Реферат на тему методы решения систем уравнений

Реферат: Способы решения систем линейных уравнений

– очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. Поэтому первая глава моего реферата посвящена теме матриц и определителей. В ней я рассматривала различные действия над матрицами, свойства определителей, метод Гаусса вычисления ранга матрицы, а так же некоторые другие теоретические вопросы. Во второй главе непосредственно рассматриваются системы линейных уравнений и некоторые методы их решения: правило Крамера, метод Гаусса, а так же теорема Кронекера – Капелли. И в той и в другой главах приведены примеры, которые составляют практическую часть моего реферата.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы. Давайте рассмотрим некоторые примеры важнейших моментов этой работы.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ;

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

a). Если  , то система (1) имеет единственное решение,

которое может быть найдено по формулам Крамера: x 1 = , где

определитель n-го порядка  i ( i=1,2. n) получается из определителя системы путем замены i-го столбца свободными членами b 1 , b 2 . b n .

б). Если  , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет . Например:

решить систему уравнений

.

Вычислим определитель системы:

Так как определитель не равен нулю, система уравнений может быть решена по формулам Крамера. Найдем определители ∆x , ∆y:

.

Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n -го порядка:  ,  x 1 ,  x 2 , …,  x n . Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.

Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:

а 11 х 1 + а 12 х 2 + …+ а 1 n х n = b 1 ;

а 21 х 1 + а 22 х 2 + …+ а 2 n х n = b 2 ;

а m1 х 1 + а m2 х 2 + …+ а m n х n = b m

Метод Гаусса решения системы (19) заключается в последовательном исключении переменных. Например:

Решить методом Гаусса систему уравнений

x 1 – 2 x 2 + x 3 + x 4 = –1;

3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;

2 x 1 – x 2 + 2 x 3 – 3 x 4 = 9;

x 1 + 3 x 2 – 3 x 3 – x 4 = –1.

Р е ш е н и е. Составим матрицу В и преобразуем ее. Для удобства вычислений отделим вертикальной чертой столбец, состоящий из свободных членов:

1 –2 1 1 –1

Умножим первую строку матрицы В последовательно на 3, 2 и 1 и вычтем соответственно из второй, третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Третью строку матрицы умножим на 3 и вычтем ее из второй строки. Затем новую вторую строку умножим на 3 и на 5 и вычтем из третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Из коэффициентов последней матрицы составим систему, равносильную исходной:

x 1 – 2 x 2 + x 3 + x 4 = –1;

X 2 – 6 x 3 + 8 x 4 = –28;

Решим полученную систему методом подстановки, двигаясь последовательно от последнего уравнения к первому. Из четвертого уравнения x 4 = –1 , из третьего х 3 = 3 . Подставив значения х 3 и x 4 во второе уравнение, найдем x 2 = 2 . Подставив значения x 2 , x 3 , x 4 в первое уравнение, найдем x 1 = 1.

Теорема совместности Кронекера – Капелли звучит следующим образом: Для того, чтобы система неоднородных линейных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу её основной матрицы. Рассмотрим следующий пример:

5 x 1 – x 2 + 2 x 3 + x 4 = 7;

2 x 1 + x 2 – 4 x 3 – 2 x 4 = 1;

x 1 – 3 x 2 + 6 x 3 – 5 x 4 = 0.

Ранг основной матрицы этой системы равен 2, так как сцществует отличный от нуля минор второго порядка этой матрицы, например

5 –1 = 7,

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 –1 7

Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

МОУ Гимназия № 11

Способы решения систем линейных уравнений

МОУ Гимназия № 11

Способы решения систем линейных уравнений

Реферат по математике

Ученица 9 2 класса

Введение. 2

Глава I. Матрицы и действия над ними. 5

1.1. Основные понятия. –

1.2. Действия над матрицами. 8

1.3. Обратная матрица. 11

1.4. Ранг матрицы. 16

Глава II. Системы линейных уравнений. 23

2.1. Основные понятия. –

2.2. Система n линейных уравнений с n неизвестными. Правило

2.3. Однородная система n линейных уравнений с n

2.4. Метод Гаусса решения общей системы линейных

2.5. Критерий совместности общей системы линейных

Список литературы. 46

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений , т.е. системы m уравнений 1ой степени с n неизвестными:

a 11 x 1 + … + a 1n x n = b 1 ;

a 21 x 1 + … + a 2n x n = b 2 ;

a m1 x 1 + … + a mn x n = b m .

Здесь x 1 , … , x n – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1ой степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г.Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n ) строить так называемые определители , при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы, или матрицы , стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра , т.е. теория

векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Г.Крамером в 1750 году было установлено правило, применимое к любой системе n линейных уравнений c n неизвестными. Оно носит название правила Крамера . Построение полной теории произвольных систем линейных уравнений было закончено только спустя 100 лет Л.Кронекером.

Применение правила Крамера при практическом решении большого числа линейных уравнений может встретить различные трудности, так как нахождение определителей высокого порядка связано с весьма большими вычислениями. Поэтому были разработаны методы численного (приближённого) решения систем линейных уравнений, наиболее известным из которых является метод Гаусса . Система линейных уравнений может иметь как одно единственное решение ( определённая система ), так и несколько (и даже бесконечное множество) решений ( неопределённая система ); может также оказаться, что система линейных уравнений не имеет ни одного решения ( несовместная система ). Вопрос о совместности системы линейных уравнений, т.е. вопрос о существовании решения системы линейных уравнений, решается сравнением ранга матриц [ а ij ] и [ a ij , b j ]. Если ранги совпадают, то система совместна; если ранг матрицы В строго больше ранга матрицы А , то система несовместна ( теорема Кронекера-Капелли ).

