Реакция зинина уравнение получение анилина

4. 4. 030 Анилин Зинина

4.4.030 Анилин Зинина

Химик-органик, лектор, общественный деятель; профессор Казанского университета, заслуженный профессор, «директор химических работ» Медико-хирургической академии в Петербурге; академик Петербургской АН, почетный член многих русских и иностранных научных обществ, академий и университетов; основатель и глава большой школы русских химиков-органиков (А.М. Бутлеров, Н.Н. Бекетов, А.П. Бородин, А.Н. Энгельгардт, Л.Н. Шишков, А.М. Зайцев, В.В. Марковников и др.), один из организаторов Русского физико-химического общества и первый его президент; ученый секретарь, председатель академического суда; член мануфактурного совета министерства финансов, военно-медицинского ученого комитета — Николай Николаевич Зинин (1812—1880) снискал мировую славу синтезом анилина — исходным продуктом в производстве богатейшего разнообразия веществ многих отраслей промышленности.

Ни одна биография Н.Н. Зинина не обходится без слов председателя Германского химического общества А.В. фон Гофмана, сказанных им на заседании общества 8 марта 1880 г. в память о почившем русском химике: «Если бы Зинин не научил нас ничему более, кроме превращения нитробензола в анилин, то и тогда его имя осталось бы записанным золотыми буквами в историю химии».

Что и говорить, модифицировав этот способ получения анилина, немецкий химик занялся синтезом анилиновых красителей и стал основателем анилинокрасочной промышленности в Германии.

Согласно энциклопедическим данным, анилин (фениламин) — органическое соединение с формулой С6H5NH2, бесцветная маслянистая жидкость с характерным запахом, на воздухе красно-бурая. Слово «анилин» происходит от названия растения, содержащего индиго — Indigofera anil.

Это вещество, впервые полученное в 1826 г. при перегонке индиго с известью немецким химиком О. Унфердорбеном, было названо им «кристаллином». Позднее вещество было обнаружено в каменноугольной смоле и названо «кианолом». Полученное нагреванием индиго с раствором КОН обрело название «анилин».

Прежде чем Зинин занялся данной проблемой, анилин не имел никакого технического применения, поскольку получался в незначительных количествах и с чрезвычайно низким выходом — не более 15 %.

Зинин начал свои исследования после окончания Казанского университета во время длительной командировки по научным учреждениям Европы и продолжил их по возвращении домой. С целью изучения свойств масла горького миндаля и нитробензола химик обрабатывал их разными веществами, в частности, сероводородом и раствором сульфида натрия.

Ученый и не думал получать анилин — он у него «получился». Ожидая обрести серу, химик синтезировал новое вещество, которое назвал «бензидам».

В 1842 г. в столичном «Бюллетене Академии наук» была опубликована статья Зинина «Описание некоторых новых органических оснований, приготовленных действием сероводорода на соединения углеводородов с азотистой кислотой», в которой сообщил о получении бензидама и нафталидама (альфа-нафтиламин). Открытие вызвало интерес у европейских ученых и статью перепечатали многие научные журналы.

А.В. фон Гофман, активно занимавшийся красителями, в 1843 г. доказал идентичность «бензидама» Зимина с «анилином», «кианолом» и «кристаллином», полученными другими учеными. Несмотря на идентичность веществ, бензидам был получен несравненно более простым способом, нежели при разложении тех же индиго или каменноугольной смолы.

За новым веществом закрепилось название анилин, а метод его получения (как и получения всех ароматических аминов) восстановлением нитросоединений с тех пор называют реакцией Зинина.

C6H5NO2 + 3(NH4)2S ; C6H5NH2 + 6NH3 + 3S + 2H2O

Эта реакция давала возможность совершенствовать ее, получать новые вещества, что и было сделано Гофманом, самим Зининым и другими химиками-органиками.

Продолжая изучать возможности открытой им реакции и применяя ее к моно- и динитропроизводным бензола, а также к нитрокислотам, Зинин получил из нитробензола «семинафтилидам» (нафтилендиамин), «семибензидам» (м-фенилендиамин), дезоксибензоин, «бензаминовую» кислоту, синтезировал азоксибензол, гидразобензол, бензидин — промежуточный продукт анилинокрасочной индустрии, исходный материал для синтеза сотен марок субстантивных красителей.

Работы Зинина заложили научную основу для развития анилинокрасочной промышленности, и как следствие, развитие органической химии вообще. Спустя несколько лет анилин и нафтиламин стали основой промышленного производства анилиновых красителей во всем мире.
Первым такое производство организовал Гофман, заменив восстановитель сульфид аммония водородом в момент выделения. Первый фиолетовый краситель мовеин на основе анилина появился в 1856 г., через 2 года — красный фуксин.

