечивают эффективное взаимодействие с реагентами. К гетерогенным катализаторам относятся металлы, цеолиты — кристаллические минералы группы алюмосиликатов (соединений кремния и алюминия), и другие.

Пример гетерогенного катализа – синтез аммиака:

В качестве катализатора используется пористое железо с примесями Al2O3 и K2O.

Сам катализатор не расходуется в ходе химической реакции, но на поверхности катализатора накапливаются другие вещества, связывающие активные центры катализатора и блокирующие его работу (каталитические яды). Их необходимо регулярно удалять, путем регенерации катализатора.

В биохимических реакция очень эффективными оказываются катализаторы – ферменты. Ферментативные катализаторы действуют эффективно и избирательно, с избирательностью 100%. К сожалению, ферменты очень чувствительны к повышению температуры, кислотности среды и другим факторам, поэтому есть ряд ограничений для реализации в промышленных масштабах процессов с ферментативным катализом.

Катализаторы не стоит путать с инициаторами процесса и ингибиторами.

Например , для инициирования радикальной реакции хлорирования метана необходимо облучение ультрафиолетом. Это не катализатор. Некоторые радикальные реакции инициируются пероксидными радикалами. Это также не катализаторы.

Ингибиторы – это вещества, которые замедляют химическую реакцию. Ингибиторы могут расходоваться и участвовать в химической реакции. При этом ингибиторы не являются катализаторами наоборот. Обратный катализ в принципе невозможен – реакция в любом случае будет пытаться идти по наиболее быстрому пути.

5. Площадь соприкосновения реагирующих веществ

Для гетерогенных реакций одним из способов увеличить число эффективных соударений является увеличение площади реакционной поверхности . Чем больше площадь поверхности контакта реагирующих фаз, тем больше скорость гетерогенной химической реакции. Порошковый цинк гораздо быстрее растворяется в кислоте, чем гранулированный цинк такой же массы.

В промышленности для увеличения площади контактирующей поверхности реагирующих веществ используют метод «кипящего слоя».

Например , при производстве серной кислоты методом «кипящего слоя» производят обжиг колчедана.

6. Природа реагирующих веществ

На скорость химических реакций при прочих равных условиях также оказывают влияние химические свойства, т.е. природа реагирующих веществ.

Менее активные вещества будут имеют более высокий активационный барьер, и вступают в реакции медленнее, чем более активные вещества.

Более активные вещества имеют более низкую энергию активации, и значительно легче и чаще вступают в химические реакции.

Более стабильные вещества — это, например, те вещества, которые окружают нас в быту, либо существуют в природе.

Например , хлорид натрия NaCl (поваренная соль), или воды H2O, или металлическое железо Fe.

Более активные вещества мы можем встретить в быту и природе сравнительно редко.

Например , оксид натрия Na2O или сам натрий Na в быту и в природе не не встречаем, т.к. они активно реагируют с водой.

При небольших значениях энергии активации (менее 40 кДж/моль) реакция проходит очень быстро и легко. Значительная часть столкновений между частицами заканчивается химическим превращением. Например, реакции ионного обмена происходят при обычных условиях очень быстро.

При высоких значениях энергии активации (более 120 кДж/моль) лишь незначительное число столкновений заканчивается химическим превращением. Скорость таких реакций пренебрежимо мала. Например, азот с кислородом практически не взаимодействует при нормальных условиях.

При средних значениях энергии активации (от 40 до 120 кДж/моль) скорость реакции будет средней. Такие реакции также идут при обычных условиях, но не очень быстро, так, что их можно наблюдать невооруженным глазом. К таким реакциям относятся взаимодействие натрия с водой, взаимодействие железа с соляной кислотой и др.

Вещества, стабильные при нормальных условиях, как правило, имеют высокие значения энергии активации.

Молекулярность реакции. Порядок реакции Уравнение кинетики реакций 1-го, 2-го и нулевого порядка. Период полупревращений.