Несколько уравнений вида a 1 x 1 + …+ a n x n = b образуют систему линейных уравнений

a j1 x 1 + …+ a jn x n = b j , j = 1, …, m,

которую можно записать как

x 1 a 1 + …+ x n a n = b,

где а 1 , …, а n , b m -мерные векторы, являющиеся столбцами расширенной матрицы В системы. Отсюда следует, что различные линейные уравнения в функциональных пространствах, линейные дифференциальные уравнения, линейные интегральные уравнения

являются бесконечномерными аналогами обычных систем линейных уравнений.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы.

Глава I. Матрицы и действия над ними.

Матрица размерами m Ч n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

А = 3 10 7 — матрица.

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n , то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [ a ij ] и В = [ b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j .

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной

матрицы порядка n ,сумма индексов каждого из которых равна n+1 , –

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

1 0 … 0

Е = 0 1 … 0

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ;

a n1 a n2 … a nn

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 .

a 1n a 2n … a nn

Определитель n -го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

Определитель, содержащий две одинаковые строки, равен нулю.

Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.

Определитель, содержащий две пропорциональные строки, равен нулю.

Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

1.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

А = ………….. ; (1) В = …………… , то (2)

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ………………………

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

А + В = В + А ; (коммутативность)

А + (В + С) = (А + В) + С ; (ассоциативность)

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1 n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj,

где i = 1,2, …, m ; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (1)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (2)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (1). Перемножив их в обратном порядке, получим:

39 54 69

Сравнив правые части выражений (2) и (3), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

А(ВС) = (АВ)С ; (ассоциативность)

А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

Пусть дана квадратная матрица

a 11 … a 1n

= A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Найдем теперь выражение для матрицы А -1 при условии, что матрица

А – обратимая. Пусть дана обратимая квадратная матрица А с элементами а ij . Обозначим через А ij алгебраическое дополнение элемента а ij в определителе ∆ матрицы А и составим матрицу В :

А 11 A 21 … A n1

A 1n A 2n … A nn

Заметим, что в i -й строке матрицы В расположены алгебраические дополнения элементов j -го столбца определителя ∆ . Матрица (4) называется присоединённой для матрицы А . Докажем, что матрицы А и В удовлетворяют матричному равенству

Для этого вычислим элемент, стоящий в i -й строке и j -м столбце произведения АВ . Искомый элемент равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы В:

a i1 A j1 + a i2 A j2 + … + a in A jn . (6)

Согласно правилу разложения определителя по элементам строки (или столбца) выражение (6) равно определителю ∆ при i = j и нулю при i ≠ j . Следовательно, мы установили, что произведение АВ есть матрица вида

∆ 0 … 0 1 0 … 0

Таким образом, АВ = ∆Е. Аналогично доказывается и равенство

Пусть теперь А – невырожденная матрица (т.е. ∆ ≠ 0 ). Тогда, умножив обе части равенства (5) на числовой множитель 1/∆ , получим

Сравнивая равенства (5) и (7) и учитывая единственность обратной

матрицы, замечаем, что

Таким образом, доказано, что, во-первых, обратимы только невырожденные матрицы, и, во-вторых, для матрицы А обратной является матрица

Пусть А невырожденная матрица, тогда АА -1 = Е. Переходя в этом равенстве к определителям, получаем А А -1 = 1 , откуда

А -1 = А -1 .

Таким образом, определитель обратной матрицы равен обратной величине определителя данной матрицы. Из этого следует, что если матрица А – невырожденная, то обратная матрица А -1 также невырожденная.

Пусть теперь дана матрица А -1 . Для неё обратной будет матрица

(А -1 ) -1 .Поэтому из определения обратной матрицы будем иметь

А -1 (А -1 ) -1 = Е . Умножив это соотношение слева на А , получим

АА -1 (А -1 ) -1 = АЕ или (А -1 ) -1 = А.

Пример 1. Найти матрицу обратную матрице

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = –­­ –3 1 = –1;

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

А 31 = 2 3 = 5; А 32 = 1 3 = –10;

–1 1 –3 1

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

1.4. Ранг матрицы.

Рассмотрим произвольную прямоугольную матрицу

а 11 … а 1 n

Выделим некоторое число k строк этой матрицы и такое же число столбцов. Элементы матрицы (8), стоящие на пересечение выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k -го порядка матрицы А . Если не все числа а ij матрицы А равны нулю, то всегда можно указать число r такое, что у матрицы А имеется минор,

имеющий порядок r + 1 и выше, равен нулю.

Число r , представляющее собой наибольший из порядков отличных от нуля миноров матрицы А , называется рангом матрицы и обозначается rangA . Если все элементы а ij равны нулю, то ранг матрицы принимается равным нулю. Отличный от нуля минор r -го порядка матрицы A (таких миноров у матрицы А может быть несколько, но все они имеют один и тот же порядок r ) называется базисным минором матрицы А. Строки и столбцы, из которых построен базисный минор, называют базисными . Понятие ранга матрицы широко применяется в различных приложениях теории матриц.