В настоящее время анилин получают восстановлением нитробензола чугунными опилками с соляной кислотой, что стало развитием Зининского подхода к данной проблеме.

Анилин используется при производстве искусственных каучуков, гербицидов, сложных органических красок и красителей, фотографических материалов, взрывчатых средств, душистых веществ, лекарственных препаратов (сульфаниламидные препараты), полиуретана, из которого изготавливают пенополиуретаны, уплотнения, герметики, клеи, формы для декоративных камней, защитные покрытия, лакокрасочные изделия, пластмассы, валы, ролики, пружины, изоляторы, имплантаты и т.п.

P.S. В 1853 г. во время Крымской кампании Зинин совместно с инженером-артиллеристом В.Ф. Петрушевским предложил Артиллерийскому ведомству заменить порох в гранатах на нитроглицерин, который он получал в своей лаборатории по разработанному им прогрессивному методу синтеза нитроглицерина из глицерина. По ряду причин эксперименты с новым взрывчатым веществом первоначально не дали надежных результатов.

О своих опытах Зинин рассказал соседу по даче А. Нобелю, сыну «минного короля» Э. Нобеля, и когда Альфред через 6 лет занялся получением взрывчатки, то предпринял серию испытаний с различными абсорбентами, пропитанными нитроглицерином.

На полученный в 1866 г. динамит шведский предприниматель приобрел американский патент. Н.Н. Зинин, как и с анилином, вновь подарил иностранцу плоды своих трудов. И хотя к тому времени нитроглицерин уже успешно применяли и в России — для подземных и подводных взрывов, химик бросил: «Этот Альфред Нобель выхватил у нас динамит из-под носа».

Ничего не поделаешь, это судьба многих русских ученых, озабоченных научной стороной дела, а не ее финансовой подкладкой.

Впрочем, всегда ли нужна созидателям слава Герострата?

Реакция зинина уравнение получение анилина

Впервые анилин был получен в 1826 году при перегонке индиго с известью немецким химиком О. Унфердорбеном и назвал его «кристалликом».

В 1834 году Ф. Ф. Pyнгe обнаружил анилин в каменноугольной смоле и назвал его «кианолом».

В 1841 году Ю.Ф. Фрицше получил анилин нагреванием индиго с раствором едкого кали KOH и назвал его «анилином».

В 1842 году Н.Н. Зинин получил анилин восстановлением нитробензола сульфидом аммония и назвал его «бензидамом».

В 1843 году А. В. Гофман установил идентичность всех перечисленных соединений.

Восстановление нитросоединений (реакция Зинина)

Основной способ получения анилина – восстановление нитробензола.

Анилин и другие первичные ароматические амины получают с помощью рtакции, открытой русским химиком Н.Н. Зининым. В качестве восстановителя Н.Н. Зинин применял сульфид аммония:

Впоследствии в качестве восстановителя стали применять водород.

Промышленный способ

1. Каталитическое восстановление нитробензола (восстановление нитробензола молекулярным водородом)

В настоящее время этот способ восстановления нитробензола с целью получения анилина в промышленности является основным.

Смесь паров нитробензола и водорода пропускают над катализатором при температуре 300 0 С и повышенном давлении:

Лабораторный способ

1. Восстановление нитробензола атомарным водородом

В лаборатории для этой цели используют цинк в кислой среде:

Восстановителем в этой реакции является атомарный водород, который получается в момент его выделения.

Амины: способы получения, строение и свойства

Амины – это органические производные аммиака NH3, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы.

Строение аминов

Атом азота находится в состоянии sp 3 -гибридизации, поэтому молекула имеет форму тетраэдра.

Также атом азота в аминах имеет неподелённую электронную пару, поэтому амины проявляют свойства органических оснований.

Классификация аминов

По количеству углеводородных радикалов, связанных с атомом азота, различают первичные, вторичные и третичные амины.

По типу радикалов амины делят на алифатические, ароматические и смешанные.

АминыПервичныеВторичныеТретичные
АлифатическиеМетиламин

CH3-NH2

Диметиламин

CH3-NH-CH3

Триметиламин

(CH3)3N

АроматическиеФениламин

C6H5-NH2

Дифениламин

(C6H5)2NH

Трифениламин

(C6H5)3N

СмешанныеМетилфениламин

CH3-NH-C6H5

Диметилфениламин

(CH3)2N-C6H5

Номенклатура аминов

  • Названия аминов образуют из названий углеводородных радикалов и суффикса амин. Различные радикалы перечисляются в алфавитном порядке.

При наличии одинаковых радикалов используют приставки ди и три.

  • Первичные амины могут быть названы как производные углеводородов, в молекулах которых один или несколько атомов водорода замещены на аминогруппы -NH2.