Молекулярность и порядок реакцииПри изучении реакций выделяют молекулярность и порядок реакции.Молекулярность реакции — это число молекул исходных веществ, принимающих участие в одном (единичном) химическом превращении. При этом число молекул образующихся продуктов не имеет значения. В соответствии с приведенным определением различают реакции:
1) мономолекулярные, в которых только один вид молекул участвует в превращении, причем стехиометрический коэффициент в уравнении равен единице, например,запись А > С означает, что молекула вещества А превращается в молекулу вещества С;
2) бимолекулярные, в которых участвуют два различных вида молекул или две молекулы одного вида (стехиометрический коэффициент во втором случае равен двум), например, А + В>С или 2А > С;
3) тримолекулярные, в которых участвуют три молекулы одного или разного видов, например,
А + В + D > С или 2 А + В > С, или 3А>С.
Реакции более высокой молекулярности маловероятны. Связано это с причиной, о которой говорилось ранее. Выше было сказано, что порядок химической реакции выражаетсяс уммой:
где аi — показатели степени концентрации исходных веществ в уравнении действующих масс.
Они приравнивались стехиометрическим коэффициентам компонентов химической реакции. Исходя из этого можно сделать заключение, что молекулярность и порядок реакции это одинаковые величины. Однако, это не всегда так. Порядок реакции или равен молекулярности или, в большинстве случаев, меньше её. Расхождение между порядком реакции и её молеклярностью может быть вызвано разными причинами.
1. Молекулярность реакции величина теоретическая, а порядок реакции — экспериментальная. Между теоретическими и экспериментальными величинами почти всегда есть различия.
2. Если, например, в реакции bB + dD = P,скорость которой W = КСBbCD d
один из компонентов, например, компонент B, находится в избытке, то в ходе данной реакции его концентрация будет изменяться незначительно и в уравнении скорости реакции можно принять СB = const. Но в таком случае скорость реакции практически зависит от концентрации только компонента D, то есть W = К1CD d тогда порядок реакции равен d, а молекулярность реакции (b + d).
3. Если данная реакция является гетерогенной, то в зависимости от условий протекания порядок такой реакции может быть различным.
4. Порядок каталитической реакции также может отличаться от молекулярности, причина — сложный механизм таких реакций.
5. Для сложной реакции, протекающей в несколько стадий, порядок реакции и её молекулярность не совпадают. В данном случае порядок реакции определяет какая-либо промежуточная (лимитирующая) стадия. Как правило порядок этой стадии отличается от молекулярности сложной реакции.

В качестве критерия скорости реакции нередко используется период полупревращения t1/2 , равный времени, в течение которого концентрация реагента уменьшается вдвое по сравнению с начальной концентрацией.

