Реакция синтеза метанола протекает по уравнению

Метанол: химические свойства и получение

Метанол CH3OH, метиловый спирт – это органическое вещество, предельный одноатомный спирт .

Общая формула предельных нециклических одноатомных спиртов: CnH2n+2O.

Строение метанола

В молекулах спиртов, помимо связей С–С и С–Н, присутствуют ковалентные полярные химические связи О–Н и С–О.

Электроотрицательность кислорода (ЭО = 3,5) больше электроотрицательности водорода (ЭО = 2,1) и углерода (ЭО = 2,4).

Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атом кислорода в спиртах находится в состоянии sp 3 -гибридизации.

В образовании химических связей с атомами C и H участвуют две 2sp 3 -гибридные орбитали, а еще две 2sp 3 -гибридные орбитали заняты неподеленными электронными парами атома кислорода.

Поэтому валентный угол C–О–H близок к тетраэдрическому и составляет почти 108 о .

Водородные связи и физические свойства метанола

Спирты образуют межмолекулярные водородные связи. Водородные связи вызывают притяжение и ассоциацию молекул спиртов:

Поэтому метанол – жидкость с относительно высокой температурой кипения (температура кипения метанола +64,5 о С).

Водородные связи образуются не только между молекулами метанола, но и между молекулами метанола и воды. Поэтому метанол очень хорошо растворимы в воде. Молекулы метанола в воде гидратируются:

Чем больше углеводородный радикал, тем меньше растворимость спирта в воде. Чем больше ОН-групп в спирте, тем больше растворимость в воде.

Метанол смешивается с водой в любых соотношениях.

Изомерия метанола

Для метанола не характерно наличие структурных изомеров – ни изомеров углеродного скелета, ни изомеров положения гидроксильной группы, ни межклассовых изомеров.

Химические свойства метанола

Метанол – органическое вещество, молекула которого содержит, помимо углеводородной цепи, одну группу ОН.

1. Кислотные свойства метанола

Метанол – неэлектролит, в водном растворе не диссоциирует на ионы; кислотные свойства у него выражены слабее, чем у воды.

1.1. Взаимодействие с раствором щелочей

Метанол с растворами щелочей практически не реагирует, т. к. образующиеся алкоголяты почти полностью гидролизуются водой.

Равновесие в этой реакции так сильно сдвинуто влево, что прямая реакция не идет. Поэтому метанол не взаимодействуют с растворами щелочей.

1.2. Взаимодействие с металлами (щелочными и щелочноземельными)

Метанол взаимодействуют с активными металлами (щелочными и щелочноземельными). При этом образуются алкоголяты. При взаимодействии с металлами спирты ведут себя, как кислоты.

Например, метанол взаимодействует с калием с образованием метилата калия и водорода .

Метилаты под действием воды полностью гидролизуются с выделением спирта и гидроксида металла.

Например, метилат калия разлагается водой:

CH3OK + H2O → CH3-OH + KOH

2. Реакции замещения группы ОН

2.1. Взаимодействие с галогеноводородами

При взаимодействии метанола с галогеноводородами группа ОН замещается на галоген и образуется галогеналкан.

Например, метанол реагирует с бромоводородом.

2.2. Взаимодействие с аммиаком

Гидроксогруппу спиртов можно заместить на аминогруппу при нагревании спирта с аммиаком на катализаторе.

Например, при взаимодействии метанола с аммиаком образуется метиламин.

2.3. Этерификация (образование сложных эфиров)

Метанол вступает в реакции с карбоновыми кислотами, образуя сложные эфиры.

Например, метанол реагирует с уксусной кислотой с образованием метилацетата (метилового эфира уксусной кислоты):

2.4. Взаимодействие с кислотами-гидроксидами

Спирты взаимодействуют и с неорганическими кислотами, например, азотной или серной.

Например, метанол взаимодействует с азотной кислотой :

3. Реакции замещения группы ОН

В присутствии концентрированной серной кислоты от метанола отщепляется вода. Процесс дегидратации протекает по двум возможным направлениям: внутримолекулярная дегидратация и межмолекулярная дегидратация.

3.2. Межмолекулярная дегидратация

При низкой температуре (меньше 140 о С) происходит межмолекулярная дегидратация по механизму нуклеофильного замещения: ОН-группа в одной молекуле спирта замещается на группу OR другой молекулы. Продуктом реакции является простой эфир.

Например, при дегидратации метанола при температуре до 140 о С образуется диметиловый эфир:

4. Окисление метанола

Реакции окисления в органической химии сопровождаются увеличением числа атомов кислорода (или числа связей с атомами кислорода) в молекуле и/или уменьшением числа атомов водорода (или числа связей с атомами водорода).

