Реакции получения пластмасс с уравнением

Please wait.

We are checking your browser. gomolog.ru

Why do I have to complete a CAPTCHA?

Completing the CAPTCHA proves you are a human and gives you temporary access to the web property.

What can I do to prevent this in the future?

If you are on a personal connection, like at home, you can run an anti-virus scan on your device to make sure it is not infected with malware.

If you are at an office or shared network, you can ask the network administrator to run a scan across the network looking for misconfigured or infected devices.

Another way to prevent getting this page in the future is to use Privacy Pass. You may need to download version 2.0 now from the Chrome Web Store.

Cloudflare Ray ID: 6e13cbae4b3d3a55 • Your IP : 85.95.188.35 • Performance & security by Cloudflare

Химия, Биология, подготовка к ГИА и ЕГЭ

Что же такое полимеризация?

и связанные с ними процессы, ведь, оказывается, почти весь наш мир — полимерный.

Автор статьи — Саид Лутфуллин

Полимеризация – это реакция образования высокомолекулярного соединения из низкомолекулярного. Высокомолекулярное соединение (полимер) – это вещество с большой молекулярной массой, состоящее из многократно повторяющихся сегментов (структурных звеньев), связанных между собой.

Где мы в повседневной жизни можем встретить полимеры?

Везде. Куда бы вы ни поглядели. Полимеры глубоко связались с нашей жизнью, собственно и образовали ее.

Ткани (как синтетические, так и натуральные), пластмассы, резина образованны полимерами. Кроме того, мы сами – тоже состоим из полимеров.

Вспомним определение жизни по Энгельсу:

«Жизнь есть способ существования белковых тел…».

Белки – это природные биополимеры, так же к биополимерам относятся нуклеиновые кислоты и полисахариды.

Какие вещества могут вступать в реакцию полимеризации?

Ответ простой: вещества, содержащие кратные (двойные, тройные) связи.

Давайте рассмотрим первое уравнение полимеризации — схему реакции образования полиэтилена (из него делают пакеты, бутылки, упаковочную пленку и многое другое):

Как мы видим, π-связь рвется, и атомы углерода одной молекулы связываются с атомами углерода соседних молекул. Так образуется длинная цепь полимера. Так как длина полимера может достигать нескольких сотен структурных звеньев, точное число которых, предсказать невозможно, так как в разных молекулах она различная и чтобы не записывать целиком эту цепь, реакцию полимеризации записывают следующим образом:

Где, n – число структурных звеньев в молекуле.

Исходное низкомолекулярное вещество, вступающее в реакцию полимеризации, называется мономер.

Не следует путать структурное звено с мономером.

Мономер и структурное звено имеют одинаковый качественный и количественный состав, но разное химическое строение (отличаются друг от друга количеством кратных связей).

Уравнения полимеризации:

Реакции получения наиболее часто встречающихся полимеров:

  1. Образование изопренового каучука (природный каучук тоже изопреновый, но строго цис- строения) из 2-метилбутадиена-1,3 (изопрена):

    Образование хлорпренового каучука (синтетический каучук) из 2-хлорбутадиена-1,3 (хлорпрена):

  1. Образование полистирола (пластмасса) из винилбензола (стирола):

  1. Образование полипропилена из пропена (пропилена):

Каучуки – это группа полимеров, объединенные общими качествами (эластичность, электроизоляция и т.д.), сырье для производства резины. Раньше для этого использовали натуральный каучук из сока так называемых каучуконосных растений. Позже стали изготавливать искусственные каучуки.

В СССР в 1926 году был объявлен конкурс на лучший способ получения синтетического каучука. Конкурс выиграл Лебедев С.В.

Его метод заключался в следующем:

из этилового спирта производили бутадиен-1,3. Этиловый спирт получали брожением из растительного сырья, которого в СССР было предостаточно, это делало производство дешевле. Бутадиен-1,3 после полимеризации образовывал синтетический каучук:

Чтобы превратить каучук в резину, его подвергают вулканизации.

Вулканизация – это процесс сшивания нитей полимера-каучука в единую сеть, вследствие чего улучшается эластичность, прочность, устойчивость к органическим растворителям .

На схеме ни же показан процесс вулканизации бутадиеновго каучука, путем образования между молекулами полимера дисульфидных мостиков:

Следует отличать реакции полимеризации от реакций поликонденсации.

Реакция поликонденсации – это реакця образования высокомолекулярного соединения из низкомолекулярного, при которой выделяется побочный продукт (вода, аммиак, слороводород и др.)

Способность вещества вступать в реакцию поликонденсации обучлавливается у него наличием покрайней мере двух разных функциональных групп .

Рассмотрим на примере аминокислот:

Две аминокислоты соединились друг с другом, образовав пептидную связь, с выделением побочного продукта – воды. Если процесс продолжить – присоединять к этой цепи остатки аминокислот – по получим белок. Способность аминокислот вступать в реакцию поликонденсации обуславливает наличие в их строение двух функциональных групп: карбоксильной и аминогруппы. В результате реакции поликонденсации помимо полипептидов (белков), образуются нуклеиновые кислоты и полисахариды.

В погоне за качеством продукции, человек научился создавать такие стойкие полимеры, что они не разлагаются несколько тысяч лет. А иногда при разложении выделяют в окружающую среду опасные вещества. Это большая экологическая проблема. Сейчас открываются пункты переработки пластмасс.

Если мы все вместе будет сдавать туда пластмассовые отходы, то внесем огромный вклад в сохранение нашего общего дома – планеты Земля и ее природы.

Полимеры

Высокомолекулярные соединения. Реакции полимеризации и поликонденсации. Полимеры. Пластмассы, волокна, каучуки.

Высокомолекулярные вещества, состоящие из больших молекул цепного строения, называются полимерами (от греч. «поли» — много, «мерос» — часть).

Например , полиэтилен, получаемый при полимеризации этилена CH2=CH2:

…-CH2-CH2-CH2-CH2-CH2-CH2-CH2-… или (-CH2CH2-)n

Молекула полимера называется макромолекулой (от греч. «макрос» — большой, длинный). Молекулярная масса макромолекул достигает десятков — сотен тысяч (и даже миллионов) атомных единиц.

Соединения, из которых образуются полимеры, называются мономерами.

Например , пропилен (пропен) СН2=СH–CH3 является мономером полипропилена

Группа атомов, многократно повторяющаяся в цепной макромолекуле, называется ее структурным звеном.

Мономеры – низкомолекулярные вещества, из которых образуются полимеры.

Степень полимеризации – число, показывающее количество элементарных звеньев в молекуле полимера.

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2–CH2–)n.

Классификация полимеров

Полимеры, макромолекулы которых построены строго определенным способом, называют регулярными.

Полимер называется стереорегулярным, если заместители R в основной цепи макромолекул (–CH2–CHR–)n расположены упорядоченно.

Стереорегулярные полимеры обладают гораздо лучшими свойствами – пластичностью, прочностью и теплостойкостью; они способны кристаллизоваться, в отличие от нерегулярных.

Классификация по структуре

По структуре полимеры делятся на: линейные, разветвленные и пространственные.

Химические связи имеются и между цепями, образуя пространственную структуру

Резина, фенолформальдегидные смолы

Линейные Разветвленные Пространственные
Состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру.

Целлюлоза, полиэтилен низкого давления, капрон

Макромолекулы разветвленных имеют боковые ответвления от цепи, называемой главной или основной

Крахмал

Линейные — макромолекулы состоят из последовательности повторяющихся звеньев с большим отношением длины молекулы к ее поперечному размеру (целлюлоза, полиэтилен низкого давления, капрон).

Разветвленные — макромолекулы которых имеют боковые ответвления от цепи, называемой главной или основной (крахмал).

Сетчатые (пространственные) — химические связи имеются и между цепями (резина, фенолформальдегидные смолы).

Классификация по происхождению

По способу получения полимеры делятся на: природные, синтетические и искусственные.

Природные волокна Синтетические волокна Искусственные
Непосредственно существуют в природе
  • хлопок
  • шерсть
  • натуральный шелк
Получают полностью химическим путем в реакциях полимеризации и поликонденсации
  • капрон
  • найлон
  • лавсан
Получают модификацией натуральных полимеров
  • ацетатное волокно
  • целлулоид
  • вискоза

Природные полимеры непосредственно существуют в природе (крахмал, целлюлоза и др.).

Синтетические полимеры получают полностью химическим путем в реакциях полимеризации и поликонденсации (полиэтилен, полихлорвинил, фенол-формальдегидные смолы, метилметакрилат и т.д.). Не имеют аналогов в природе.

Искусственные – получают модификацией натуральных полимеров (вискоза –модифицированная целлюлоза, резина –модификация натурального каучука).

Классификация по химическому характеру

По химическому характеру и составу полимеры и химические волокна бывают: полиэфирные, полиамидные, элементоорганические (например, кремнийорганические полимеры).

Полиэфирные полимеры Полиамидные полимеры Элементоорганические
Содержат группу -СОО-

Лавсан (полиэтилентерефталат)

Содержат группу -СО-NH2

Найлон, капрон

Содержат атомы других хим. элементов (кремний и др.).

Кремнийорганические полимеры

Полиэфирные полимеры — содержат группу сложных эфиров -СОО-.

Полиамидные полимеры — содержат пептидную связь -СО-NH2-.

Элементоорганические полимеры — содержат атомы других химических элементов (помимо С, Н, О, N).

Классификация по способу получения

Полимеры получают либо реакциями полимеризации, либо поликонденсацией.

Полимеризация Поликонденсация
Это присоединение одних молекул к другим за счет разрыва кратных связей. Побочные продукты, как правило, не образуются.

Полиэтилен, полипропилен и др.

Образование полимера происходит за счет реакции замещения. При этом образуется низкомолекулярный побочный продукт.

Фенолформальдегидная смола, капрон

Полимеризация — процесс образования высокомолекулярного вещества(полимера) путём многократного присоединения молекул мономера к активным центрам в растущей молекуле полимера.

Например , образование полиэтилена происходит по механизму полимеризации:

Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов (обычно это вода).

Например , образование капрона протекает по механизму поликонденсации:

Свойства полимеров

По свойствам полимеры можно разделить на: термореактивные, термопластичные и эластомеры.

Термореактивные Термопластичные Эластомеры
Неплавкие и неэластичные материалы.

Фенолформальдегидные смолы, полиуретан

Меняют форму при нагревании и сохраняют её.

Полиэтилен, полистирол, поливинилхлорид

Эластичные вещества при разных температурах.

Натуральный каучук, полихлоропрен


Термореактивные полимеры
— пластмассы, переработка которых в изделия сопровождается необратимой химической реакцией, приводящей к образованию неплавкого и нерастворимого материала.

Например , фенолформальдегидные смолы, полиуретан.

Термопластичные полимеры — меняют форму в нагретом состоянии и сохраняют её после охлаждения.

Например , полиэтилен, полистирол, полихлорвинил и т.д.

Эластомеры – обладают высокоэластичными свойствами в широком интервале температур.

Например , натуральный каучук.

Полимеризация и поликонденсация

Полимеризация

Степень полимеризации — это число, показывающее сколько молекул мономера соединилось в макромолекулу.

Степень полимеризации обычно обозначается индексом «n» за скобками, включающими в себя структурное (мономерное) звено: (–CH2CH2–)n

Характерные признаки полимеризации.
  1. В основе полимеризации лежит реакция присоединения.
  2. Полимеризация – цепная реакция, включает стадии инициирования, роста и обрыва цепи.
  3. Элементный состав (молекулярные формулы) мономера и полимера одинаков.

Катализаторами полимеризации могут быть: металлический натрий, пероксиды, кислород, металлоорганические соединения, комплексные соединения.

Процесс образования высокомолекулярных соединений при совместной полимеризации двух или более различных мономеров называют сополимеризацией.

Например , схема сополимеризации этилена с пропиленом:

Важнейшие синтетические полимеры

Изображение с портала orgchem.ru

Важнейшие синтетические полимеры, получаемые реакцией полимеризации, и области их применения:

ПолимерМономерХарактеристики полимераПрименение полимера
Полиэтилен

(–СН2–СН2–)n

Этилен

СН2=СН2

Синтетический, линейный, термопластичный, химически стойкийУпаковка, тара
Полипропилен

Пропилен

СН2=СН–СН3

Синтетический, линейный, термопластичный, химически стойкийТрубы, упаковка, ткань (нетканый материал)
Поливинилхлорид

Винилхлорид

СН2=СН–Сl

Синтетический линейный полимер, т ермопластичныйНатяжные потолки, окна, пленка, трубы, полы, изолента и т.д
Полистирол

Стирол

Синтетический линейный полимер, термопластичныйУпаковка, посуда, потолочные панели
Полиметилметакрилат

Метиловый эфир метакриловой кислоты

Синтетический линейный полимер, т ермопластичныйОчки, корпуса фар и светильников, душевые кабины, мебель и т.д
Тефлон (политетрафторэтилен)

Тетрафторэтилен

Синтетический линейный полимер.

Термопластичный (t = 260-320 0 C)

Обладает очень высокой химической стойкостью

Посуда, пластины утюгов, ленты и скотч, упаковка, изоляция
Искусственный каучук

Мономер: бутадиен-1,3 (дивинил)

Синтетический, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Натуральный каучук

Природный, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Хлоропреновый каучук

Синтетический, линейный, эластомер, содержит двойные связиРезина, изоляция, различные материалы, ракетное топливо
Бутадиен-стирольный каучук

Мономеры: бутадиен-1,3 и стирол

Синтетический, эластомерРезина, изоляция, различные материалы, ракетное топливо
Полиакрилонитрил

Акрилонитрил

Синтетический, линейныйВолокна, пластмассы

Поликонденсация

Поликонденсация – процесс образования высокомолекулярных соединений, протекающий по механизму замещения и сопровождающийся выделением побочных низкомолекулярных продуктов, обычно это вода.
Характерные признаки поликонденсации.

  1. В основе поликонденсации лежит реакция замещения.
  2. Поликонденсация – процесс ступенчатый, т.к. образование макромолекул происходит в результате последовательного взаимодействия мономеров, димеров или n-меров как между собой, так и друг с другом.
  3. Помимо высокомолекулярного соединения, в реакции поликонденсации образуется второе, низкомолекулярное вещество (обычно это вода).

Важнейшие синтетические полимеры, получаемые реакцией поликонденсации, и области их применения:

Полимер и м ономерХарактеристики полимераПрименение полимера
Капрон

Мономер: 6-аминокапроновая кислота (лактам)

Синтетический, линейный, термопластичный, очень эластичныйПолиамидные волокна (нитки, ткани, парашюты, втулки и т.д.)
Найлон

Мономер: 1,6-диаминогексан и адипиновая кислота (1,6-гександиовая)

Синтетический, полиамидный, линейный, термопластичныйИзготовление втулок, вкладышей, ниток, одежды, гитарных струн (полиамидное волокно)
Лавсан (полиэтилентерефталат)

Мономер: Этиленгликоль, терефталевая кислота

Синтетический линейный полимер, т ермопластичный, полиэфирныйНатяжные потолки, окна, пленка, трубы, полы, изолента и т.д
Фенолформальдегидная смола

Мономеры: фенол и формальдегид

Синтетический, пространственный (сетчатый) полимерПроизводство ДСП, лаков, клея (БФ-6 применяется в медицине), часто используется с наполнителями
Крахмал

Мономер: α-глюкоза

Природный, полиэфирный, разветвленныйПищевая, текстильная, бумажная промышленность, фармацевтика и др.
Целлюлоза

Мономер: β-глюкоза

Природный, полиэфирный, линейныйПроизводство бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, получение гидролизного спирта и др.
ДНК

Мономер: Дезоксирибоза, ортофосфорная кислота, азотистые основания

Природный, полиэфирный, линейныйФункционирование живых организмов
РНК

Мономер: Рибоза, ортофосфорная кислота, азотистые основания


источники:

http://distant-lessons.ru/uravneniya-polimerizacii.html

http://chemege.ru/polimery/