Выделим в матрице А произвольно k строк. Пусть это будут строки

а α 1 1 , а α 1 2 , … , а α 1 n ;

а α 2 1 , а α 2 2 , … , а α 2 n ;

а α k 1 , а α k 2 , … , а α k n .

Если существуют такие числа λ 1 , λ 2 , …, λ k , не все равные нулю, что для элементов некоторой другой, отличной от выделенной, строки i выполняются следующие соотношения:

то говорят, что i -я строка линейно выражается через строки

α 1 , α 2 , …, α k . В случае, если равенства (9) выполняются тогда и только тогда, когда все числа λ 1 , λ 2 , …, λ k – нули, то говорят, что i -я строка линейно зависима от строк α 1 , α 2 , …, α k . Аналогичным образом можно ввести понятие линейной зависимости и линейной независимости между столбцами матрицы.

Теорема 1.2.(о базисном миноре) Любая строка матрицы А является линейной комбинацией её базисных строк.

Д о к а з а т е л ь с т в о. Предположим, что базисный минор матрицы (8) расположен в её верхнем левом углу, т.е. в первых r строках и первых r столбцах. Такое предположение не уменьшает общности рассуждения. Пусть k – номер любой строки матрицы А ( k может принимать значения от 1 до m ), а l – номер любого её столбца (l может принимать значения от 1 до n ).

Рассмотрим следующий минор матрицы (8):

a 11 a 12 … a 1r a 1 l

a 21 a 22 … a 11 a 1l

a r1 a r2 … a rr a rl

………………………

a k1 a k2 … a kr a k l

Если k r , то ∆ = 0, так как в нем имеется две одинаковые строки. Аналогично ∆ = 0 и при l r .

Разложив определитель ∆ по элементам последнего столбца, получим

a 1 l A 1 l + a 2 l A 2 l + … + a r l A r l + a k l A k l = 0,

Придавая l значения, получаем:

Равенства (11) показывают, что k -я строка матрицы А является линейной комбинацией первых r строк с коэффициентами

λ 1 , λ 2 , …, λ r . Так как эти равенства справедливы при любом k от 1 до n , то т е о р е м а д о к а з а н а полностью.

Основываясь на теореме о базисном миноре, докажем справедливость следующих предложений.

1. Ранг матрицы не изменяется, если к ней приписать строку, являющуюся линейной комбинацией строк матрицы.

Действительно, базисные строки исходной матрицы будут также базисными строками в дополнительной матрице, так как строку из линейной комбинации всех строк исходной матрицы можно

представить как линейную комбинацию базисных строк.

2. Ранг матрицы А не изменится, если вычеркнуть из неё строку, являющуюся линейной комбинацией остальных строк матрицы.

В самом деле, исходная матрица А получается из матрицы с вычеркнутой строкой путем добавления строки, являющейся линейной комбинацией строк матрицы А . Таким образом, предложение 2 сводится к предложению 1.

Нахождение ранга матрицы, как это следует из его определения, требует вычисления большого числа миноров (т.е. определителей разных порядков) матрицы. Однако этот процесс можно упростить: вычисляя ранг матрицы, гораздо удобнее переходить от миноров меньших порядков к минорам больших порядков. Если найден минор r -го порядка, отличный от нуля, то при следующем шаге нужно вычислять миноры ( r + 1 )-го порядка, окаймляющие прежний минор. Если все они равны нулю, то ранг матрицы равен r.

Другим простым способом вычисления ранга матрицы является метод Гаусса, основанный на так называемых элементарных преобразованиях , выполняемых над матрицей. Такими преобразованиями будем считать:

вычеркивание строки состоящей из нулей;

прибавление к элементам одной из строк соответствующих элементов других строк, умноженных на любое число;

перестановку двух столбцов.

Теорема 1.3. Элементарные преобразования не изменяют ранга матрицы.

Д о к а з а т е л ь с т в о. Преобразование 1 следует из теоремы о линейной комбинации элементов любой строки матрицы. В самом деле, так как нулевая строка не может быть базисной, то её исключение, как и включение, не изменит ранга матрицы.

Преобразование 3 очевидно, так как перестановка двух столбцов матрицы не нарушает никаких линейных зависимостей между её строками.

Остается рассмотреть преобразование 2. Пусть к k элементам i -ой строки матрицы А прибавляются соответствующие элементы j -ой строки, умноженные на число k . Указанное преобразование можно выполнить в два приёма: сначала добавить к матрице А новую строку

с элементами a il + ka jl , вставив её после i -й строки, затем из полученной матрицы вычеркнуть j -ю строку. При первой операции ранг полученной матрицы будет равен рангу матрицы А согласно предложению 1, а при второй операции – согласно предложению 2.

Т е о р е м а д о к а з а н а.

Метод Гаусса вычисления ранга матрицы заключается в том, что путем элементарных преобразований можно привести данную матрицу А к виду

b 1 l b 1 2 … b 1 r … b 1 n

B = 0 b 22 … b 2r … b 2n

0 0 … b rr … b rn

в котором все диагональные элементы b 1 l , b 22 , …, b rr отличны от нуля, а элементы других строк, расположенные ниже диагональных, равны нулю.