В зависимости от интенсивности и условий окисление можно условно разделить на каталитическое, мягкое и жесткое.

Метанол окисляется сначала в формальдегид, затем в углекислый газ:

Метанол → формальдегид → углекислый газ

Типичные окислители — оксид меди (II), перманганат калия KMnO4, K2Cr2O7, кислород в присутствии катализатора.

Легкость окисления спиртов уменьшается в ряду:

метанол

4.1. Окисление оксидом меди (II)

Метанол можно окислить оксидом меди (II) при нагревании. При этом медь восстанавливается до простого вещества. Метанол окисляется до метаналя.

Например, метанол окисляется оксидом меди до муравьиного альдегида

4.2. Окисление кислородом в присутствии катализатора

Метанол можно окислить кислородом в присутствии катализатора (медь, оксид хрома (III) и др.). Метанол окисляется до метаналя.

4.3. Жесткое окисление

При жестком окислении под действием перманганатов или соединений хрома (VI) метанол окисляется до углекислого газа.

Спирт/ Окислитель KMnO4, кислая среда KMnO4, H2O, t
Метанол СН3-ОН CO2 K2CO3
Например, при взаимодействии метанола с перманганатом калия в серной кислоте образуется углекислый газ

4.4. Горение метанола

При сгорании спиртов образуются углекислый газ и вода и выделяется большое количество теплоты.

Например, уравнение сгорания метанола:

5. Дегидрирование спиртов

При нагревании спиртов в присутствии медного катализатора протекает реакция дегидрирования. При дегидрировании метанола образуется альдегид.

Получение метанола

1. Щелочной гидролиз галогеналканов

При взаимодействии галогеналканов с водным раствором щелочей образуются спирты. Атом галогена в галогеналкане замещается на гидроксогруппу.

Например, при нагревании хлорметана с водным раствором гидроксида натрия образуется метанол

2. Гидратация алкенов

Гидратация (присоединение воды) алкенов протекает в присутствии минеральных кислот. При присоединении воды к алкенам образуются спирты.

Однако получить метанол гидратацией алкенов нельзя.

3. Гидрирование карбонильных соединений

Присоединение водорода к альдегидам и кетонам протекает при нагревании в присутствии катализатора. При гидрировании альдегидов образуются первичные спирты, при гидрировании кетонов — вторичные спирты, а из формальдегида образуется метанол.

Например, при гидрировании формальдегида образуется метанол


CH2=O + H2 → CH3-OH

4. Промышленное получение метанола из «синтез-газа»

Каталитический синтез метанола из монооксида углерода и водорода при 300-400°С и давления 500 атм в присутствии смеси оксидов цинка, хрома и др.

Сырьем для синтеза метанола служит «синтез-газ» (смесь CO и H2), обогащенный водородом:

Контрольная работа: Синтез метанола

из оксида углерода и водорода

1. Технологические свойства метанола Метанол (метиловый спирт) СН3 ОН представляет бесцветную легкоподвижную жидкость с температурой кипения 64,65°С, температурой кристаллизации -97,9°С и плотностью 0,792 т/м 3 . Критическая температура метанола равна 239,65°С. Метанол смешивается во всех отношениях с водой, спиртами, бензолом, ацетоном и другими органическими растворителями, образуя с некоторыми из них азеотропные смеси. Не растворим в алифатических углеводородах. В водных растворах образует эвтектику, содержащую 93,3%(мол.) метанола. Хорошо растворяет многие газы, в том числе оксиды углерода, ацетилен, этилен и метан, вследствие чего используется в технике для абсорбции примесей из технологических газов. В твердом состоянии существует в двух кристаллических формах, переходящих одна в другую при -115,75°С. Пары сухого метанола образуют с воздухом взрывчатые смеси с пределами взрываемости: нижний 6,0% (об.) и верхний 34,7% (об.). Метанол токсичен, вызывает отравление через органы дыхания, кожу и при приеме внутрь, действуя на нервную и сосудистую системы. ПДК составляет 5 мг/м 3 . Прием внутрь 5—10 мл приводит к тяжелому отравлению, доза 30 мл и более может быть смертельной.

