Реферат квадратные уравнения 8 класс

Реферат на тему: Различные способы решения квадратных уравнений

Работа реферативного характера на тебу: «Различные способы решения квадратных уравнений», 8 класс.

Скачать:

ВложениеРазмер
rabota_referativnogo_haraktera._razlichnye_sposoby_resheniya_kvadratnyh_uravneniy.doc563 КБ

Предварительный просмотр:

МОУ «Средняя общеобразовательная школа № 7 города Коряжмы»

Различные способы решения квадратных уравнений

Выполнила: ученица 8 «Б» класса,

Заглубоцкая Вера Александровна

Руководитель: Стенина Татьяна Леонидовна, учитель математики

165651, Архангельская область,

г. Коряжма, проспект Ленина д. 37

1. История возникновения и развития квадратных уравнений………………. 4

2. Способы решения квадратных уравнений……………………………………5

2.1. Метод выделения полного квадрата………………………. 5

2.2. Решение квадратных уравнений по формуле…. 6

2.3. Разложение левой части на множители……. 7

2.4. Решение квадратных уравнений способом «переброски»………………. 7

2.5. Теорема Виета………………………. 8

2.6. Применение свойств коэффициентов квадратного уравнения…. 8

2.7. Графический способ решения квадратных уравнений……………. 10

2.8. Геометрический способ решения квадратных уравнений…. 11

Список использованных источников и литературы………………. 14

Человеку, изучающему алгебру, часто полезнее

решить одну и ту же задачу тремя различными способами, чем решать три – четыре задачи.

Решая одну задачу различными способами, можно путем сравнения выяснить, какой из них

короче и эффективнее. Так вырабатывается опыт.

У.У. Сойер, английский математик 20 века.

Практически все, что окружает современного человека — это все так или иначе связано с математикой. Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площади земельных участков и с земляными работами военного характера, а так же с развитием астрономии и самой математики. Решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые уравнения второй степени. Однако имеются и другие способы решения таких уравнений, которые позволяют очень быстро и рационально решать квадратные уравнения. Какие это способы и сколько их?

  1. История возникновения и развития квадратных уравнений

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики.

Найденные древние вавилонские глиняные таблички (около 2 тысяч лет до н.э.) являются самыми ранними свидетельствами об изучении квадратных уравнений. На них изложены методы решения некоторых типов квадратных уравнений. Правило решения этих уравнений совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

Квадратные уравнения решали и в Индии. Древнеиндийский математик Баудхаяма в VIII столетии до н.э. впервые использовал квадратные уравнения в форме ax 2 = c и ax 2 + bx = c и привел методы их решения.

Задачи на квадратные уравнения встречаются в астрономическом трактате «Ариабхаттиам», составленном в 499 году индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII век), изложил общее правило решения квадратных уравнений, приведенных к единой конической форме: ах 2 + bx = c , где a > 0 . В этом уравнении коэффициенты (кроме а) могут быть и отрицательными. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи ». Задачи часто облекались в стихотворную форму.

Некоторые виды квадратных уравнений, сводя их решение к геометрическим построениям, могли решать древнегреческие математики. Приемы решения уравнений без обращения к геометрии дает Диофант Александрийский (III в.). В его книгах «Арифметика» нет систематического изложения алгебры, однако в них содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений различных степеней. При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Хорезмский математик Ал-Хорезми в своем алгебраическом трактате дает классификацию линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом: ах 2 + с = bх, ах 2 = с, ах = с, ах 2 + с = bх, ах 2 + bx = с, bx + с = ах 2 . Ал-Хорезми избегает употреблений отрицательных чисел, поэтому члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений.