Учитывая, что ранг не меняется при элементарных преобразованиях, имеем rang A = rang B .

Пример 1. Вычислить ранг матрицы

1 –2 –1 3

Р е ш е н и е. Выберем минор второго порядка, стоящий в верхнем левом углу:

М 2 = 1 –2 = 4.

Так как М 2 ≠ 0, то, следовательно, ранг матрицы не меньше двух. Составляем миноры третьего порядка, окаймляющие минор второго порядка отличный от нуля. Для этого добавим к М 2 третью строку и третий столбец:

М 3 = 2 0 1 = 2 + 4 + 2 – 8 = 0.

Заменим третий столбец четвертым:

М′ 3 = 2 0 –1 = –2 – 12 – 2 + 16 = 0.

В миноре М 3 заменим третью строку четвертой:

1 –2 –1

М″ 3 = 2 0 1 = –14 + 12 + 6 – 4 = 0.

В миноре М′ 3 заменим третью строку четвертой:

1 –2 3

М′″ 3 = 2 0 –1 = 14 – 36 – 6 + 28 = 0.

Все миноры третьего порядка, окаймляющие минор второго порядка, равны нулю. А это значит, что rang A = 2.

Пример 2. Найти ранг матрицы

1 2 3 4 5

Р е ш е н и е. Произведем следующие элементарные преобразования над матрицей А . Путем умножения элементов строк на числа и сложения их с соответствующими элементами других строк добьемся, чтобы все элементы первого столбца, кроме первого, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на два, получим

1 2 3 4 5

Применим теперь элементарные преобразования таким образом, чтобы в матрице В все элементы второго столбца, кроме первых двух, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на 2, получим

Оставив три строки матрицы С без изменения и сложив четвертую строку с третьей, умноженной на –1, получим

1 2 3 4 5

Очевидно, что ранг матрицы D равен трем, так как минор третьего порядка

1 2 5

а все миноры четвертого порядка, окаймляющие минор М , равны нулю. На основании теоремы 1.3. заключаем, что rang А = 3.

Глава II. Системы линейных уравнений.

2.1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (13)

a m1 x 1 + a m2 x 2 + …+ a mn x n = b m ;

где х 1 , х 2 , … , х n — неизвестные, значения которых подлежат нахождению. Как видно из структуры системы (2.1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а 11 , а 12 , … , а mn называются коэффициентами системы , а b 1 , b 2 , … , b m — её свободными членами. Для удобства коэффициенты системы а ij

( i = 1, 2, . . ., m ; j = 1, 2, . . .,n ) и свободные члены b i ( i=1, 2, . . .,m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i , при которой коэффициент поставлен. Индекс свободного члена b i соответствует номеру уравнения, в которое входит b i .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (13) называется всякая совокупность чисел α 1 , α 2 , α n , которая будучи поставлена в систему (13) на место неизвестных х 1 , х 2 , …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений. Совместная система уравнений называется определенной , если она имеет одно единственное решение, и неопределенной , если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными , если они имеют одно и тоже множество решений.

2.2. Система n линейных уравнений с n

неизвестными. Правило Крамера.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (14)

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

Определителем системы (14) называется определитель, составленный из коэффициентов а ij .

a 11 a 12 … a 1n

∆ = a 21 a 22 … a 2n

a n1 a n2 … a nn

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (14) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначать алгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (14) на алгебраические дополнения элементов i -го столбца определителя ∆ , т.е. первое уравнение умножим на А 1i , второе – на А 2i и т.д., наконец, последнее уравнение – на А ni , а затем все полученные уравнения системы сложим. В результате будем иметь

( a 11 x 1 + a 12 x 2 + …+ a 1i x i + …+ a 1n x n ) A 1i + ( a 21 x 1 + a 22 x 2 + …+ a 2i x i +

+ …+ a 2n x n ) A 2i + …+ ( a n1 x 1 + a n2 x 2 + …+ a ni x i + …+ a n x nn ) A ni = b 1 A 1i + b 2 A 2i + …+ b n A ni

или, сгруппировав члены относительно известных x 1 , x 2 , …, x n , получим

( a 11 A 1i + a 21 A 2i + …+ a n1 A ni ) x 1 + … +

+ ( a 1i A 1i + a 2i A 2i + …+ a ni A ni ) x i + … +

+ ( a 1n A 1i + a 2n A 2i + …+ a nn A ni ) x n =

= b 1 A 1i + b 2 A 2i + …+ b n A ni . (15)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный

член уравнения (15) отличается от коэффициента при х 1 тем, что коэффициенты а 1i , а 2i , …, а ni заменены свободными членами

b 1 , b 2 , …, b n уравнения (14). Следовательно, выражение

b 1 A 1i + b 2 A 2i + …+ b n A ni есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, который заменен столбцом свободных членов. Обозначив этот определитель ∆ x i , будем иметь

a 11 a 12 … b 1 … a 1n

Реферат на тему методы решения систем уравнений

Системы линейных уравнений

1. Теоретическая часть

1.1 Основные понятия и теоремы систем линейных уравнений

1.1.1 Критерий совместности общей системы линейных уравнений

1.1.2 Однородная система п линейных уравнений с n неизвестными

1.1.3 Структура общих решений однородной и неоднородной системы уравнений

1.2 Основные методы решения систем линейных уравнений

1.2.1 Матричный метод решения систем линейных уравнений

1.2.2 Метод Крамера

1.2.3 Метод Гаусса

1.4 Ответы на теоретические вопросы

Курс «Алгебра и геометрия» занимает особенное место в системе математической дисциплины, которая изучается студентами специальностей ПМ, САУ и IНФ, как базовый курс. Наверное, нет ни одной математической дисциплины, в которой бы не применялись понятия алгебры и геометрии.совая работа должна способствовать более углубленному изучению курса «Алгебра и геометрия», осмыслению его и применению для решения задачи практического содержания.