Применение метанола и перспективы развития производства

Метанол — сырье для многих производств органического синтеза. Основное количество его расходуется на получение формальдегида. Он служит промежуточным продуктом в синтезе сложных эфиров органических и неорганических веществ (диметилтерефталата, метилметакрилата, диметилсульфата), пентаэритрита.Его применяют в качестве метилирующего средства для получения метиламинов и диметиланилина, карбофоса, хлорофоса и других продуктов. Метанол используют также в качестве растворителя и экстрагента, в энергетических целях как компонент моторных топлив и для синтеза метил-трет-бу-тилового эфира — высокооктановой добавки к топливу. В последнее время наметились новые перспективные направления использования метанола, такие как производство уксусной кислоты, очистка сточных вод, производство синтетического протеина, конверсия в углеводороды с целью получения топлива. В табл. 1 представлена структура потребления метанола по основным направлениям.

Структура потребления метанола, %

Название: Синтез метанола
Раздел: Рефераты по химии
Тип: контрольная работа Добавлен 19:16:14 05 апреля 2008 Похожие работы
Просмотров: 3309 Комментариев: 20 Оценило: 2 человек Средний балл: 5 Оценка: неизвестно Скачать
Область примененияБеларусь и РоссияЗападная Европа
Производство формальдегида34,642,4
Производство СК12,6
Производство диметилтерефталата1,84,3
Производство уксусной кислоты2,06,0
Компонент моторного топлива1,06,3
Процессы метилирования4,710,7
Прочие направления использования43,330,3

2. Сырьевые источники получения метанола

Структура сырья в производстве метанола, %.

СырьеВ миреБеларусь и Россия
Природный газ73,870,7
Нефть и нефтепродукты24,44,0
Отходы других производств17,4
Каменный уголь1,87,9

При современной тенденции роста цен на нефть и нефтепродукты перспективы имеет переработка каменного угля.

Так, например, по технологической схеме «Мобиль» осуществляется следующий цикл:

уголь → газификация → метанол → синтетический бензин .

Процесс протекает в две стадии: дегидратация метанола до диметилового эфира и, далее, до алкена:

и последующие превращения алкенов в парафины, циклопарафины и ароматические углеводороды. В качестве катализаторов используются синтетические цеолиты [2].

3. Многочисленные технологические схемы производства метанола включают три обязательных стадии:

—очистка синтез-газа от сернистых соединений, карбонилов железа и частиц компрессорного масла,

—очистка и ректификация,метанола-сырца,

В остальном технологические схемы различаются аппаратурным оформлением и параметрами процесса. Все они могут быть разделены на три группы.

1. Синтез при высоком давлении проводится на цинк-хромовых катализаторах при температуре 370—420°С и давлении 20—35 МПа. В настоящее время этот процесс устарел и вытесняется синтезом при низком давлении.

2. Синтез при низком давлении проводится на цинк-медь-алюминиевых или цинк-медь-хромовых катализаторах при температуре 250—300°С и давлении 5—10 МПа. Использование в этом методе низкотемпературных катализаторов, активных при более низких давлениях, позволяет снизить энергозатраты на сжатие газа и уменьшить степень рециркуляции непрореагировавшего сырья, то есть увеличить степень его конверсии. Однако, в этом методе требуется особо тонкая очистка исходного газа от соединений, отравляющих катализатор.

3. Синтез в трехфазной системе «газжидкостьтвердый катализатор», проводимый в суспензии из тонкодисперсного катализатора и инертной жидкости, через которую барботируется синтез-газ. Этот процесс отличается от первых двух, которые проводятся в двухфазной системе «газ — твердый катализатор». В трехфазной системе может бытъ обеспечено более благоприятное состояние равновесия системы, что позволяет повысить равновесную концентрацию метанола в реакционной смеси до 15% вместо 5% при использовании двухфазных систем, доведя степень конверсии оксида углерода (II) до 35% вместо 15% и еще более уменьшить рециркуляцию газа и энергозатраты.

Возросшая потребность в метаноле вызвала разработку новых перспективных методов его производства. Помимо описанного выше трехфазного синтеза к ним относятся:

· синтез метанола прямым окислением метана воздухом на цинк-никель-кадмиевом катализаторе, позволяющий использовать в качестве сырья природный газ непосредственно из скважин;

· совместное производство из синтез-газа метанола и спиртов С2 —С4 в виде так называемой «спиртовой композиции», используемой как добавка к моторному топливу;

· совместное производство метанола и аммиака на основе конвертированного газа по малоотходным энерготехнологическим схемам, обеспечивающим рациональное и комплексное использование сырья.

Несмотря на то, что доля метанола используемого на производство моторного топлива в настоящее время еще невелика (см. табл. 2), использование его для топливно-энергетических целей стало весьма перспективным. Это обусловлено возможностью получения метанола из любого углеродсодержащего сырья и неограниченными запасами его, что позволяет использовать метанол в качестве полупродукта в производстве синтетического моторного топлива.