Формулы решения квадратных уравнений в Европе были впервые изложены в 1202 г. в «Книге абака» итальянским математиком Леонардом Фибоначчи. Он первый в Европе подошел к введению отрицательных чисел. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду: х 2 + bx = с , при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в 1544 г. немецким математиком М. Штифелем. Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. учитывают, помимо положительных и отрицательные корни. Лишь в XVII в. благодаря трудам Жиррара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

  1. Способы решения квадратных уравнений

Квадратное уравнение — алгебраическое уравнение общего вида где — свободная переменная, , , — коэффициенты , причём

2.1. Метод выделения полного квадрата

В данном методе будут активно использоваться следующие формулы сокращенного умножения:

(a+b) 2 = a 2 +2*a*b +b 2 ;

(a-b) 2 = a 2 -2*a*b +b 2 ;

Рассмотрим данный метод при решении уравнения: 4x 2 +7x+3=0

Курсовая работа: Формирование умения решения квадратных уравнений в 8 классе

ГОУ СПО «Кунгурское педагогическое училище»

Формирование умения решения квадратных уравнений в 8 классе

Курсовая работа

по методике математики

Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе

1.1. Из истории возникновения квадратных уравнений 6

1.2. Основные направления изучения линий уравнений в школьном курсе алгебры 12

1.3. Методика изучения квадратных уравнений 15

Глава 2. Методико-педагогические основы обучения решению квадратных уравнений

2.1. Урок – лекция по теме «Формула корней квадратного уравнения с четным вторым коэффициентом» 23

2.2. Урок – практикум по теме «Квадратные уравнения» 28

2.3. Обобщающий урок по теме «Квадратные уравнения» в форме игры «Звездный час» 32

Список литературы 38

Сухие строки уравнений –

В них сила разума влилась.

В них объяснение явлений,

Вещей разгаданная связь.

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему школьного курса математики. Сила теории уравнений в том, что она не только имеет теоретическое значение для познания естественных законов, но и служит конкретным практическим целям. Большинство задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, люди находят ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.). Так же для формирования умения решать уравнения большое значение имеет самостоятельная работа учащегося при обучении решения уравнений. При изучении любой темы уравнения могут быть использованы как эффективное средство закрепления, углубления, повторения и расширения теоретических знаний, для развития творческой математической деятельности учащихся.[10,241].

Автором данной работы выбрана тема «Формирование умения решения квадратных уравнений в 8 классе», так как она актуальна в современном мире; это объясняется тем, что уравнения широко используются в различных разделах математики, в решении важных прикладных задач.

Для этой темы характерна большая глубина изложения и богатство устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений. К изучению темы «Квадратные уравнения» учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений. В значительной мере именно на материале данной темы осуществляется синтез материала, относящегося к уравнениям.

Исходя из вышесказанного, автор, выбирая тему курсовой работы, руководствовался ее значимостью и сложностью при обучении учащихся решению квадратных уравнений разного вида.

Цель работы: формирование представлений о работе над квадратными уравнениями на уроках математики. Исходя из данной цели, были поставлены следующие задачи:

· изучить научно-методическую литературу, касающуюся изучению уравнений;

· проанализировать школьные учебники и выделить в них место уравнений.

· разработать уроки по данной теме.

Для решения вышеуказанных задач были изучены следующие литературные источники:

1) Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / С.М. Никольский, М.К. Потапов и др. – 2-е изд. – М.: Просвещение, 2003. – 287 с.

2) Алгебра: Учеб. для 8 кл. общеобразоват. учреждений / Ш.А.Алимов, Ю.М.Колягин, Ю.В.Сидоров и др. – 10-е изд. – М.: Просвещение, 2003. – 255с.

3) Мордкович А.Г.. Алгебра: учеб. для 8 кл. общеобразоват. учреждений. – М.: Просвещение, 2004. – 287с.

4) Бекаревич А.Б. Уравнения в школьном курсе математики. – М., 2000. – 241с.

5) Глейзер Г.И. История математики в школе VII – VIII классы. – М., 1982.

6) Колягин Ю.М. Методика преподавания математике в средней школе. Частные методики. – М.: Просвещение, 2002.

7) Маркушевич Л.А. Уравнения и неравенства в заключительном повторении курса алгебры средней школы // Математика в школе. – 2001. — №1. – с.15

8) Методика и технология обучения математике. Курс лекций: пособие для вузов / под ред. Н.Л.Стефановой, Н.С. Подходовой. – М.: Дрофа, 2005. – 416 с.