Данная работа содержит раскрытие вопроса решения систем линейных алгебраических уравнений, способы получения результата и применение систем для решения экономических задач.

Работа состоит из двух частей — теоретической и практической. В теоретической части приведены определения таких понятий, как система линейных уравнений, общее и частное решения, совместность и несовместность систем, однородные и неоднородные системы, рассмотрены различные методы решения систем уравнений. Также даны ответы на теоретические вопросы.

В практической части решены системы линейных уравнений, а также рассмотрены экономические задачи, решение которых сводится к решению соответствующей системы.

система линейное уравнение

1. Теоретическая часть

1.1 Основные понятия и теоремы систем линейных уравнений

В самом общем случае система линейных уравнений имеет следующий вид:

a11x1 + a12x2 + …+ a1n xn = b1;x1 + a22x2 + …+ a2n xn = b2;

где х1, х2, …, хn — неизвестные, значения которых подлежат нахождению. В общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а11, а12, …, аmn называются коэффициентами системы, а b1, b2, …, bm — её свободными членами. Для удобства коэффициенты системы аij (i = 1, 2. m; j = 1, 2. n) и свободные члены bi (i=1, 2. m) снабжены индексами. Первый индекс коэффициентов аij соответствует номеру уравнения, а второй индекс — номеру неизвестной хi, при которой коэффициент поставлен. Индекс свободного члена bi соответствует номеру уравнения, в которое входит bi.

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений называется всякая совокупность чисел ?1, ?2, ?n, которая будучи поставлена в систему на место неизвестных х1, х2, …, хn, обращает все уравнения системы в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если не имеет решений. Совместная система уравнений называется определенной, если она имеет одно единственное решение, и неопределенной, если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными, если они имеют одно и тоже множество решений.

Наша задача будет заключаться в нахождении решений системы. При этом могут возникнуть три ситуации:

. Система может иметь единственное решение.

2. Система может иметь бесконечное множество решений.

. И третий случай, когда система вообще не имеет решения.

.1.1 Критерий совместности общей системы линейных уравнений

Как уже было отмечено, под общей системой линейных уравнений мы понимаем систему, в которой число неизвестных необязательно совпадает с числом уравнений.

Пусть дана общая система линейных уравнений и требуется установить признак существования решения этой системы, т.е. условия, при которых система является совместной.

Из коэффициентов при неизвестных и свободных членов системы составим матрицу

которую назовем основной матрицей системы, и матрицу

a11 a12 … a1n b1

a21 a22 … a2n b2

B = ……………………… ……,am2 … amn bm

которую назовем расширенной матрицей системы.

Теорема (Теорема Кронекера — Капелли) Для того чтобы система линейных неоднородных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу ее основной матрицы.

Пусть система совместна и c1, c2. сп — некоторое ее решение. Тогда имеют место равенства:

а11с1 + а12с2 + …+ а1nсn = b1;

а21с1 + а22с2 + …+ а2nсn = b2;

аm1с1 + аm2с2 + …+ аmnсn = bm

из которых следует, что последний столбец расширенной матрицы есть линейная комбинация остальных ее столбцов с коэффициентами с1, с2. сп. Согласно предложению, последний столбец матрицы В может быть вычеркнут без изменения ее ранга. При этом мы из матрицы В получим матрицу А. Таким образом, если ci, cz. сп — решение системы уравнении, то rang А = rang В.

Достаточность. Пусть теперь rang A = rang В. Покажем, что при этом система уравнений совместна. Рассмотрим r базисных столбцов матрицы А. Очевидно, что они будут базисными столбцами и матрицы В. Согласно теореме о базисных строках и столбцах, последний столбец матрицы В можно представить как линейную комбинацию базисных столбцов, а следовательно, как линейную комбинацию всех столбцов матрицы А, т.е.

b1 = а11с1 + а12с2 + …+ а1nсn;= а21с1 + а22с2 + …+ а2nсn;

где c1, c2. сп — коэффициенты линейных комбинаций. Таким образом, системе удовлетворяют значения x1 = c1. хп = сп, следовательно, она совместна. Теорема доказана.

1.1.2 Однородная система п линейных уравнений с n неизвестными

Линейное уравнение называется однородным, если его свободный член равен нулю. Система линейных уравнений называется однородной, если все входящие в нее уравнения являются линейными однородными уравнениями.

Однородная система п линейных уравнений с п неизвестными имеет вид:

а11х1 + а12х2 + …+ а1nхn = 0;

а21х1 + а22х2 + …+ а2nхn = 0;

аn1х1 + аn2х2 + …+ аnnхn = 0.

Непосредственной проверкой убеждаемся в том, что однородная система линейных уравнений имеет нулевое решение: х1 = 0, х2 = 0. хп = 0.