В этом случае аминогруппа указывается в названии приставкой амино-:

1-Аминопропан1,3-Диаминобутан
CH3-CH2-CH2-NH2 NH2-CH2-CH2-CH(NH2) -CH3
  • Для смешанных аминов, содержащих алкильные и ароматические радикалы, за основу названия обычно берется название первого представителя ароматических аминов – анилин.

Например, N-метиланилин:

Символ N- ставится перед названием алкильного радикала, чтобы показать, что этот радикал связан с атомом азота, а не является заместителем в бензольном кольце.

Изомерия аминов

Для аминов характерна изомерия углеродного скелета, изомерия положения аминогруппы и изомерия различных типов аминов.

Изомерия углеродного скелета

Для аминов характерна изомерия углеродного скелета (начиная с С4H9NH2).

Например. Ф ормуле С4Н9NH2 соответствуют два амина-изомера углеродного скелета.
н-Бутиламин (1-аминобутан)Изобутиламин (1-амин-2-метилпропан)

Изомерия положения аминогруппы

Для аминов характерна изомерия положения аминогруппы (начиная с С3H9N).

Например. Ф ормуле С4Н11N соответствуют амины положения аминогруппы.
1-Аминобутан (н-бутиламин)

Изомерия между типами аминов

Например. Формуле С3Н9N соответствуют первичный, вторичный и третичный амины.
Пропиламин

(первичный амин)

Метилэтиламин (вторичный амин)Триметиламин

(третичный амин)

Физические свойства аминов

При обычной температуре низшие алифатические амины CH3NH2, (CH3)2NH и (CH3)3N – газы (с запахом аммиака), средние гомологи – жидкости (с резким рыбным запахом), высшие – твердые вещества без запаха.

Ароматические амины – бесцветные жидкости с высокой температурой кипения или твердые вещества.

Первичные и вторичные амины образуют слабые межмолекулярные водородные связи:

Это объясняет относительно более высокую температуру кипения аминов по сравнению с алканами с близкой молекулярной массой.

Амины также способны к образованию водородных связей с водой:

Поэтому низшие амины хорошо растворимы в воде.

С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается. Ароматические амины в воде не растворяются.

Химические свойства аминов

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства.

Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов:

Первичный амин R–:NH2

Поэтому амины и аммиак обладают свойствами оснований.

1. Основные свойства аминов

Алифатические амины являются более сильными основаниями, чем аммиак, а ароматические — более слабыми.

Это объясняется тем, что радикалы СН3–, С2Н5– увеличивают электронную плотность на атоме азота:

Это приводит к усилению основных свойств.

Основные свойства аминов возрастают в ряду:

1.1. Взаимодействие с водой

В водном растворе амины обратимо реагируют с водой. Среда водного раствора аминов — слабощелочная:

1.2. Взаимодействие с кислотами

Амины реагируют с кислотами, как минеральными, так и карбоновыми, и аминокислотами, образуя соли (или амиды в случае карбоновых кислот):

При взаимодействии аминов с многоосновными кислотами возможно образование кислых солей:

1.3. Взаимодействие с солями

Амины способны осаждать гидроксиды тяжелых металлов из водных растворов.

Например, при взаимодействии с хлоридом железа (II) образуется осадок гидроксида железа (II):

2. Окисление аминов

Амины сгорают в кислороде, образуя азот, углекислый газ и воду. Например, уравнение сгорания этиламина:

3. Взаимодействие с азотистой кислотой

Первичные алифатические амины при действии азотистой кислоты превращаются в спирты:

Это качественная реакция на первичные амины – выделение азота.

Вторичные амины (алифатические и ароматические) образуют нитрозосоединения — вещества желтого цвета:

4. Алкилирование аминов

Первичные амины способны взаимодействовать с галогеналканами с образованием соли вторичного амина:

Из полученной соли щелочью выделяют вторичный амин, который можно далее алкилировать до третичного амина.

Особенности анилина

Анилин С6H5-NH2 – это ароматический амин.

Анилин – бесцветная маслянистая жидкость с характерным запахом. На воздухе окисляется и приобретает красно-бурую окраску. Ядовит. В воде практически не растворяется.

При 18 о С в 100 мл воды растворяется 3,6г анилина. Раствор анилина не изменяет окраску индикаторов.

Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу.
  • Бензольное кольцо уменьшает основные свойства аминогруппы по сравнению алифатическими аминами и даже с аммиаком:

Анилин не реагирует с водой, но реагирует с сильными кислотами, образуя соли:

  • Бензольное кольцо в анилине становится более активным в реакциях замещения, чем у бензола.

Реакция с галогенами идёт без катализатора во все три орто- и пара- положения.