9) Мишин В.И. Методика преподавания математики в средней школе. – М.,1999.- 398с.

10) Оганесян В.А. Методика преподавания математики в средней школе. – М.: Просвещение, 2003. – 368 с.

Проанализировав некоторые источники, можно сделать вывод о недостаточном освещении изучаемого вопроса в современной методической литературе.

Объект исследования работы: процесс обучения математике.

Предмет: формирование умения решения квадратных уравнений у учащихся 8-го класса.

Контингент: учащиеся 8-го класса.

Глава 1. Теоретические аспекты обучению решения уравнений в 8 классе

1.1. Из истории возникновения квадратных уравнений

Алгебра возникла в связи с решением разнообразных задач при помощи уравнений. Обычно в задачах требуется найти одну или несколько неизвестных, зная при этом результаты некоторых действий, произведенных над искомыми и данными величинами. Такие задачи сводятся к решению одного или системы нескольких уравнений, к нахождению искомых с помощью алгебраических действий над данными величинами. В алгебре изучаются общие свойства действий над величинами.

Некоторые алгебраические приемы решения линейных и квадратных уравнений были известны еще 4000 лет назад в Древнем Вавилоне.

Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до нашей эры вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены. Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.

В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.

При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.

Вот, к примеру, одна из его задач.

Задача 2. «Найти два числа, зная, что их сумма равна 20, а произведение — 96».

Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т. е. 10 + х. Другое же меньше, т. е. 10 — х. Разность между ними 2х. Отсюда уравнение:

Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = — 2 для Диофанта не существует, так как греческая математика знала только положительные числа.

Если решить эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то можно прийти к решению уравнения:

Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения.

Квадратные уравнения в Индии

Задачи на квадратные уравнения встречаются уже в астрономическом трактате «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученый, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

ax 2 + bх = с, а> 0. (1)

В уравнении (1) коэффициенты, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.

В Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.

Вот одна из задач знаменитого индийского математика XII в. Бхаскары.

Название: Формирование умения решения квадратных уравнений в 8 классе
Раздел: Рефераты по математике
Тип: курсовая работа Добавлен 00:03:11 03 июля 2008 Похожие работы
Просмотров: 3447 Комментариев: 21 Оценило: 3 человек Средний балл: 5 Оценка: неизвестно Скачать
«Обезьянок резвых стаяА двенадцать по лианам
Всласть поевши, развлекаласьСтали прыгать, повисая
Их в квадрате часть восьмаяСколько ж было обезьянок,
На поляне забавляласьТы скажи мне, в этой стае?»

Решение Бхаскары свидетельствует о том, что автор знал о двузначности корней квадратных уравнений.

Соответствующее задаче 3 уравнение:

,

Бхаскара пишет под видом:

x 2 — 64x = — 768

и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 32 2 , получая затем:

x 2 — б4х + 32 2 = -768 + 1024,

Квадратные уравнения у Аль-Хорезми

В алгебраическом трактате Аль-Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:

1) «Квадраты равны корням», т. е. ах 2 = bх.

2) «Квадраты равны числу», т. е. ах 2 = с.

3) «Корни равны числу», т. е. ах = с.

4) «Квадраты и числа равны корням», т. е. ах 2 + с = bх.

5) «Квадраты и корни равны числу», т. е. ах 2 + bх =с.

6) «Корни и числа равны квадратам», т. е. bх + с == ах 2 .

Для Аль-Хорезми, избегавшего употребления отрицательных чисел, члены каждого из этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал-джабр и ал-мукабала. Его решение, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида Аль-Хорезми, как и все математики до XVII в., не учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений Аль-Хорезми на частных числовых примерах излагает правила решения, а затем их геометрические доказательства.

Задача 4. «Квадрат и число 21 равны 10 корням. Найти корень» (подразумевается корень уравнения х 2 + 21 = 10х).

Решение: раздели пополам число корней, получишь 5, умножь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от 5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.

Трактат Аль-Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.[3,75]

Квадратные уравнения в Европе XII XVII в.

Формы решения квадратных уравнений по образцу Аль-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202г. итальянским математиком Леонардом Фибоначчи. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел.

Эта книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из этой книги переходили почти во все европейские учебники XIV-XVII вв. Общее правило решения квадратных уравнений, приведенных к единому каноническому виду x 2 + bх = с при всевозможных комбинациях знаков и коэффициентов b, c, было сформулировано в Европе в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых вXVI в. учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.[5,12].

Истоки алгебраических методов решения практических задач связаны с наукой древнего мира. Как известно из истории математики, значительная часть задач математического характера, решаемых египетскими, шумерскими, вавилонскими писцами-вычислителями (XX—VI вв. до н. э.), имела расчетный характер. Однако уже тогда время от времени возникали задачи, в которых искомое значение величины задавалось некоторыми косвенными условиями, требующими, с нашей современной точки зрения, составления уравнения или системы уравнений. Первоначально для решения таких задач применялись арифметические методы. В дальнейшем начали формироваться начатки алгебраических представлений. Например, вавилонские вычислители умели решать задачи, сводящиеся с точки зрения современной классификации к уравнениям второй степени. Был создан метод решения текстовых задач, послуживший в дальнейшем основой для выделения алгебраического компонента и его независимого изучения.

Это изучение осуществлялось уже в другую эпоху сначала арабскими математиками (VI—Х вв. н. э.), выделившими характерные действия, посредством которых уравнения приводились к стандартному виду приведение подобных членов, перенос членов из одной части уравнения в другую с переменой знака. А затем европейскими математиками Возрождения, в итоге длительного поиска создавшими язык современной алгебры, использование букв, введение символов арифметических операций, скобок и т. д. На рубеже XVI—XVII вв. алгебра как специфическая часть математики, обладающая своим предметом, методом, областями приложения, была уже сформирована. Дальнейшее ее развитие, вплоть до нашего времени, состояло в совершенствовании методов, расширении области приложений, уточнении понятий и связей их с понятиями других разделов математики.

Итак, ввиду важности и обширности материала, связанного с понятием уравнения, его изучение в современной методике математики связано с тремя главными областями своего возникновения и функционирования.

1.2. Основные направления изучения линий уравнений в школьном курсе алгебры

Уравнение как общематематическое понятие многоаспектно. Можно выделить главные области возникновения и функционирования понятия «уравнение» как:

· средства решения текстовых задач;

· особого рода формулы, служащей в алгебре объектом изучения;

· формулы, которой косвенно определяются числа или координаты точек плоскости (пространства), служащие его решением.[12,268]

Каждое из этих представлений оказалось в том или ином отношении полезным.

Названным областям относятся три основных направления изучения линий уравнений в школьном курсе алгебры.

1. Прикладная направленность линии уравнений раскрывается главным образом при изучении алгебраического метода решения текстовых задач. Этот метод широко применяется в школьной математике, поскольку он связан с обучением приемам, используемым в приложениях математики.

В настоящее время, ведущее положение в приложениях математики занимает математическое моделирование (Математическое моделирование заключается в конструировании по определенным правилам некоторой формальной системы, которая отображает через совокупность математических операций над величинами определенную гипотезу о структуре или воспитания). Используя это понятие, можно сказать, что прикладное значение уравнений, их систем определяется тем, что они являются основной частью математических средств, используемых в математическом моделировании. [14,246].

2. Теоретико-математическая направленность линии уравнений раскрывается в двух аспектах:

· выделение и изучение наиболее важных классов уравнений, и их систем;

· изучение обобщенных понятий, относящихся ко всей линии в целом.

Оба эти аспекта необходимы в курсе школьной математики. Основные классы уравнений связаны с простейшими и одновременно наиболее важными математическими моделями. Использование обобщенных понятий и методов позволяет логически упорядочить изучение линии в целом, поскольку они описывают то общее, что имеется в процедурах и приемах решения, относящихся к отдельным классам уравнений, неравенств, систем. В свою очередь, эти общие понятия и методы опираются на основные логические понятия: неизвестное, равенство, равносильность, логическое следование, которые также должны быть раскрыты в линии уравнений.