Таким образом, однородная система линейных уравнений всегда совместна. Поэтому важно выяснить, при каких условиях она является определенной. Покажем, что однородная система п линейных уравнений с п неизвестными имеет ненулевые решения тогда и только тогда, когда определитель ее равен нулю.

В самом деле, пусть D = 0. Так как однородная система уравнений является частным случаем неоднородной системы, то к ней применимо правило Крамера. Но для однородной системы все D xi = 0, так как каждый из этих определителей содержит столбец из нулей (bi = 0). Поэтому система, равносильная системе, будет иметь вид D x1= 0, D x2=0;., D xn= 0

Из этой системы следует, что однородная система имеет единственное нулевое решение, если ? 0; если же D = 0, то из условий следует, что она имеет бесчисленное множество решений.

Теорема. Для заданной однородной системы уравнений , для которой , где — число неизвестных, существует линейно независимых решений и любое решение системы представляется в виде линейной комбинации этих решений.

Максимальное число линейно независимых решений однородной системы называется фундаментальной системой решений этой системы уравнений.

— фундаментальная система решений однородной системы уравнений (Ф.С. Р.). Она содержит решений и получается с общего решения, если свободным переменным придавать последовательно значения: . Полученная таким образом фундаментальная система называется нормированной.

Обратим внимание, что решение однородных систем осуществляется теми же методами, что и неоднородных.

1.1.3 Структура общих решений однородной и неоднородной системы уравнений

Теорема 1. Общие решения однородной системы уравнений

, где , — число неизвестных, представляется в виде:

где — свободные постоянные, , — фундаментальная система решений.

Теорема 2. Общие решения неоднородной системы уравнений

представляется в виде:

где — некоторое частное решение неоднородной системы, — общее решение соответствующей однородной системы.

.2 Основные методы решения систем линейных уравнений

1.2.1 Матричный метод решения систем линейных уравнений

Матрицы дают возможность кратко записать систему линейных уравнений. Пусть дана система из 3-х уравнений с тремя неизвестными:

Рассмотрим матрицу системы

и матрицы столбцы неизвестных и свободных членов

т.е. в результате произведения мы получаем левые части уравнений данной системы. Тогда пользуясь определением равенства матриц данную систему можно записать в виде

Здесь матрицы A и B известны, а матрица X неизвестна. Её и нужно найти, т.к. её элементы являются решением данной системы. Это уравнение называют матричным уравнением.

Пусть определитель матрицы отличен от нуля |A| ? 0. Тогда матричное уравнение решается следующим образом. Умножим обе части уравнения слева на матрицу A-1, обратную матрице A: . Поскольку A-1A = E и E?X = X, то получаем решение матричного уравнения в виде X = A-1B.

Заметим, что поскольку обратную матрицу можно найти только для квадратных матриц, то матричным методом можно решать только те системы, в которых число уравнений совпадает с числом неизвестных. Однако, матричная запись системы возможна и в случае, когда число уравнений не равно числу неизвестных, тогда матрица A не будет квадратной и поэтому нельзя найти решение системы в виде X = A-1B.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

Определитель третьего порядка, соответствующий матрице системы, т.е. составленный из коэффициентов при неизвестных,

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

Тогда можно доказать следующий результат.

Теорема (правило Крамера). Если определитель системы ? ? 0, то рассматриваемая система имеет одно и только одно решение, причём

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение — на A21 и 3-е — на A31:

Сложим эти уравнения:

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

Далее рассмотрим коэффициенты при x2:

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Таким образом, заметим, что если определитель системы ? ? 0, то система имеет единственное решение и обратно. Если же определитель системы равен нулю, то система либо имеет бесконечное множество решений, либо не имеет решений, т.е. несовместна.

Метод Гаусса основывается на следующей теореме: элементарным преобразованиям строк расширенной матрицы системы отвечает превращение этой системы в эквивалентную.

С помощью элементарных преобразований строки расширенной матрицы, а также перемены местами столбцов, что отвечает перепозначенню переменной, матрица сводится к ступенчатой (или трапециевидной) форме. Этой матрице ставится в соответствие система, эквивалентная исходной. Это прямой ход метода Гаусса. Решение полученной системы осуществляется снизу вверх (обратный ход метода Гаусcа).

Более детально этот процесс выглядит так: матрица в результате элементарных преобразований принимает такой вид:

Тогда возможны несколько случаев:

. Хотя б одно с чисел отличное от нуля, тогда і система несовместная.

а) , система совместная, имеет единственное решение;

б) , система совместная, имеет бесконечное множество решений.

В случае совместимости системы, ставим последней матрице в соответствие систему уравнений вида

Эту систему переписываем, оставляя базисные переменные слева, свободные — справа

Именно эту систему решаем, начиная снизу вверх.

В результате получаем или единственное решение, или множество решений, которые записываются в виде общего решения.

Метод Гаусса представляет собой метод последовательного исключения переменной. Вычислительная процедура гауссових исключений может быть формализирована с помощью простых правил.

Назовем переменную, которая исключалась, разрешающей, коэффициент при ней — разрешающим элементом, строку и столбец матрицы, в которой размещен разрешающий элемент — разрешающими.