Первый порядок имеют реакции диссоциации или разложения молекул Н2 → 2Н; радиоактивного распада 22286Rn →4 2α +21882Rn (радон).
Для реакций первого порядка кинетическое уравнение имеет вид- dС/ dt = k1 С.
Разделяя переменные — dС/С = k1 dt и интегрируя полученное уравнение, находят ∫СС0 -dС/С = (integ)0t k1 dt, находят -(lnС – lnС0) = k1t
lnС = lnС0 – k1 t ; С = С0exp(-k1 t)
реакции первого порядка имеют особенности:
— график зависимости lnС от t выражается прямой линией. Это значит, что в полулогарифмических координатах, при разных начальных концентрациях прямые будут параллельны между собой;
-концентрация исходного вещества стремится к нулю при t-> oo. Полностью
вещество реагирует за бесконечно большой промежуток времени;
скорость реакции также отличается экспоненциальной зависимостью r = k1С0e- k1 t
-размерность константы скорости реакции первого порядка соответствует обратному времени и ее можно выразить в обратных секундах, минутах, часах и т.д;
время полупревращения при С = С0/2
t1/2 = ln2 /k, т.е. не зависит от начальной концентрации реагирующего вещества;
кинетическая кривая реакции первого порядка инвариантна при линейном преобразовании концентрации (график имеет вид верхней части равносторонней гиперболы стр 249). Примеры реакций второго порядка : Н2 + I2 ->2НI ; или 2NО 2->2NО + О2
если в реакции участвуют два компонента, концентрации которых равны, то дифференциальное уравнение имеет вид — dС/dt = k2 С × С. (или С2)
Разделение переменных и интегрирование в пределах от Со до С приводит к следующему результату:
1/С — 1/С0 = k2 t
из уравнения следует, что концентрация исходных веществ зависит от времени следующим образом:
С = С0 / (1+ k2 С0 t)
Полученные уравнения позволяют отметить следующие особенности реакций второго порядка:
-при равенстве начальных концентраций реагирующих веществ обратная концентрация линейно зависит от времени (стр 251) 1/С = 1/С0 + k2 t
константа скорости k2 = (1/ t) ( 1 /С — 1 /С0) = (1/t) (С0 – С) /СС0 где k – л моль-1 с-1
время полупревращения при С=С0 /2
(1 /С0 /2) – (1 /С0) = k2 t1 /2 отсюда t1/2 = 1 / (k2 С0)
в отличие от реакций первого порядка время полупревращения реакций второго порядка обратно пропорционально начальной концентрациНулевой порядок имеет место в тех случаях, когда убыль вещества в результате протекания химической реакции восполняется доставкой его из другой фазы. Нулевой порядок наблюдается если скорость процесса лимитируется подачей энергии, необходимой для активации реагирующих молекул. Например, при фотохимических реакциях определяющим фактором может служить количество поглощенного излучения, а не концентрация вещества. Часто в каталитических реакциях скорость зависит от концентрации катализатора, а не от концентрации реагирующих веществ.
Кинетическое уравнение для реакция нулевого порядка имеет вид: — dС/ dt = k.
Разделяя переменные (- dС= k dt ) и интегрируя в пределах от начальной концентрации Со (t =0) до текущей концентрации С в момент времени t:- ∫СС0 dС = ∫0t k dt получают С = С0 — k t реакции нулевого порядка имеют следующие особенности:
-в соответствии с последним выражением в реакциях нулевого порядка концентрация исходного вещества линейно уменьшается о времени (кинетическая кривая — линейная зависимость стр 247);
константа скорости k = (С0 – С ) /t. Ее размерность такая же как и размерность скорости реакции;
время полупревращения t1/2, при С = С0/2 t1/2 = С0 / 2 k, т.е. для реакции нулевого порядка t1/2 пропорционально начальной концентрации исходного вещества.

Дата добавления: 2016-01-16 ; просмотров: 2855 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Д.Г.НАРЫШКИН

КИНЕТИКА ХИМИЧЕСКИХ РЕАКЦИЙ

Возможности компьютерной математики

при исследовании поведения химических систем во времени

МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТТУ)

ВВЕДЕНИЕ 3

1. ОБЩИЕ ЗАКОНОМЕРНОСТИ ХИМИЧЕСКОЙ КИНЕТИКИ

1.1. Скорость реакции

1.2. Влияние концентрации на скорость реакции

1.3. Молекулярность и порядок реакции

1.4. Прямая и обратная задача химической кинетики

1.5. Реакция первого порядка

1.6. Реакции второго порядка

1.7. Реакции других порядков

1.8. Методы определения порядка реакции

2. Сложные реакции

2.1. Кинетика обратимых реакций

2.2 Параллельные реакции

2.3 Последовательные реакции

2.4 Метод квазистационарных концентраций

3. ВЛИЯНИЕ ТЕМПЕРАТУРЫ НА СКОРОСТЬ ХИМИЧЕСКИХ РЕАКЦИЙ

3.1.Уравнение Аррениуса

3.2. Связь энергии активации с тепловым эффектом реакции

3.3. Связь между скоростью реакции и равновесием

4. КИНЕТИКА ГЕТЕРОГЕННЫХ РЕАКЦИЙ

4.1. Общие понятия

4.2. Макрокинетика. Внешнедиффузионная область

4.3. Макрокинетика. Внутридиффузионное торможение

5. КИНЕТИКА РЕАКЦИЙ В ОТКРЫТЫХ СИСТЕМА

5.1. Химические реакторы.

5.2. Реакторы идеального смешения.

5.3. Реакторы идеального вытеснения.

5.4. Обратимые химические реакции в реакторах

в реакторах смешения и вытеснения.

7. Заключение

8. Рекомендуемая литература

ВВЕДЕНИЕ

Термодинамический метод изучения химических реакций позволяет сделать вывод о принципиальной возможности исследуемого процесса в тех или иных условиях и о глубине его протекания.

При постоянстве давления и температуры самопроизвольное протекание процесса возможно только в направлении уменьшения энергии Гиббса.

Условие определяет принципиальную возможность проведения процесса в заданных условиях из начального состояния в конечное, но не позволяет оценить скорость такого перехода.

Это обстоятельство связано с тем, что реакции не зависит от пути (механизма) процесса, а определяется только начальным и конечным состоянием системы.

Однако химические реакции могут протекать с самыми различными скоростями – от взрывных до очень медленных, протекающих в течение многих месяцев и лет. Даже одна и та же реакция, протекающая на различных катализаторах, может иметь скорости, различающиеся во много раз.

В некоторых случаях необходимо увеличить скорость реакции, в других наоборот, уменьшить. Таких примеров можно привести множество.

Поэтому изучение скорости протекания химических процессов (а это и составляет задачу кинетики) чрезвычайно важно.

Для рационального проведения химических реакций необходимо уметь управлять ими, знать зависимости скорости от различных параметров.

По кинетике издано очень много учебной и методической литературы. Но все эти книги и учебные пособия написаны так, что хочется спросить: «Какое, милые, тысячелетье на дворе?»

Современные системы компьютерной математики позволяют дать быстрый, и что, пожалуй, главное, наглядный прогноз относительно поведения химической системы во времени.

Однако в русскоязычной учебной литературе по кинетике химических реакций подход, в котором используются средства символьной математики в совокупности со средствами решения систем дифференциальных уравнений, представляемые математическим пакетом Mathcad , практически отсутствует.

Поэтому, отвечая на естественный вопрос – чем предлагаемое учебное пособие отличается от множества других, можно ответить: настоящее пособие имеет цель продемонстрировать эффективность применения математического пакета Mathcad для решения задач химической кинетики.

Специальные химические дисциплины, такие как термодинамика и кинетика, достаточно математизированы, и часто решение химической задачи вызывает у студентов значительные трудности, связанные с математикой – довольно часто это приводит к тому, что приходится сознательно упрощать задачу.

Пособие иллюстрирует богатейшие возможности, которые открывает применение компьютерной математики перед исследователем для анализа поведения химических систем во времени.

В этом отношении математические пакеты становятся практически незаменимыми элементами обучения, позволяющими сделать акцент на содержательном анализе полученных результатов.

Знаком >>>>>> в тексте пособия отмечен переход к Mathcad документу для интерактивного расчета.

1. ОБЩИЕ ЗАКОНОМЕРНОСТИ ХИМИЧЕСКОЙ КИНЕТИКИ

1.1. Скорость реакции

Х имическая кинетика – наука о скоростях и закономерно-стях протекания химических процессов во времени.

Химическая кинетика изучает механизм протекания процесса, т.е. те промежуточные стадии, состоящие из элементарных актов, через которые система переходит из начального состояния в конечное.

Химическая кинетика изучает скорости этих стадий и факторы, влияющие на их скорость.

Уравнение химической реакции показывает начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции), но не отражает механизма процесса. Однако путь перехода системы из начального в конечное состояние может быть достаточно сложным и «извилистым».
Так, например, реакция

протекает по следующему механизму:

Изучить кинетику реакции – значит показать, как реально протекает исследуемая реакция, её механизм, получить зависимость, связывающую скорость реакции с факторами, влияющими на неё.

Различают два типа химических реакций: гомогенные и гетерогенные.

К гомогенным относят реакции, у которых и исходные вещества и продукты реакции находятся в одной фазе. Взаимодействие веществ в таких реакциях происходит по всему объёму.

К гетерогенным реакциям относят реакции, протекающие на границе раздела фаз.

Пусть протекает реакция

(1.1)

где a 1 , a 2 , ai , b 1 , b 2 , bj – стехиометрические коэффициенты.

Скорость реакции по i –му веществу в гомогенной системе определяется как количество i -го вещества, образующееся (или реагирующее) в единице реакционного объёма в единицу времени:

(1.2)

где V – объём реакционной зоны, Ni – количество i –го вещества.

Если реакция протекает изохорически, т.е. объём во время реакции не меняется, то, поскольку концентрация и объём связаны соотношением

,

скорость реакции можно определить как изменение концентрации вещества во времени

Ранее мы определили скорость химической реакции как изменение числа молей реагирующих веществ в единицу времени в единице объема, т. е.

где — изменение числа молей одного из исходных веществ за время .

Таким образом определяется средняя скорость реакции для заданного интервала времени.

Если объем в процессе реакции постоянен, то

где — изменение концентрации.

или

(скорость всегда положительна, а может быть больше или меньше нуля в зависимости от того, изменение концентрации исходного вещества или продукта реакции мы рассматриваем).

Если интервал времени , то мы получим истинную скорость реакции r в данный момент времени, т. е.

(1.3)

Размерность скорости: моль/(л·с).

Не только знак, но и абсолютное значение скорости зависит от того, по какому из участников реакции она измерена.

Так, например, при протекании реакции

скорость, с которой уменьшается концентрация водорода во время процесса, в три раза больше скорости убывания концентрации азота и в полтора раза выше скорости возрастания концентрации аммиака.

Следовательно, для реакции

скорости по компонентам реакции будут связаны соотношением:

Экспериментально установлено, что скорость реакции зависит от природы реагирующих веществ, их концентрации (или давления), температуры, т.е.

Раскрытие этой зависимости и составляет одну из задач кинетики.

1.2. Влияние концентрации на скорость реакции

Подход к выяснению зависимости скорости реакции от концентрации реагирующих веществ можно иллюстрировать следующим положением теории вероятностей: вероятность одновременного осуществления независимых событий равна произведению вероятностей каждого из них.

Для того чтобы произошло химическое взаимодействие, например, реакция

необходимо, но не достаточно, столкновение реагирующих молекул А и В, т.е. одновременное нахождение их в определённой точке реакционного пространства.

Вероятность ω нахождения молекулы для каждого из веществ прямо пропорциональна количеству молекул в единице объёма, т.е. его концентрации:

, .

Тогда вероятность того, что обе молекулы будут одновременно находиться в одной точке пространства, т.е. что они столкнутся, равна

Но не все столкновения приведут к реакции, а лишь их некоторая доля α , величина которой зависит от температуры и природы веществ, поэтому скорость реакции

Постоянную k , не зависящую от концентрации и зави­ сящую только от температуры и природы реагирующих веществ, называют константой скорости реакции.

Численное значе­ ние k выражает скорость реакции, когда концентрации реагирующих веществ равны 1 моль/л.

Пусть протекает химическая реакция:

aA + bB + … → продукты.

Тогда зависимость скорости реакции от концентрации можно выразить соотношением

(1.4)

Полученное выражение называют законом действия масс.

1.3. Молекулярность и порядок реакции

Число молекул, вступающих в реакцию, определяют молекулярность реакции.

Так, если в реакцию вступает одна молекула, то такая реакция называется молекулярной реакцией. Если в реакции участвуют две молекулы (безразлично, одинаковые или нет), то такая реакция называется бимолекулярной. Встречаются также тримолекулярные реакции.

Реакции более высокой степени молекулярности крайне редки из–за малой вероятности одновременного столкновения большого числа молекул.

Поэтому большинство реакций протекают в несколько элементарных, простых стадий, в которых участвует небольшое число молекул.

Так, например, рассмотренная выше реакция

протекает по следующему механизму:

вторая стадия (медленная)

Определить такие стадии – значит определить механизм, или путь реакции.

Скорость всей реакции определяется скоростью её наиболее медленной стадии, которая и определяет механизм.

Поэтому закон действующих масс справедлив только для таких элементарных стадий.

Молекулярность реакции легко определить в случае простых реакций, протекающих в одну стадию. В большинстве же случаев довольно трудно найти молекулярность реакции.

Поэтому вводится понятие порядка реакции, который можно найти из кинетических уравнений, полученных экспериментально.

Порядок реакции по данному веществу равен степени, в которой концентрация данного вещества входит в уравнение скорости реакции.

Сумма показателей степеней, в которых концентрация всех исходных веществ входит уравнение скорости реакции, равна порядку реакции в целом. Порядок химической реакции по веществу совпадает со стехиометрическим коэффициентом реакции лишь в очень простых реакциях, например в реакции синтеза йодистого водорода:

Порядок этой реакции по водороду (первый) и йоду (первый) равны стехиометрическими коэффициентами, а общий порядок реакции (второй) равен сумме стехиометрических коэффициентов в уравнении скорости реакции

В подавляющем большинстве случаев порядок реакции по веществу отличается от стехиометрических коэффициентов уравнения реакции для этого вещества.

Соответственно общий порядок реакции обычно не равен сумме стехиометрических коэффициентов уравнения реакции.

при температурах, меньших 298К, протекает по следующему механизму:

первая стадия процесса: NO 2 + NO 2 ® NO 3 + NO

вторая стадия процесса: NO 3 + CO ® CO 2 + NO 2,

причем лимитирующей, т.е. скорость определяющей стадией является первая стадия процесса:

Тогда, согласно первому постулату химической кинетики, который утверждает, что скорость всей реакции равна скорости его самой медленной стадии, можно записать:

,

где— скорость первой стадии процесса.

Согласно второму постулату химической кинетики, который утверждает, что скорость элементарной (одностадийной) реакции пропорциональна концентрации реагирующих веществ в степенях, равных стехиометрическим коэффициентам, получим зависимость скорости реакции

от концентрации реагирующих веществ:

Обратите внимание, что скорость реакции

не зависит от концентрации оксида углерода CO .

Уравнение, выражающее зависимость скорости реакции от концентрации каждого вещества, называют кинетическим уравнением реакции в дифференциальной форме.

К сожалению, кинетическое уравнение реакции может быть получено только при её экспериментальном изучении и не может быть выведено из стехиометрического уравнения.

1.4. Прямая и обратная задача химической кинетики

Определение на основании экспериментальных данных о зависимости концентраций от времени проведения процесса параметров кинетического уравнения – порядка реакции и значения константы скорости – составляет так называемую обратную задачу химической кинетики.

Знание кинетического уравнения реакции в дифференциальной форме позволяет определить время достижения некоторой заданной концентрации реагирующего вещества (или продукта реакции).

Пусть, например, протекает реакция

aA + bB + … → продукты,

кинетическое уравнение которой:

Тогда время достижения некоторой концентрации вещества А можно определить, интегрируя кинетическое уравнение реакции в дифференциальной форме:

Решая дифференциальное уравнение

можно получить зависимость концентрации реагирующего вещества (или продукта реакции) от времени проведения процесса – так называемых кинетических кривых.

Определение – на основании феноменологической модели процесса – концентраций реагентов от времени проведения реакции составляет прямую задачу химической кинетики.

Отметим сразу, что аналитически не всегда удаётся решить дифференциальное уравнение, особенно в случае сложной кинетики.

В этом случае прибегают к численным методам решения и использование компьютерной математики. В частности, применение математических пакетов, например, таких, как Mathcad , становится незаменимым инструментом в исследовательской практике и в процессе обучения.

1.5. Реакция первого порядка

Реакция первого порядка может быть записана в общем виде:

Примером такой реакции может служить реакция разложения диметилового эфира:

Кинетическое уравнение реакции первого порядка можно представить дифференциальным уравнением

(1.5)

Тогда время t достижения некоторой концентрации диметилового эфира CH 3 OCH 3 можно определить, интегрируя соотношение (1.5):

,

где С и C 0 – концентрация CH 3 OCH 3 в момент времени t и t =0.

Интегрирование приводит к выражению

(1.6) И тогда зависимость концентрации исходного вещества CH 3 OCH 3 от времени проведения процесса:

. (1.7)

Из (1.7) следует, что концентрация исходного вещества со временем изменяется по экспоненциальному закону:

Проиллюстрируем изменение концентрации в зависимости от времени на примере реакции первого порядка

с начальной концентрацией моль/л и константой скорости при некоторой температуре k=0.05 1/c

Рис.1. Зависимость концентрации

от времени в реакции первого порядка .

и, в логарифмических координатах, согласно зависимости


источники:

http://helpiks.org/6-49386.html

http://twt.mpei.ac.ru/TTHB/1/Chem/Kin.html