3. Направленность на установление связей с остальным содержанием курса математики. Эта линия тесно связана с числовой линией, причем эта связь — двусторонняя. Основная идея, реализуемая в процессе установления взаимосвязи этих линий,— это идея последовательного расширения числовой системы. Все числовые области, рассматриваемые в школьной алгебре и началах анализа, за исключением области всех действительных чисел, возникают в связи с решением каких-либо уравнений.

Например, введение арифметического квадратного корня из рациональных чисел позволяет записывать корни не только уравнений вида х 2 = b, где b—неотрицательное рациональное число, но и любых квадратных уравнений с рациональными коэффициентами и неотрицательным дискриминантом.[9,341]

Линия уравнений тесно связана также и с функциональной линией. Одна из важнейших таких связей — приложения методов, разрабатываемых в линии уравнений, к исследованию функции (например, к заданиям на нахождение области определения некоторых функций, их корней, промежутков знакопостоянства и т. д.). С другой стороны, функциональная линия оказывает существенное влияние как на содержание линии уравнений , так и на стиль ее изучения. В частности, функциональные представления служат основой привлечения графической наглядности к решению и исследованию уравнений и их систем.[12,269]

Изучение и использование преобразований уравнений и их систем, с одной стороны, предполагают достаточно высокую логическую культуру учащихся, а с другой стороны, в процессе изучения и применения таких преобразований имеются широкие возможности для формирования логической культуры.

Таким образом, владение содержанием линии уравнений позволяет расширить список выполнимых преобразований. Так, умение решать квадратные уравнения позволяет осуществлять сокращение дробей, в числителе или знаменателе которых имеется квадратный трехчлен. В итоге изучения материала линии уравнений учащиеся должны не только овладеть применением алгоритмических предписаний к решению конкретных заданий, но и научиться использовать логические средства для обоснования решений в случаях, когда это необходимо.

1.3. Методика изучения квадратных уравнений

С началом изучения систематического курса алгебры основное внимание уделяется способам решения квадратных уравнений, которые становятся специальным объектом изучения. Для этой темы характерна большая глубина изложения и богатство устанавливаемых с ее помощью связей в обучении, логическая обоснованность изложения. Поэтому она занимает исключительное положение в линии уравнений и неравенств. К изучению этой темы учащиеся приступают, уже накопив определенный опыт, владея достаточно большим запасом алгебраических и общематематических представлений, понятий, умений.

Умение решать квадратные уравнения служит базой для решения других уравнений и их систем (дробных рациональных, иррациональных, высших степеней).

Для того чтобы решить любое квадратное уравнение, учащиеся должны знать:

· формулу нахождения дискриминанта;

· формулу нахождения корней квадратного уравнения;

· алгоритмы решения уравнений данного вида.

· решать неполные квадратные уравнения;

· решать полные квадратные уравнения;

· решать приведенные квадратные уравнения;

· находить ошибки в решенных уравнениях и исправлять их;

Решение каждого уравнения складывается из двух основных частей:

· преобразования данного уравнения к простейшим;

· решения уравнений по известным правилам, формулам или алгоритмам.

При изучении темы «Квадратные уравнения» рассматриваются неполные, полные и приведенные квадратные уравнения. Для изучения данной темы были проанализированы современные школьные учебники разных авторов, таких как А.Г.Мордкович, С.М.Никольский, Ю.Н.Макарычев, М.И.Башмаков.

Реферат «Решение квадратных уравнений различными способами.»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

Муниципальное общеобразовательное учреждение

Средняя общеобразовательная школа № 1

Тема:Решение квадратных уравнений различными способами.

Выполнила: Ученица 8 Б класса

Пешкова Оксана Ильинична

Оглавление

Аннотация

Предметисследования: способы решения квадратных уравнений.