Перечисление элементов расширенной матрицы при выполнении элементарных преобразований выполняется по таким правилам:

) элементы разрешающей строки и всех вышерасположенных строк остаются неизменными;

) элементы разрешающего столбца, которые расположены ниже разрешающего элемента, обращаются в нуль;

) все другие элементы матрицы вычисляются по правилу прямоугольника: преобразовываемый элемент равняется разности произведений элементов главной и побочной диагонали.

Тут — разрешающий элемент, — преобразуемый элемент. Обозначим — элемент, который получен вычислением по правилу прямоугольника. Тогда

Модификацией метода Гаусса является метод полного исключения или метод Жордана — Гаусса.

Метод полного исключения (метод Жордана-Гаусса) заключается в том, что в результате преобразований расширенной матрицы в ней выделяется диагональная подматриця и тогда решение исходной системы выписывается просто.

Метод полного исключения работает за такими правилами:

) назначается разрешающий элемент; им будет коэффициент при неизвестной, которая исключается;

) элементы разрешающей строки остаются неизменными;

) все элементы разрешающего столбца (кроме разрешающего элемента) заменяются нулями и остаются такими до конца преобразований;

) все другие элементы матрицы пересчитываются по правилу прямоугольника.

Метод полного исключения может быть использован для обращения матрицы (известен также под названием метод элементарных превращений).

Для данной матрицы -го порядка строится прямоугольная матрица размера , к которой применяется преобразование по алгоритму полного исключения, в результате чего матрица сводится к виду , где . Это всегда возможно, если матрица невырожденная.

Обобщим знания о системах уравнений с помощью таблицы 1.1.

Понятия Или соотношенияФормулаОбщая система линейных алгебраических уравненийОсновная матрица системыМатрица-столбец свободных членовМатрица-столбец неизвестныхМатричная форма записи системыРасширенная матрица системыУсловие совместимости системыСистема имеет единственное решениеСистема имеет бесконечное множество решенийСистема несовместнаяКвадратная система линейных алгебраических уравненийКвадратная система имеет единственное решениеКвадратная система бесконечное множество решений, Квадратна система несовместная, Однородная система уравненийОднородная система имеет только нулевое решениеОднородная система имеет нетривиальные решенияКвадратная однородная система имеет только нулевое решениеКвадратная однородная система имеет нетривиальные решенияСтруктура общего решения однородной системы,

— произвольные числа; , — число неизвестных. Структура общего решения неоднородной системы,

где — некоторое частное решение неоднородной системы, — общее решение соответствующей однородной системы.

1.4 Ответы на теоретические вопросы

1. Теорема Кронекера-Капелли: для совместности системы необходимо и достаточно, чтобы ранг матрицы этой системы был равен рангу ее расширенной матрицы

2. Система имеет единственное решение, если ранг матрицы этой системы был равен рангу ее расширенной матрицы и равен количеству неизвестных системы.

3. Система имеет бесконечное множество решений, если ранг матрицы меньше количества неизвестных системы.

. Свободные переменные — те переменные, которые задаются произвольными значениями, а базисные переменные — те, которые выражаются через свободные.

5. Количество базисных переменных равняется рангу матрицы системы.

. Если ранг матрицы равен r, а количество неизвестных равняется n, то система может иметь (n-r) свободных переменных.

. Система называется однородной, если она имеет вид: АХ=0, т.е. все свободные члены равны нулю.

. Решение называется ненулевым, если все переменные одновременно не принимают значение 0.

. Для того, чтобы однородная система имела только тривиальное решение, необходимо и достаточно, чтобы ранг матрицы равнялся количеству неизвестных системы.

. Для того, чтобы однородная система имела нетривиальные решения, необходимо и достаточно, чтобы ранг матрицы был меньше количества неизвестных системы.

. Максимальное число линейно независимых решений однородной системы называется фундаментальной системой решений.

. Однородная система уравнений имеет фундаментальную систему решений, если ранг матрицы системы не равен количеству переменных системы.

. Фундаментальная система решений однородной системы содержит (n-r) решений, где n — число неизвестных системы, r-ранг матрицы системы.

. Однородная система уравнений может иметь от 0 до (n-1) фундаментальных систем решений, где n — число неизвестных системы.

. Если свободным переменным поочередно придавать значения: 1, 0,0…0; 0, 1, 0…0; …; 0, 0, …, 1, то полученная фундаментальная система решений называется нормированной.

Kypсовая работа посодействовала более углубленному изучению курса «Алгебра и геометрия», осмыслению его и применению для решения задач практического содержания.

Данная работа раскрыла вопрос решения систем уравнений, а также определила, как на практике использовать знания из курса «Алгебра и геометрия» для решения задач различного типа.

В теоретической части были полностью раскрыты значения тех понятий, которые приводились во вступлении, а именно система линейных уравнений, общее и частное решения, совместность и несовместность систем, однородные и неоднородные системы, рассмотрены различные методы решения систем уравнений. Также даны ответы на теоретические вопросы.

В практической части были решены все поставленные задачи, а именно: решены предложенные системы, выполнена проверка, решены экономические задачи, сводящиеся к системам уравнений.

1. Апатенок Р.Ф. и др. Элементы линейной алгебры и аналитической геометрии. — Минск: Вышейш. шк., 1986. — 272 с.

2. Тевяшев А.Д., Литвин О.Г. Алгебра і геометрiя: Лiнiйна алгебра. Аналітична геометрія: — Харків: ХТУРЕ, 2000. — 388 с.