Качественная реакция на анилин: реагирует с бромной водой с образованием 2,4,6-триброманилина (белый осадок ↓).

Получение аминов

Восстановление нитросоединений

Первичные амины можно получить восстановлением нитросоединений.

  • Гидрирование водородом:

  • Восстановление сульфидом аммония:

  • Алюминий в щелочнойсреде.

Алюминий реагирует с щелочами с образованием гидроксокомплексов.

В щелочной и нейтральной среде получаются амины.

Восстановлением нитробензола получают анилин.

  • Металлами в кислой среде – железом, оловом или цинком в соляной кислоте.

При этом образуются не сами амины, а соли аминов:

Амины из раствора соли выделяют с помощью щелочи:

Алкилирование аммиака и аминов

При взаимодействии аммиака с галогеналканами происходит образование соли первичного амина, из которой действием щелочи можно выделить сам первичный амин.

Если проводить реакцию с избытком аммиака, то сразу получится амин, а галогеноводород образует соль с аммиаком:

Гидрирование нитрилов

Таким образом получают первичные амины. Возможно восстановление нитрилов водородом на катализаторе:

.

Соли аминов

  • Соли аминов — это твердые вещества без запаха, хорошо растворимые в воде, но не растворимые в органических растворителях (в отличие от аминов).
  • При действии щелочей на соли аминов выделяются свободные амины:

  • Соли аминов вступают в обменные реакции в растворе:

  • Взаимодействие с аминами.

Соль амина с более слабыми основными свойствами может реагировать с другим амином, образуя новую соль (более сильные амины вытесняют менее сильные из солей):

15 комментариев

Добавить ваш

Где получение аминов , там 2) Реакция Зинина слева написано R как радикал, а справа (после равно) уже метиламин, почему метиламин справа, а слева просто R? Разве Зинин не анилин получил этим способом?

Да, спасибо, поправил. В узком смысле реакцией Зинина называют получение именно ароматических аминов, в широком смысле так называют восстановление любых нитросоединений сульфидом аммония.

Здравствуйте! Скажите, пожалуйста, реагируют ли третичные амины с галогеналканами? Если да, то как идет реакция и что получается? Например,при взаимодействии триметиламина с хлорметаном?

Здравствуйте! Реагируют, но дальнейшее замещение по связям N-H не идет.

Здравствуйте! Не показано взаимодействие аминов со спиртами.

Третичные амины с алкилгалогенидами реагируют. Получаются четвертичные аммониевые соли. Говорить, что они вообще не реагируют, неправильно. Они не вступают в реакцию алкилирования.

R3N + RCl = R4N(+)Cl(-)

По такой схеме за счет пары электронов на азоте реагируют алифатические амины, ароматические амины, пиридин с получением N-алкилпиридинийхлорида (иодида) и пр.

Да, спасибо за комментарий. Я имел в виду, что не идет дальнейшее замещение.

спасибо, отличная идея!

для полноты информации я бы добавил оптическую изомерию и примеры этой изомерии ко всем классам органических веществ, потому что на егэ это есть

На ЕГЭ пока оптической изомерии нет.

Admin>Здравствуйте! Реагируют, но дальнейшее замещение по связям N-H не идет.

что значит «дальнейшее»? у триметиламина — и так уже нет N-H связей, может вы имели в виду протонированный триметил-амин (скажем) солянокислый, что в форме соли он останется третичным амином например до момента щелочного депротонирования(высвобождения основания амина)

а что кстати, есть способ галоидным алкилом моноалкилирование первичного ароматического амина до вторичного осуществить, избежав образования третичного амина — диалкилированного уже
на этилировании уже проще, а вот метиллирование нейромедиаторов не удавалось остановить на стадии N,N-ДиМет.(например в ацетоне с карбонатом калия, или с DIPEA), выход третичного целевого амина всегда оказывался либо самым низким из продуктов реакции, либо просто очень низким(10% в сложной смеси аминов с преобладанием четвертичной соли триметиламмония метилиодида, а сейчас подумал — если при N-метилировании первичного ароматического амина метилиодидом, образуется гидроиодид N-метил…исх.пер.амина, он же даже во второе метиллирование уже не должен входить, усиленным основанием став (скажем адреналином, основнее норадреналина исходного как я понимаю за счет появившегося электроннодонороного метила) и так будет выведен из реакционной среды(например выпав осадком соли, не солватированной в неполярной РС)
получается в отсутствие основного катализа алкилирование первичных аминов ограничивается моно-алкилированием — не далее чем до вторичного амина? или на практике соли не так надёжны как в оптимистичных прогнозах теоретизирующего учащегося?


источники:

http://himija-online.ru/organicheskaya-ximiya/aminy/poluchenie-anilina.html

http://chemege.ru/aminy/