4. Реакция синтеза метанола из синтез-газа представляет гетерогенно-каталитическую обратимую экзотермическую реакцию, протекающую по уравнению:

, где ΔН1 =90,7 кДж (а)

Тепловой эффект реации возрастает с повышением температуры и давления и для условий синтеза составляет 110,8 кДж.

Параллельно основной протекают и побочные реакции:

, где ΔН2 =209 кДж (б)

, где ΔН3 =252 кДж (в)

, где ΔН4 =8,4 кДж (г)

а также продукционная реакция образования метанола из содержащегося в синтез-газе диоксида углерода:

, где ΔН5 =49,5 кДж (д)

Кроме этого, образовавшийся метанол может подвергаться вторичным превращениям по реакциям:

Реакции (а—д) протекают с выделением тепла и уменьшением объема, но различаются величиной теплового эффекта и степенью контракции. Поэтому, хотя для всех этих реакций степень превращения возрастает с увеличением давления и понижением температуры, в наибольшей степени повышение давления влияет на равновесие основной реакции синтеза (а), для которой степень контракции максимальна и составляет 3:1. В то же время, понижение температуры ниже некоторого предела нецелесообразно, так как при низких температурах скорость процесса синтеза настолько мала, что не существует катализатора, которыйв этих условиях мог бы существенно ускорить достижение высокой степени превращения сырья.

Вследствие противоречивого влияния температуры на скорость процесса и равновесную степень превращения выход метанола за один проход реакционной смеси через реактор не превышает 20%, что делает необходимой организацию циркуляционной технологической схемы синтеза.

Температура процесса зависит главным образом от активности применяемого катализатора и варьируется в пределах от 250 до 420°С. В соответствии с температурным режимом работы катализаторы синтеза метанола подразделяются на высокотемпературные и низкотемпературные. Высокотемпературные катализаторы, получаемые методом соосаждения оксидов цинка и хрома, например, катализатор СМС-4 состава 2,5 ZnOZnCr2 O4 , термостойки, мало чувствительны к каталитическим ядам, причем отравляются обратимо, имеют высокую селективность, но активны только при высоких температурах (370—420°С) и давлениях (20—35 МПа). Низкотемпературные катализаторы, например, цинк-медь-алюминиевый состава ZnOCuOAl2 O3 или цинк-медь-хромовый состава ZnО-СиО — Сг2 О3 , менее термостойки, необратимо отравляются каталитическими ядами, но проявляют высокую активность при относительно низких температурах (250—300°С) и давлениях (5—10 МПа), что более экономично.

Оба типа катализаторов проявляют свою активность и селективность в узком интервале температур 20—30°С. Исходя из температурного режима работы катализаторов выбирается давление синтеза, которое тем больше, чем выше температура синтеза.

Состав исходной газовой смеси оказывает существенное влияние как на степень превращения оксидов углерода, так и на равновесную концентрацию метанола в продуктах синтеза. С увеличением объемного отношения Н2 :СО в синтез-газе степень превращения оксидов углерода возрастает, причем оксида углерода (IV) более интенсивно [рис. 12.2, 2]. Из рисунка также сле дует, что оптимальный состав газовой смеси отвечает отношению Н2 :СО=5:1. Равновесная концентрация метанола в продуктах реакции проходит через максимум, который отвечает стехиометрическому отношению Н2 :СО в исходной газовой смеси [рис. 12.3, 2].

Скорость образования метанола является функцией многих переменных:

где: к — константа скорости реакции синтеза метанола;

Ск — концентрация компонентов исходной газовой смеси,

τ — время контакта,

Образующиеся при синтезе побочные продукты оказывают существенное влияние на стадию хемосорбции и на кинетику образования метанола в целом. Поэтому, для реакции синтеза метанола предложено большое количестворазличных кинетических уравнений, выведенных на основе выдвинутых их авторами предположений о механизме реакции. Независимо от этого, время контактирования для реальных условий процесса синтеза может быть рассчитано по формуле [2]:

(1)

где: Р — давление, 1 МПа; Т — температура, К;

W — объемная скорость газа при нормальных условиях, с -1 .

Согласно [рис. 17.3., 1] оптимальными параметрами процесса являются объемная скорость газа – 40 000 ч -1 ; температура 370 – 380 о С при давлении 30 МПа. При этих значениях производительность катализатора составляет около 3,15 кг/(м 3 ·ч). Концентрация метанола – 40 % (рис. 17.2 [1]). Степень превращения СО за один проход – 15%. Согласно [1] максимальная производительность наблюдается при молярном отношении Н2 :СО=4:1, на практике поддерживают отношение 2,15 – 2,25.

5. Технологический процесс получения метанола из оксида углерода и водорода включает ряд операций, обязательных для любой технологической схемы синтеза. Газ предварительно очищается от карбонила железа, сернистых соединений, подогревается до температуры начала реакции и поступает в реактор синтеза метанола. По выходе из зоны катализа из газов выделяется образовавшийся метанол, что достигается охлаждением смеси, которая затем сжимается до давления синтеза и возвращается в процесс.

Технологические схемы различаются аппаратурным оформлением главным образом стадии синтеза, включающей основной аппарат колонну синтеза и теплообменник. На рис. 1 представлена схема агрегата синтеза высокого давления с так называемой совмещенной насадкой колонны.

Сжатый до 32 МПа синтез-газ проходит очистку в масляном фильтре 1 и в угольном фильтре 2, после чего смешивается с циркуляционным газом. Смешанный газ, пройдя кольцевой зазор между катализаторной коробкой и корпусом колонны 3, поступает в межтрубное пространство теплообменника, расположенного в нижней части колонны (рис. 2). В теплообменнике газ нагревается до 330—340 °С и по центральной трубе, в которой размещен электроподогреватель, поступает в верхнюю часть колонны и проходит последовательно пять слоев катализатора. После каждого слоя катализатора, кроме последнего, в колонну вводят определенное количество холодного циркуляционного газа для поддержания необходимой температуры. После пятого слоя катализатора газ направляется в теплообменник, где охлаждается с 300—385 до 130 °С, а затем в холодильник-конденсатор типа «труба в трубе» 4 (рис. 1). Здесь газ охлаждается до 30— 35 °С и продукты синтеза конденсируются. Метанол-сырец отделяют в сепараторе 5 , направляют в сборник 7 и выводят на ректификацию. Газ проходит второй сепаратор 5 для выделения капель метанола, компримируется до давления синтеза турбоциркуляционным компрессором 6 и возвращается на синтез. Продувочные газы выводят перед компрессором и вместе с танковыми газами используют в качестве топлива.

Размещение теплообменника внутри корпуса колонны значительно снижает теплопотери в окружающую среду, что улучшает условия автотермичной работы агрегата, исключает наличие горячих трубопроводов, т.е. делает эксплуатацию более безопасной и снижает общие капиталовложения. Кроме того, за счет сокращения длины трубопроводов снижается сопротивление системы, что позволяет использовать турбоциркуляционные компрессоры вместо поршневых.

Рис. 1. Схема синтеза метанола.

1 – масляный фильтр; 2 – угольный фильтр; 3 – колонна синтеза; 4 – холодильник-конденсатор; 5 – сепараторы; 6 – компрессоры;

Основным аппаратом производства метилового спирта из окиси углерода и водорода является колонна синтеза. Колонны обычно изготавливают из высоколегированной стали, хорошо сопротивляющейся коррозионному действию Н2 и СО, или из низколегированных конструкционных сталей с футеровкой стенок медью или ее сплавами. Производительность колонны синтеза метанола в большой степени зависит от конструкции насадки. В промышленности применяются колонны с насадками разнообразных конструкций.

На рис. 2 схематически изображена колонна синтеза с полочной насадкой (внутренний диаметр колонны 800 мм, высота 12 м, толщина стенок корпуса 90 мм). В верхней части колонны размещается катализаторная коробка 1 с полками 3 для катализатора и электроподогревателем для подогрева газа в пусковой период, в нижней части колонны имеется теплообменник 4. Основной поток синтез-газа вводится сверху и проходит вниз по кольцевому пространству между корпусом колонны и корпусом катализаторной коробки. Далее газ поступает в межтрубное пространство теплообменника 4 и подогревается за счет тепла продуктов реакции, проходящих по трубкам. В межтрубном пространстве теплообменника имеются перегородки, направляющие часть газового потока поперек труб, благодаря чему значительно увеличивается коэффициент теплоотдачи.

Из теплообменники 4 газ через центральную трубу 2 поступает в катализаторное пространство, где протекает реакция образования метилового спирта. Продукты реакции проходят по трубкам теплообменники, охлаждаясь поступающим свежим газом, и через тройник в нижней крышке выводятся из колонны синтеза. Для предотвращения перегрева катализаторной массы в колонну подают холодный («байпасный») газ. Для этого на каждую полку аппарата подведены трубки, изогнутые но окружности и имеющие мелкие отверстия, через которые холодный газ поступает в контактную массу. Количество поступающего холодного газа регулируется клапанами, установленными на подводящих трубках.

Рис. 2. Колонна синтеза метилового спирта:

1 – корпус катализаторной коробки;

2 – труб для электроподогревателя;

3 – полки катализатора;

5 – трубки подвода байпасного газа.

6. Расчет материального баланса и основных технологических показателей процесса получения метанола.

Данные для расчета:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Рабочий объем катализатора – 24 м 3 .

Расход оксида углерода и метанола на побочные продукты с учетом рецикла, %(масс.):

Реакция 2 – 3,8 реакция 6 – 1,9

Реакция 3 – 4,1 реакция 7 – 0,5

Температура – 655 К – 382 о С.

Давление – 38,8 МПа.

Объемная скорость газа – 22,2·10 3 .

Мольное соотношение Н2 : СО – 7,5.

База для расчета – 1 час работы установки.

1) Объем синтез-газа подаваемого в реактор за 1 час (учетом рецикла)

расход при нормальных условиях

V0 =22,2·10 3 ·24=532,8·10 3 нм 3 /ч;

при условиях реактора (по формуле Менделеева-Клайперона)

.

2) Массы водорода и оксида углерода, подаваемые в реактор

количество кмоль синтез-газа:

532,8∙10 3 ·1000/(22,4∙1000)=23785,7 кмоль/ч;

количество моль водорода:

;

количество кмоль СО

, ;

, .

3) Расход оксида углерода

на целевую реакцию:

78344·(100 — 11,1)/100=69648 кг/час;

4) Масса образующегося метанола

масса водорода на целевую реакцию

;

5) Расход метанола на побочные реакции

Часовая производительность установки на 100% метанол:

6)Балансовый расчет по реакциям

СО: 78344·3,8/100=2977 кг/ч;

Н2 : ;

СН4 : ;

Н2 О: ;

СО: 78344·4,1/100=3212 кг/ч;

Н2 : ;

СН4 : ;

СО2 : ;

СО: 78344·2,5/100=1959 кг/ч;

С: ;

СО2 : ;

СО: 78344·0,7/100=548 кг/ч;

Н2 : ;

НСНО:;

(СН3 )2 О: ;

Н2 О: ;

Н2 : ;

СН4 : ;

Н2 О: ;

Масса непрореагировавшего водорода

∑СН4 = 1701+918+199=2818 кг/ч;

∑Н2 О = 1914+425+224=2563 кг/ч;

∑СО2 = 2524+1539=4063 кг/ч.

Основные технологические показатели процесса:

Конверсию исходного сырья рассчитываем как отношение количества израсходованного сырья (СО+Н2 ) – (Gн — Gк ), где Gк – количество непрореагировавшего водорода, к общему количеству сырья в начале процесса Gн :

Селективность нахожу как отношение готового продукта Gп к прореагировавшему сырью Gc (на 100 % метанол)

Выход целевого продукта.

Если количество целевого (товарного) продукта Gп , то выход продукта Р в расчете на сырье Gз составит

Интенсивность работы катализатора рассчитываем как отношение производительности установки по метанолу на объем катализатора:

где П=79598 кг/ч – количество метанола, полученного в результате реакции (1).

7) Материальный баланс процесса

Материальный баланс реактора

№ п/пПриходкг/ч№ п/пРасходкг/ч
1СО783441СН3 ОН77688
2Н2 (с учетом рецикла)419762Н2 О2563
3СО24063
4СН42818
5С419
6НСНО587
7(СН3 )2 О1087
8Н2 (на рецикл)31095
ИТОГО:120320ИТОГО:120320

РАБОТА НАД ОШИБКАМИ

Селективность нахожу как отношение готового продукта Gп к прореагировавшему сырью Gc (на 100 % метанол)

где GП =77688 кг/ч – расход метанола (по материальному балансу);

Gс – расход прореагировавшего сырья:

78344 кг/ч – расход СО, 9950 кг/ч – расход водорода на целевую реакцию (1).

Интенсивность работы катализатора рассчитываем как отношение производительности установки по метанолу на объем катализатора:

где П=77688 кг/ч – количество полученного метанола (по материальному балансу).

1. Кутепов А.М., Бондарева Т.И., Беренгартен М.Г. Общая химическая технология. Учебник для технических ВУЗов. – М.: «Высшая школа», 1990. – 512 с.

2. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза: Учебник для вузов. – М. Химия, 1988. – 592 с.

3. Общая химическая технология: Учеб. для химико-техн. спец. вузов. В 2-х т./под ред. проф. И.П.Мухленова. – М.: Высш. шк., 1984. – 263 с.

4. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза, в двух частях. Ч. I. Углеводородное сырье и продукты его окисления. М.: «Химия», 1973. – 448 с.

Технология производства метанола

Метанол (СН3ОН) в настоящее время по значению и масштабам производства является одним из важнейших многотоннажных продуктов, выпускаемых современной химической промышленностью. Он широко применяется для получения пластических масс, синтетического волокна, синтетического каучука, формальдегида, в качестве растворителя.

Области применения метанола постоянно расширяются: он является, в частности, перспективным продуктом для транспортирования энергии на дальние расстояния, компонентом автомобильных бензинов в виде присадок (Метилтретбутиловый эфир), сырьем для микробиологического синтеза и т.д.

Метанол получают различными методами, отличающимися исходным сырьем, способами его переработки в синтез-газ, а также условиями проведения синтеза метанола.

Сырьем для производства метанола служит синтез-газ (смесь Н2; СО и СО2), который в свою очередь может быть получен конверсией природного газа, газификацией твердого топлива и др. В настоящее время в нашей стране основным сырьем является природный газ.

Физико-химические основы процесса синтеза метанола

Синтез метанола основан на обратимых реакциях:

Это обратимые каталитические экзотермические реакции, протекающие с уменьшением объема. Из этого следует, что для смещения их равновесия вправо, следует уменьшать температуру и повышать давление.

Отечественными учеными установлен механизм синтеза метанола из оксидов углерода на оксидных катализаторах (низкотемпературном: медь-цинк-алюминиевом и среднетемпературном: цинк-хромовом) метанол образуется из диоксида углерода, присутствующего в исходном синтез-газе или образующегося при конверсии оксида углерода водяным паром.

Исходя из данного механизма синтез метанола из СО и Н2 можно отразить схемой:

Соответственно, прямой синтез метанола из диоксида углерода и водорода является основным путем его образования.

Для увеличения скорости синтеза согласно закону Аррениуса необходимо повышать температуру, но при этом происходить смещение равновесия реакции влево. Верхний предел повышения температуры ограничен также сильным ускорением побочных реакций образования метана, высших спиртов, кислот, кетонов и эфиров:

Эти реакции вызывают ухудшение качества метанола и приводят к бесполезным расходам сырья.

Применяемые для синтеза метанола катализаторы должны обладать высокой селективностью, то есть максимально ускорять только целевую реакцию. Предложено много типов катализаторов. Лучшими из них оказались катализаторы, основными активными компонентами которых являются оксид цинка или медь.

На первых крупнотоннажных агрегатах метанола процесс синтеза осуществлялся при давлении около 30 МПа и температуре 300-400 °С с использованием среднетемпературного цинк-хромового катализатора. В последующие годы получили широкое распространение схемы синтеза при пониженном давлении на низкотемпературных трехкомпонентных медьсодержащих катализаторах. Процесс проводится при 5-6 МПа и температурах 250-260 °С.

Катализаторы синтеза метанола весьма чувствительны к действию катализаторных ядов, поэтому первой стадией процесса очистка исходного сырья – природного газа от сернистых примесей. Они отравляют среднетемпературные цинк-хромовые катализаторы обратимо, а низкотемпературные медьсодержащие катализаторы – необратимо. Необходима также тщательная очистка газа от карбонила железа, который образуется в результате взаимодействия оксида углерода с железом аппаратуры. На поверхности катализатора карбонил железа разлагается с выделением элементарного железа, что способствует образованию метана.

Зависимость выхода метанола от температуры представлена на рисунке. Кривая зависимости количества образовавшегося метанола от температуры проходит через максимум при всех составах газа, причем максимум выхода наблюдается при температурах 255-270 °С.

Зависимость выхода метанола от температуры при парциальных

давлениях СО 1,08 (кривые1, 4); 0,47 (кривые 2, 5) и 2,0 (кривые 3, 6) МПа.

1, 2, 3 – время контакта с катализатором 0,29 с;

4, 5, 6 – время контакта 0,10 с

Интервал оптимальных температур, соответствующий наибольшему выходу продукта, определяется активностью катализатора, объемной скоростью газовой смеси и давлением. Процессы низкого давления (5-10 МПа) на медьсодержащих катализаторах осуществляются при температурах 220-280 °С. Для среднетемпературных цинк-хромовых катализаторов характерны более высокие давления (20-30 МПа) и температуры (350-400 °С).

Влияние давления на синтез метанола

Зависимость выхода метанола от давления

при 350 °С и молярном отношении Н2 : СО = 2:1

В промышленных синтезах высокого давления повышение давления ограничено величиной 40 МПа, так как выше этого значения ускоряются побочные реакции и, кроме того, чрезмерное увеличение затрат на компрессию газа ухудшает экономические показатели процесса.