. Данко П.Е. и др. Высшая математика в упражнениях и задачах. Ч.I. — М.: Высш. шк., 1986. — 304 с.

. Апатенок Р.Ф. и др. Сборник задач по линейной алгебре и аналитической геометрии. — Минск. Вышейш. шк., 1990. — 286 с.

. Тевяшев А.Д., Литвин О.Г. Вища математика. Загальний курс: Збiрник задач та вправ. — Х.: Рубiкон, 1999. — 320 с.

. Барковский В.В., Барковская Н.В. Математика для экономистов. Высшая математика. — К.: Национальная академия управления, 1999. — 399 с.

Теги: Системы линейных уравнений Курсовая работа (теория) Математика

Реферат по математике на тему: «Основные методы решения систем нелинейных уравнений с двумя переменными»

РЕФЕРАТ ПО МАТЕМАТИКЕ.

«ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ».

УЧЕНИК 9 КЛАССА «Б»

ГОУ ГОИНАЗИИ № 000

КЛАССНЫЙ РУКОВОДИТЕЛЬ 9 «Б» КЛАССА

БАТАЛОВА ВЕРА ИВАНОВНА.

ГОД РЕАЛИЗАЦИИ ИССЛЕДОВАНИЯ:

2) ГЛАВА 1: ОПРЕДЕЛЕНИЯ. ЧТО ЗАНЧИТ СИСТЕМА УРАВНЕНИЙ И ЕЁ РЕШЕНИЕ?

3) ГЛАВА 2: РАЗБОР МЕТОДОВ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕИЙ.

6) СПИСОК ЛИТЕРАТУРЫ.

Тема моего реферата «Решение систем уравнений с двумя переменными». Эта тема играет важную роль в курсе математики. Издавна применялось исключение неизвестных из линейных уравнений. В XVII — XVIII в. в. приемы исключения разрабатывали:

Пьер де Ферма( 17 августа 1января 1665, прожил 63 года) — французский математик, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. По профессии юрист, с 1631 года — советник парламента в Тулузе;

Исаак Ньютон( 25 декабря 1января 16марта 1марта 1727), прожил 84 года) — английский физик, математик и астроном, один из создателей классической физики;

Готфрид Вильгельм фон Лейбниц( 1 июля 1ноября 1716, прожил 70 лет) — немецкий философ, математик, юрист, дипломат;

Леонард Эйлерапреля 1сентября 1783, прожил 76 лет) — швейцарский, немецкий и российский математик, внёсший значительный вклад в развитие математики, а также механики, физики, астрономии и ряда прикладных наук;

Этьенн Безу( 31 марта 1сентября 1783, прожил 53 года) — французский математик, член Парижской академии наук (1758);

Жозеф Луи Лагранж(25 января 1апреля 1813, прожил 77 лет) — французский математик, астроном и механик итальянского происхождения. Наряду с Эйлером — лучший математик XVIII века.

Кроме этого данная тема имеет прикладной характер, т. к. многие задачи по физике, экономике и химии решаются с помощью систем нелинейных уравнений.

Системы линейных уравнений изучаются уже в 7-м классе, а в 8-м – на курсах геометрии решаются системы нелинейных уравнений. Однако уже в 9-м классе задачи по алгебре, физике, экономике и химии приводят к более сложным нелинейным системам, решение которых надо знать.

Эту тему я выбрал для того, чтобы изучить основные методы решения систем нелинейных уравнений. Реализировать мою цель я буду с помощью поставленных мною задач:

1) Изучить вопросы равносильности систем уравнений.

2) Изучить методы замены переменной и сложение.

3) Познакомиться с симметричными системами уравнений.

4) Разобрать метод почленного умножения и деления систем уравнений.

5) Познакомиться с решением однородных систем уравнений.

В результате изучения этой темы я составлю решебник систем нелинейных уравнений. Я надеюсь что, мой решебник сможет помочь учащимся 8-9 классов лучше подготовиться к выпускным экзаменам. А основные методы решения систем с параметром я буду изучать в 10-м классе.

2) ГЛАВА 1: ОПРЕДЕЛЕНИЯ. ЧТО ЗАНЧИТ СИСТЕМА УРАВНЕНИЙ И ЕЁ РЕШЕНИЕ?

В данной части моего реферата, я хотел бы рассказать вам, что же такое линейные функции с двумя переменными и их системы.

Для начало надо выяснить, что такое линейное уравнение.

Уравнение вида ax=b, где a и b – числа, а x – переменная, называется линейным уравнением с одной переменной. Если a ≠ 0, то уравнение имеет один корень:

Если a = 0, то в случае, когда b ≠ 0, уравнение не имеет корней; в случае, когда b = 0, корнем уравнения является любое число: , , «Сборник задач по алгебре 8-9» М.:»Просвещение», 1994 стрпункт).

Графиком линейного уравнения с двумя переменными, в котором a ≠ 0 или b ≠ 0, является прямая. Если a = 0 и b = 0, то в случае с = 0 графиком является вся координатная плоскость, а в случае c ≠ 0 уравнение не имеет решений.

На рисунке № 1 изображён график линейной функции. В данном случае a заменена на k, но по сути это одно и тоже. K – угловой коэффициент, от которого зависит угол наклона графика функции. На рисунке видно, что k – положительное число, следовательно угол а – острый. