Реакция электролитов в водных растворах их уравнения

Растворы электролитов

Электролиты

При растворении в воде некоторые вещества имеют способность проводить электрический ток.

Те соединения, водные растворы которых способны проводить электрический ток называются электролитами.

Электролиты проводят ток за счет так называемой ионной проводимости, которой обладают многие соединения с ионным строением (соли, кислоты, основания).

Вещества, имеющие сильнополярные связи, но в растворе при этом подвергаются неполной ионизации (например, хлорид ртути II) являются слабыми электролитами.

Многие органические соединения (углеводы, спирты), растворенные воде, не распадаются на ионы, а сохраняют свое молекулярное строение. Такие вещества электрический ток не проводят и называются неэлектролитами.

Приведем некоторые закономерности, руководствуясь которыми можно определить относятся вещества к сильным или слабым электролитам:

  1. Кислоты. К сильным кислотам из наиболее распространенных относятся HCl, HBr, HI, HNO3, H2SO4, HClO4. Все они являются сильными электролитами. Почти все остальные кислоты, в том числе и органические являются слабыми электролитами.
  2. Основания. Наиболее распространенные сильные основания – гидроксиды щелочных и щелочноземельных металлов (исключая Be) относятся к сильным электролитам. Слабый электролит – NH3.
  3. Соли. Большинство распространенных солей – ионных соединений — сильные электролиты. Исключения составляют, в основном, соли тяжелых металлов.

Теория электролитической диссоциации

Электролиты, как сильные, так и слабые и даже очень сильно разбавленные не подчиняются закону Рауля и принципу Вант-Гоффа.

Имея способность к электропроводности, значения давления пара растворителя и температуры плавления растворов электролитов будут более низкими, а температуры кипения более высокими по сравнению с аналогичными значениями чистого растворителя. В 1887 г С. Аррениус, изучая эти отклонения, пришел к созданию теории электролитической диссоциации.

Электролитическая диссоциация предполагает, что молекулы электролита в растворе распадаются на положительно и отрицательно заряженные ионы, которые названы соответственно катионами и анионами.

Сущность теории электролитической диссоциации

  1. В растворах электролиты распадаются на ионы, т.е. диссоциируют. Чем более разбавлен раствор электролита, тем больше его степень диссоциации.
  2. Диссоциация — явление обратимое и равновесное.
  3. Молекулы растворителя бесконечно слабо взаимодействуют (т.е. растворы близки к идеальным).

Степень диссоциации электролита зависит от:

  • природы самого электролита
  • природы растворителя
  • концентрации электролита
  • температуры.

Степень диссоциации

Степень диссоциации α, показывает какое число молекул n распалось на ионы, по сравнению с общим числом растворенных молекул N:

  • Степень диссоциации равна 0 α = 0 означает, что диссоциация отсутствует.
  • При полной диссоциации электролита степень диссоциации равна 1 α = 1.

С точки зрения степени диссоциации, по силе электролиты делятся на:

  • сильные (α > 0,7),
  • средней силы ( 0,3 > α > 0,7),
  • слабые (α — + bB +

    K = [A — ] a ·[B + ] b /[Aa Bb]

    Для слабых электролитов концентрация каждого иона равна произведению степени диссоциации α на общую концентрацию электролита С.

    Таким образом, выражение для константы диссоциации можно преобразовать:

    K = α 2 C/(1-α)

    Для разбавленных растворов (1-α) =1, тогда

    K = α 2 C

    Отсюда нетрудно найти степень диссоциации

    α = (K/C) 1/2

    Ионно–молекулярные уравнения

    Как составить полное и сокращенное ионные уравнения

    Рассмотрим несколько примеров реакций, для которых составим молекулярное, полное и сокращенное ионное уравнения.

    1) Пример нейтрализации сильной кислоты сильным основанием

    1. Процесс представлен в виде молекулярного уравнения.

    HCl + NaOH = NaCl + HOH

    2. Представим процесс в виде полного ионного уравнения. Т.е. запишем в ионном виде все соединения — электролиты, которые в растворе полностью ионизированы.

    H + + Cl — +Na + + OH — = Na + + Cl — + HOH

    3. После «сокращения» одинаковых ионов в левой и правой частях уравнения получаем сокращенное ионное уравнение:

    H + + OH — = HOH

    Мы видим, что процесс нейтрализации сводится к соединению H + и OH — и образованию воды.

    При составлении ионных уравнений следует помнить, что в ионном виде записываются только сильные электролиты. Слабые электролиты, твердые вещества и газы записываются в их молекулярном виде.

    2) Пример реакции осаждения

    Смешаем водные растворы AgNO3 и HI:

    Молекулярное уравнениеAgNO3 + HI →AgI↓ + HNO3
    Полное ионное уравнениеAg + + NO3 — + H + + I — →AgI↓ + H + + NO3
    Сокращенное ионное уравнениеAg + + I — →AgI↓

    Процесс осаждения сводится к взаимодействию только Ag + и I — и образованию нерастворимого в воде AgI.

    Чтобы узнать способно ли интересующее нас вещество растворяться в воде, необходимо воспользоваться таблицей растворимости кислот, солей и оснований в воде. В приведенной таблице также указан цвет образуемого осадка, сила кислот и оснований и способность анионов к гидролизу.

    Пример образования летучего соединения

    Рассмотрим третий тип реакций, в результате которой образуется летучее соединение. Это реакции взаимодействия карбонатов, сульфитов или сульфидов с кислотами. Например,

    Молекулярное уравнениеNa2SO3 + 2HI → 2NaI + SO2↑ + H2O
    Полное ионное уравнение2Na + + SO3 2- + 2H + + 2I — → 2Na + + 2I — + SO2↑ + H2O
    Сокращенное ионное уравнениеSO3 2- + 2H + → SO2↑ + H2O

    Отсутствие взаимодействия между растворами веществ

    При смешении некоторых растворов ионных соединений, взаимодействия между ними может и не происходить, например

    Молекулярное уравнениеCaCl2 + 2NaI = 2NaCl +CaI2
    Полное ионное уравнениеCa 2+ + Cl — + 2Na + + I — = 2Na + + Cl — + Ca 2+ + 2I —
    Сокращенное ионное уравнениеотсутствует

    Условия протекания реакции (химического превращения)

    Итак, подводя итог, отметим, что химические превращения наблюдаются в случаях, если соблюдается одно из следующих условий:

    • Образование неэлектролита. В качестве неэлектролита может выступать вода.
    • Образование осадка.
    • Выделение газа.
    • Образование слабого электролита, например уксусной кислоты.
    • Перенос одного или нескольких электронов. Это реализуется в окислительно – восстановительных реакциях.
    • Образование или разрыв одной или нескольких ковалентных связей.

    Реакции обмена в водных растворах электролитов. Ионные реакции и уравнения

    Так как молекулы электролитов в растворах распадаются на ионы, то и реакции в растворах электролитов происходят между ионами.

    Реакции, протекающие между ионами, называются ионными реакциями.

    С участием ионов могут протекать как обменные, так и окислительно-восстановительные реакции. Рассмотрим реакции ионного обмена, например взаимодействие между растворами двух солей:

    Это уравнение является молекулярным уравнением, так как формулы всех веществ записаны в виде молекул. Исходные вещества Na24 и ВаCl2 являются сильными электролитами, т. е. в растворе находятся в виде ионов. Сульфат бария — нерастворимая соль, которая выпадает в осадок, следовательно, ионы Ва 2+ и SО4 2- уходят из раствора. Хлорид натрия NaCl — растворимая соль, сильный электролит, в растворе находится в виде ионов (Na + + Сl — ). Таким образом, с учетом диссоциации сильных электролитов уравнение реакции можно записать так:

    Такое уравнение называется полным ионным уравнением.

    Результат взаимодействия хлорида бария с сульфатом натрия

    Ионы Na + и Cl — имеются и в левой, и в правой частях уравнения, т. е. эти ионы в реакции участия не принимают, их можно исключить из уравнения:

    Полученное уравнение называется сокращенным ионным уравнением. Оно показывает, что в ходе данной реакции происходит связывание ионов SO4 2- , которые находились в растворе NaSО4, и ионов Ва 2+ , которые находились в растворе ВаCl2, и в результате образовалась нерастворимая соль BaSО4.

    Сокращенное ионное уравнение (3) выражает сущность не только реакции (1). Напишем уравнения нескольких реакций:

    Как видим, сущность реакций (4) и (5), как и реакции (1), заключается в связывании ионов SO4 2- и Ва 2+ с образованием нерастворимой соли BaSО4.

    В ионных уравнениях формулы веществ записывают в виде ионов или в виде молекул.

    В виде ионов записывают формулы:

    В виде молекул записывают формулы:

    — малорастворимых солей(↓) AgCl, BaSO4, СаСО3, FeS и др.;

    Большая часть молекул слабых электролитов в растворе не диссоциирует на ионы.

    В виде молекул также записывают:

    В уравнениях реакций ставят знак ↓, если среди продуктов реакции есть осадок — нерастворимые или малорастворимые вещества. Знак ↑ показывает газообразные и летучие соединения.

    Реакции обмена в водных растворах электролитов могут быть:

    1) практически необратимыми, т. е. протекать до конца;

    2) обратимыми, т. е. протекать одновременно в двух противоположных направлениях.

    1) Реакции обмена между сильными электролитами в растворах протекают до конца, или практически необратимы, когда ионы соединяются друг с другом и образуют:

    а) малорастворимые вещества;

    б) малодиссоциирующие вещества — слабые электролиты;

    в) газообразные или летучие вещества.

    Рассмотрим эти случаи.

    а) Реакции с образованием малорастворимых веществ, выпадающих в осадок (↓).

    Составим молекулярное и ионное уравнения реакции между нитратом серебра (I) AgNO3 и хлоридом натрия NaCl:

    Эта реакция обмена необратима, потому что один из продуктов уходит из сферы реакции в виде нерастворимого вещества.

    б) Реакции, идущие с образованием малодиссоциирующих веществ (слабых электролитов).

    Составим молекулярное и ионное уравнения реакции нейтрализации между растворами гидроксида натрия NaOH и серной кислоты H2SO4:

    или, сокращая коэффициенты, получим: ОН — + Н + = Н2О.

    В результате реакции нейтрализации ионы водорода Н + и гидроксид-ионы ОН — образуют малодиссоциирующие молекулы воды. Процесс нейтрализации идет до конца, т. е. эта реакция необратима.

    в) Реакции, протекающие с образованием газообразных веществ.

    Составим молекулярное и ионное уравнения реакции между растворами гидроксида кальция и хлорида аммония NH4Cl:

    Эта реакция обмена необратима, потому что образуются газ аммиак NH3 и малодиссоциирующее вещество вода.

    2) Если среди исходных веществ имеются слабые электролиты или малорастворимые вещества, то такие реакции являются обратимыми, т. е. до конца не протекают. Например:

    Если исходными веществами реакций обмена являются сильные электролиты, которые при взаимодействии не образуют малорастворимых или малодиссоциирующих веществ, то такие реакции не протекают. При смешивании их растворов образуется смесь ионов, которые не соединяются друг с другом. Например:

    Электролитическая диссоциация

    Материалы портала onx.distant.ru

    Примеры решения задач

    Задачи для самостоятельного решения

    Степень диссоциации

    Вещества, которые в растворах или расплавах полностью или частично распадаются на ионы, называются электролитами.

    Степень диссоциации α — это отношение числа молекул, распавшихся на ионы N′ к общему числу растворенных молекул N:

    α = N′/N

    Степень диссоциации выражают в процентах или в долях единицы. Если α =0, то диссоциация отсутствует и вещество не является электролитом. В случае если α =1, то электролит полностью распадается на ионы.

    Классификация электролитов

    Согласно современным представлениям теории растворов все электролиты делятся на два класса: ассоциированные (слабые) и неассоциированные (сильные) . Неассоциированные электролиты в разбавленных растворах практически полностью диссоциированы на ионы. Для этого класса электролитов a близко к единице (к 100 %). Неассоциированными электролитами являются, например, HCl, NaOH, K2SO4 в разбавленных водных растворах.

    Ассоциированные электролиты подразделяются на три типа:

        1. Слабые электролиты существуют в растворах как в виде ионов, так и в виде недиссоциированных молекул. Примерами ассоциированных электролитов этой группы являются, в частности, Н2S, Н2SO3, СН3СOОН в водных растворах.
        2. Ионные ассоциаты образуются в растворах путем ассоциации простых ионов за счет электростатического взаимодействия. Ионные ассоциаты возникают в концентрированных растворах хорошо растворимых электролитов. В результате в растворе находятся как простые ионы, так и ионные ассоциаты. Например, в концентрированном водном растворе КCl образуются простые ионы К + , Cl — , а также возможно образование ионных пар (К + Cl — ), ионных тройников (K2Cl + , KCl2 — ) и ионных квадруполей (K2Cl2, KCl3 2- , K3Cl 2+ ).
        3. Комплексные соединения (как ионные, так и молекулярные), внутренняя сфера которых ступенчато диссоциирует на ионные и (или) молекулярные частицы.
          Примеры комплексных ионов: [Cu(NH3)4] 2+ , [Fe(CN)6] 3+ , [Cr(H2O)3Cl2] + .

    При таком подходе один и тот же электролит может относиться к различным типам в зависимости от концентрации раствора, вида растворителя и температуры. Подтверждением этому являются данные, приведенные в таблице.

    Таблица. Характеристика растворов KI в различных растворителях

    Концентрация электролита, С, моль/л Температура

    t, о С

    Растворитель Тип электролита
    0,0125Н2ОНеассоциированный (сильный)
    525Н2ОИонный ассоциат
    0,00125С6Н6Ассоциированный (слабый)

    Приближенно, для качественных рассуждений можно пользоваться устаревшим делением электролитов на сильные и слабые. Выделение группы электролитов “средней силы” не имеет смысла. Эти электролиты являются ассоциированными. К слабым электролитам обычно относят электролиты, степень диссоцииации которых мала α

    Таким образом, к сильным электролитам относятся разбавленные водные растворы почти всех хорошо растворимых в воде солей, многие разбавленные водные растворы минеральных кислот (НСl, HBr, НNО3, НСlO4 и др.), разбавленные водные растворы гидроксидов щелочных металлов. К слабым электролитам принадлежат все органические кислоты в водных растворах, некоторые водные растворы неорганических кислот, например, H2S, HCN, H2CO3, HNO2, HСlO и др. К слабым электролитам относится и вода.

    Диссоциация электролитов

    Уравнение реакции диссоциации сильного электролита можно представить следующим образом. Между правой и левой частями уравнения реакции диссоциации сильного электролита ставится стрелка или знак равенства:

    HCl → H + + Cl —

    Допускается также ставить знак обратимости, однако в этом случае указывается направление, в котором смещается равновесие диссоциации, или указывается, что α≈1. Например:

    NaOH → Na + + OH —

    Диссоциация кислых и основных солей в разбавленных водных растворах протекает следующим образом:

    NaHSO3 → Na + + HSO3

    Анион кислой соли будет диссоциировать в незначительной степени, поскольку является ассоциированным электролитом:

    HSO3 — → H + + SO3 2-

    Аналогичным образом происходит диссоциация основных солей:

    Mg(OH)Cl → MgOH + + Cl —

    Катион основной соли подвергается дальнейшей диссоциации как слабый электролит:

    MgOH + → Mg 2+ + OH —

    Двойные соли в разбавленных водных растворах рассматриваются как неассоциированные электролиты:

    Комплексные соединения в разбавленных водных растворах практически полностью диссоциируют на внешнюю и внутреннюю сферы:

    В свою очередь, комплексный ион в незначительной степени подвергается дальнейшей диссоциации:

    [Fe(CN)6] 3- → Fe 3+ + 6CN —

    Константа диссоциации

    При растворении слабого электролита К А в растворе установится равновесие:

    КА ↔ К + + А —

    которое количественно описывается величиной константы равновесия Кд, называемой константой диссоциации :

    Kд = [К + ] · [А — ] /[КА] (2)

    Константа диссоциации характеризует способность электролита диссоциировать на ионы. Чем больше константа диссоциации, тем больше ионов в растворе слабого электролита. Например, в растворе азотистой кислоты HNO2 ионов Н + больше, чем в растворе синильной кислоты HCN, поскольку К(HNO2) = 4,6·10 — 4 , а К(HCN) = 4,9·10 — 10 .

    Для слабых I-I электролитов (HCN, HNO2, CH3COOH) величина константы диссоциации Кд связана со степенью диссоциации α и концентрацией электролита c уравнением Оствальда:

    Кд = (α 2· с)/(1-α) (3)

    Для практических расчетов при условии, что α

    Кд = α 2· с (4)

    Поскольку процесс диссоциации слабого электролита обратим, то к нему применим принцип Ле Шателье. В частности, добавление CH3COONa к водному раствору CH3COOH вызовет подавление собственной диссоциации уксусной кислоты и уменьшение концентрации протонов. Таким образом, добавление в раствор ассоциированного электролита веществ, содержащих одноименные ионы, уменьшает его степень диссоциации.

    Следует отметить, что константа диссоциации слабого электролита связана с изменением энергии Гиббса в процессе диссоциации этого электролита соотношением:

    ΔGT 0 = — RTlnKд (5)

    Уравнение (5) используется для расчета констант диссоциации слабых электролитов по термодинамическим данным.

    Примеры решения задач

    Задача 1. Определите концентрацию ионов калия и фосфат-ионов в 0,025 М растворе K3PO4.

    Решение. K3PO4 – сильный электролит и в водном растворе диссоциирует полностью:

    Следовательно, концентрации ионов К + и РО4 3- равны соответственно 0,075М и 0,025М.

    Задача 2. Определите степень диссоциации αд и концентрацию ионов ОН — (моль/л) в 0,03 М растворе NH3·H2О при 298 К, если при указанной температуре Кд(NH3·H2О) = 1,76× 10 — 5 .

    Решение. Уравнение диссоциации электролита:

    Концентрации ионов: [NH4 + ] = α С ; [OH — ] = α С , где С – исходная концентрация NH 3 ·H 2 О моль/л. Следовательно:

    Kд = αС · αС /(1 — αС)

    Кд α 2 С

    Константа диссоциации зависит от температуры и от природы растворителя, но не зависит от концентрации растворов NH 3 ·H 2 О . Закон разбавления Оствальда выражает зависимость α слабого электролита от концентрации.

    α = √( Кд / С) = √(1,76× 10 — 5 / 0,03 ) = 0,024 или 2,4 %

    [OH — ] = αС, откуда [OH — ] = 2,4·10 — 2 ·0,03 = 7,2·10 -4 моль/л.

    Задача 3. Определите константу диссоциации уксусной кислоты, если степень диссоциации CH3CОOH в 0,002 М растворе равна 9,4 %.

    Решение. Уравнение диссоциации кислоты:

    CH3CОOH → СН3СОО — + Н + .

    α = [Н + ] / Сисх(CH3CОOH)

    откуда [Н + ] = 9,4·10 — 2 ·0,002 = 1,88·10 -4 М.

    Kд = [Н + ] 2 / Сисх(CH3CОOH)

    Константу диссоциации можно также найти по формуле: Кд ≈ α 2 С .

    Задача 4. Константа диссоциации HNO2 при 298К равна 4,6× 10 — 4 . Найдите концентрацию азотистой кислоты, при которой степень диссоциации HNO2 равна 5 %.

    Решение.

    Кд = α 2 С , откуда получаем С исх (HNO 2 ) = 4,6·10 — 4 /(5·10 — 2 ) 2 = 0,184 М.

    Задача 5. На основе справочных данных рассчитайте константу диссоциации муравьиной кислоты при 298 К.

    Решение. Уравнение диссоциации муравьиной кислоты

    В “Кратком справочнике физико–химических величин” под редакцией А.А. Равделя и А.М. Пономаревой приведены значения энергий Гиббса образований ионов в растворе, а также гипотетически недиссоциированных молекул. Значения энергий Гиббса для муравьиной кислоты и ионов Н + и СООН — в водном растворе приведены ниже:

    Вещество, ионНСООНН +СООН —
    ΔGT 0 , кДж/моль— 373,00— 351,5

    Изменение энергии Гиббса процесса диссоциации равно:

    ΔGT 0 = — 351,5- (- 373,0) = 21,5 кДж/моль.

    Для расчета константы диссоциации используем уравнение (5). Из этого уравнения получаем:

    lnKд = — Δ GT 0 /RT= — 21500/(8,31 298) = — 8,68

    Откуда находим: Kд = 1,7× 10 — 4 .

    Задачи для самостоятельного решения

    1. К сильным электролитам в разбавленных водных растворах относятся:

    1. СН3СOOH
    2. Na3PO4
    3. NaCN
    4. NH3
    5. C2H5OH
    6. HNO2
    7. HNO3

    13.2. К слабым электролитам в водных растворах относятся:

    3. Определите концентрацию ионов NH4 + в 0,03 М растворе (NH4)2Fe(SO4)2;

    4. Определите концентрацию ионов водорода в 6 мас.% растворе H2SO4, плотность которого составляет 1,038 г/мл. Принять степень диссоциации кислоты по первой и второй ступеням равной 100 %.

    5. Определите концентрацию гидроксид-ионов в 0,15 М растворе Ba(OH)2.

    6. Степень диссоциации муравьиной кислоты в 0,1 М растворе равна 4 %. Рассчитайте Концентрацию ионов водорода в этом растворе и константу диссоциации НСООН.

    7. Степень диссоциации муравьиной кислоты в водном растворе увеличится при:

    а) уменьшении концентрации HCOOH;

    б) увеличении концентрации HCOOH;

    в) добавлении в раствор муравьиной кислоты HCOONa;

    г) добавлении в раствор муравьиной кислоты НCl.

    8. Константа диссоциации хлорноватистой кислоты равна 5× 10 — 8 . Определите концентрацию HClO, при которой степень диссоциации HClO равна 0,5 %, и концентрацию ионов Н + в этом растворе.

    0,002М; 1× 10 — 5 М.

    9. Вычислите объем воды, который необходимо добавить к 50 мл 0,02 М раствора NH 3·H 2О, чтобы степень диссоциации NH 3·H 2О увеличилась в 10 раз, если Кд(NH4OH) = 1,76·10 — 5 .

    10. Определите степень диссоциации азотистой кислоты в 0,25 М растворе при 298 К, если при указанной температуре Кд(HNO2) = 4,6× 10 — 4 .


    источники:

    http://al-himik.ru/reakcii-obmena-v-vodnyh-rastvorah-jelektrolitov-ionnye-reakcii-i-uravnenija/

    http://chemege.ru/el-dissociaciya/