Цель: Изучить теоретические основы квадратных уравнений и способов их решении; рассмотреть применение данных способов решения квадратных уравнений на конкретных примерах.

1) Произвести анализ учебно–методической литературы по решению квадратных уравнений.

2) Произвести анализ различных способов решения квадратных уравнений

3)Изучить историю развития квадратных уравнений.

4) Изучить различные способы решения квадратных уравнений и апробировать материал на практике.

Гипотеза: любое квадратное уравнение можно решить всеми существующими способами

Обоснование: Уравнения — это наиболее объёмная тема всего курса математики. Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. В него вошли как известные нам из школьного курса алгебры способы решения квадратных уравнений, так и дополнительный материал.

Теоретические методы: изучение литературы по теме исследования

Анализ информации, полученной при изучении литературы; анализ результатов, получены при решении квадратных уравнений различными способами.

Сравнение способов на рациональность их использования при решении квадратных уравнений.

I .Введение

Уравнения в школьном курсе алгебры занимают ведущее место. На их изучение отводится времени больше, чем на любую другую тему. Действительно, уравнения не только имеют важное теоретическое значение, но и служат чисто практическим целям. Подавляющее число задач о пространственных формах и количественных отношениях реального мира сводится к решению различных видов уравнений. Овладевая способами их решения, мы находим ответы на различные вопросы из науки и техники (транспорт, сельское хозяйство, промышленность, связь и т. д.).

Выбор этой темы основывался на том, что уравнения есть как в программе начальной, так и в каждом последующем классе общеобразовательных школ, лицеев, колледжей. Многие геометрические задачи, задачи по физике, химии и биологии решаются с помощью уравнений. Уравнения решали двадцать пять веков назад. Они создаются и сегодня – как для использования в учебном процессе, так и для конкурсных экзаменов в вузы, для олимпиад самого высокого уровня.

Квадратное уравнение представляет собой большой и важный класс уравнений, решающих как с помощью формул, так и с помощью элементарных функций.

В учебниках мы знакомимся с несколькими видами квадратных уравнений, и отрабатываем решение по формулам. Вместе с тем, современные научно – методические исследования показывают, что использование разнообразных методов и способов позволяет значительно повысить эффективность и качество изучения решений квадратных уравнений.

Выбор способа должен оставаться за учащимся. Каждый ученик должен уметь верно и рационально решать квадратные уравнения. Так как в некоторых случаях можно их решать устно, только для этого необходимо помнить алгоритм решения квадратных уравнений, который может пригодиться на экзамене ЕГЭ, при поступлении в ВУЗы и различных жизненных ситуациях.

Квадратное уравнение-это фундамент, на котором покоится величественное здание алгебры.

С помощью формул корней квадратных уравнений можно решить любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения.

Таким образом возникает необходимость изучения этих дополнительных способов решения. Все сказанное выше определяет актуальность темы выполненной работы.

II . Определение квадратного уравнения, его виды.

Определение:Квадратным уравнением называется уравнение вида

гдех-переменная, а, b и с-некоторые числа, причем,а≠0.

Если в квадратном уравнении ах 2 + bx + c =0 хотя бы один из коэффициентов b или с равен нулю, то такое уравнение называют неполным квадратным уравнением.

Неполные квадратные уравнения бывают трёх видов:

1)ах 2 +с=0, где с ≠ 0;

2) ах 2 + b х = 0, где b ≠ 0;

Квадратные уравнения  это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств.

III . Из истории квадратных уравнений.

1) Квадратные уравнения в Древнем Вавилоне

Необходимость решать уравнения не только первой, но и второй степени ещё в древности была вызвана потребностью решать задачи, связанные нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н.э. вавилоняне. Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:

х 2 + х = , х 2 – х = 14

Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.

2) Квадратные уравнения в Индии.

Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабахаттой. Другой индийский ученый, Брахмагупта ( VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:

В уравнении коэффициенты, кромеа, могут быть отрицательными. Правило Брахмагупта по существу совпадает с нашим.

3) Квадратные уравнения в Европе XIII — XVII вв.

Формулы решения квадратных уравнений по образцу ал-Хорезми в Европе были впервые изложены в «Книге абака», написанной в 1202 г. Итальянским математиком Леонардо Фибоначчи. Этот объемный труд, в котором отражено влияние математики как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из «Книги абака» переходили почти во все европейские учебники XVI — XVII вв. и частично XVIII .

Общее правило решения квадратных уравнений, приведенных к единому каноническому виду х 2 + b х = с, при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М.Штифелем.

Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. благодаря трудам Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.

IV . Различные способы решения квадратных уравнений.

В школьном курсе математике изучают формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно разберем каждые из них.

1) Разложение левой части уравнения на множители .

1. Решим уравнение х 2 + 10х – 24 = 0.

Разложим левую часть уравнения на множители:

х 2 + 10х – 24 = х 2 + 12х – 2х – 24 = х (х + 12) – 2 (х +12) = (х + 12)(х – 2).

Следовательно, уравнение можно переписать так:

Так как произведение равно нулю, то по крайне мере один из его множителей равен нулю. Поэтому левая часть уравнения обращается в нуль при х = 2, а также при х = — 12. это означает, что числа 2 и – 12 являются корнями уравнения х 2 + 10х – 24 = 0.

2) Метод выделения полного квадрата

Поясним этот метод на примере.

Решим уравнение х 2 + 6х – 7 = 0

Выделим в левой части полный квадрат. Для этого запишем выражение

х 2 + 6х в следующем виде:

х 2 + 6х = х 2 + 2· х ·3.

В полученном выражении первое слагаемое – квадрат числа х, а второе – удвоенное произведение х на 3. поэтому чтобы получить полный квадрат, нужно прибавить 3 2 , так как

х 2 + 2· х ·3 + 3 2 = (х + 3) 2 .

Преобразуем теперь левую часть уравнения

прибавляя к ней и вычитая 3 2. Имеем:

х 2 + 6х – 7= х 2 + 2· х ·3 + 3 2 – 3 2 – 7= (х + 3) 2 – 9– 7= (х + 3) 2 – 16.

Таким образом, данное уравнение можно записать так:

(х + 3) 2 –16 = 0, т.е. (х + 3) 2 = 16.

Следовательно, х=3=4,х1=1, или х +3= — 4 , х2 = – 7.

3) Решение квадратных уравнений по формуле

Умножим обе части уравнения

ах 2 + b х + с = 0, а ≠ 0,на 4а и следовательно имеем:

4а 2 х 2 + 4а b с + 4ас = 0.

((2ах) 2 + 2ах · b + b 2 ) – b 2 + 4ас = 0,

(2ах + b ) 2 = b 2 – 4ас,

а) 4х 2 + 7х + 3 = 0.

а = 4, b = 7, с = 3, D = b 2 – 4ас = 7 2 – 4· 4 ·3 = 49 – 48 = 1, D >два разных корня;

х = , х = ; х = , х1 = , х = , х2 = –1

Таким образом, в случае положительного дискриминанта,т. е. при b 2 – 4ас≥0 уравнение ах 2 + b х + с = 0 имеет два различных корня.

б) 4х 2 – 4х + 1 = 0,

Итак, если дискриминант равен нулю, т. е. = b 2 – 4ас= 0, тоуравнение ах 2 + b х + с = 0 имеет единственный корень, х =

в) 2х 2 +3х + 4 = 0, а =2, b = 3, с = 4, D = b 2 – 4ас= 9 – 4∙2∙4 =9 – 32 = — 13,

Итак, если дискриминант отрицателен, т. е. = b 2 – 4ас

4) Решение уравнений с использованием теоремы Виета(прямой и обратной)

а) Как известно, приведенное квадратное уравнение имеет вид

Его корни удовлетворяют теореме Виета, которая приа = 1 имеет вид

Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).

а) Если свободный член q приведенного уравнения (1) положителен ( q >0), то уравнение имеет два одинаковых по знаку корня и это зависит от второго коэффициента p .

Если p >0, то оба корня отрицательные, если p

х 2 – 3х + 2 = 0; х1 = 2 и х2 = 1, так как q = 2>0 и p = – 3

х 2 +8х + 7 = 0; х1 = – 7 и х2 = – 1, так как q = 7 > 0 и p = 8 >0.

б) Если свободный член q приведенного уравнения (1) отрицателен ( q p p >0.

х 2 + 4х – 5 = 0; х1 = – 5 и х2 = 1, так как q = – 5 p = 4 > 0;

х 2 – 8х – 9 = 0; х1 = 9 и х2 = – 1, так как q = – 9 p = – 8 >0.

б) Теорема Виета для квадратного уравнения

Справедлива теорема, обратная теореме Виета:

Если числа х1 и х2 таковы, что х12 = -р, х1х2 = q , то х1 и х2 – корни квадратного уравнения

Эта теорема позволяет в ряде случаев находить корни квадратного уравнения без использования формулы корней.

1. Решить уравнение: х 2 – 9х + 14 =0

Попробуем найти два числа х1 и х2 , такие, что

Такими числами являются 2 и 7. По теореме, обратной теореме Виета, они и служат корнями заданного квадратного уравнения.

2. Решить уравнение: х 2 +3х – 28 = 0

Попробуем найти два числа х1 и х2 , такие, что

Нетрудно заметить, что такими числами будут – 7 и 4. Они и являются корнями заданного уравнения.

5)Решение уравнений способом «переброски»

Рассмотрим квадратное уравнение

Умножая обе его части на а, получаем уравнение

Пусть ах= у, откуда х = ; тогда приходим к уравнению

равносильного данному. Его корни у1 и у2 найдем с помощью теоремы Виета. Окончательно получаем х1= и х1 = . При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его и называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.

Решим уравнение 2х 2 – 11х + 15 = 0.

Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение

Согласно теореме Виета

6)Свойства коэффициентов квадратного уравнения.

А. Пусть дано квадратное уравнение

1.Если а+ b =0 (т.е. сумма коэффициентов уравнения равна нулю),то х1 =1, х2= .Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение

Согласно теореме Виета

По условиюа + b + с = 0, откуда b = – а – с. Значит,

Получаем х1=1, х2=, что и требовалось доказать.

Доказательство. По теореме Виета

По условию а – b + с = 0, откуда b = а + с. Таким образом,

т.е. х1= 1 и х2 = , что и требовалось доказать.

1. Решим уравнение 345х 2 137х – 208 = 0.

Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то х1=1, х2= = .

2. Решим уравнение 132х 2 + 247х + 115 = 0

Решение. Т. к. а- b +с = 0 (132 – 247 +115=0), то

Б. Если второй коэффициент b = 2 k – четное число, то формулу корней

можно записать в виде

Решим уравнение 3х 2 14х + 16 = 0.

D = k 2 ac = (– 7) 2 – 3 · 16 = 49 – 48 = 1, D >0, два различных корня;

В. Приведенное уравнение

совпадает с уравнением общего вида, в которома = 1, p и c = q . Поэтому для приведенного квадратного уравнения формула корней

Формулу (3) особенно удобно использовать, когда p – четное число.

1. Решим уравнение х 2 14х – 15 = 0.

7)Графическое решение квадратного уравнения

Если в уравнении x 2 + px + q = 0перенести второй и третий члены в правую часть, то получим x 2 = – pxq .

Построим графики зависимостей у = х 2 и у = – pxq . (рис.1)

График первой зависимости – парабола,проходящая через начало координат.График второй зависимости – прямая.Возможны следующие случаи:прямая и парабола могут пересекаться в двух точках, абсциссыточек пересечения являются корнями квадратного уравнения;

— прямая и парабола могут касаться (только одна общая точка),т.е.уравнение имеет одно решение;

— прямая и парабола не имеют общих точек, т.е. квадратноеуравнение не имеет корней.


источники:

http://www.bestreferat.ru/referat-196144.html

http://infourok.ru/referat-reshenie-kvadratnih-uravneniy-razlichnimi-sposobami-1683780.html