В синтезах низкого давления повышение давления ограничено термической стойкостью медьсодержащих катализаторов.

С возрастанием объемной скорости газа выход метанола падает. Это справедливо для синтеза как при высоком, так и при низком давлениях. Это объясняется тем, что с увеличением объемной скорости сокращается время контакта газа с катализатором.

На рисунке также показана зависимость производительности катализатора при 30 МПа от объемной скорости газа. Однако за счет увеличения скорости химической реакции и большего объема газа, проходящего через одинаковый объем катализатора в единицу времени, производительность последнего увеличивается. На практике синтез проводят обычно при объемных скоростях газа 20.000- 40.000 час -1 .

Степень превращения синтез-газа за один проход через слой катализатора составляет 15-50 %. При этом концентрация метанола в продуктах реакции не превышает 4 %. Поэтому с целью более полного использования сырья на практике используются технологические схемы с рециркуляцией сырья с постоянным выделением (конденсацией) образующегося метанола и воды. При циркуляции в синтез-газе постепенно накапливаются инертные примеси (метан, азот, аргон и пр.) и их предельную концентрацию регулируют частичной отдувкой газа.

Увеличение содержания инертных примесей в газе равносильно снижению парциального давления реагентов, что снижает производительность катализатора. Состав газовой смеси также влияет на степень превращения сырья и производительность катализатора. В промышленных условиях всегда работают с некоторым избытком водорода; максимальная производительность при отношении Н2 : СО = 4, на практике поддерживают отношение 2,1-2,3.

Технологическая схема производства

Существует несколько разновидностей схем, но общими для них являются очистка синтез-газа от карбонилов железа и сернистых примесей, подогрев до температуры начала реакции. После реактора синтеза происходит выделение образовавшегося метанола и воды путем охлаждения реакционной газовой смеси. После этого газовая смесь сжимается циркуляционным компрессором до давления синтеза и возвращается в колонну синтеза метанола.

Технологические схемы различаются аппаратурным оформлением главным образом стадии синтеза.

Технологическая схема синтеза метанола низкого давления (5 МПа) из природного газа

1, 10 – турбокомпрессоры; 2 – нагреватель природного газа; 3 – реактор

гидрирования сернистых примесей; 4 – адсорбер; 5 – трубчатая печь;

6 – котел-утилизатор; 7, 11, 12 – теплообменники; 8, 14 – холодильники-конденсаторы; 9, 15 – сепараторы; 13 – колонна синтеза метанола; 16 – сборник

Природный газ сжимается турбокомпрессором 1 до давления 5 МПа, подогревается в огневом подогревателе 2 и направляется на сероочистку в аппарат 3 и 4 где последовательно проводится гидрирование органических примесей и поглощение образующегося сероводорода адсорбентов на основе оксида цинка. После этого газ смешивается с водяным паром и диоксидом углерода в мольном соотношении СН4 : Н2О : СО2 = 1 : 3,3 : 0,24. Эта смесь направляется в трубчатую печь5, где на никелевом катализаторе при 850-870 0 С происходит паро-углекислотная конверсия метана. Теплоту, необходимую для конверсии получают сжиганием природного газа в специальных горелках, расположенных в межтрубном пространстве печи. Конвертированный газ поступает в котел-утилизатор 6, где охлаждается до 280-290 0 С. Затем оставшееся тепло используют в теплообменнике 7 для нагрева питательной воды, направляемой в котел-утилизатор. Пройдя аппарат воздушного охлаждения 8 и сепаратор 9 конвертированный газ окончательно охлаждается до 35-40 0 С и сжимается до 5 МПа в компрессоре 10 и затем смешивается с циркуляционным газом и поступает в теплообменники11, 12, где нагревается до 220-230 0 С. После этого нагретая газовая смесь поступает в колонну синтеза метанола 13, температурный режим в которой с помощью холодных байпасов. Теплоту реакционной смеси используют в теплообменниках 11, 12 для нагрева газа, поступающего в колонну синтеза метанола.

Далее газовая смесь охлаждается в холодильнике-конденсаторе 14, сконденсировавший метанол-сырец отделяется в сепараторе 15 и поступает в сборник 16. Циркуляционный газ возвращают на синтез, продувочные и танковые газы передают на сжигание в трубчатую печь.


источники:

http://www.bestreferat.ru/referat-119836.html

http://proplast.ru/articles/tehnologiya-proizvodstva-metanola/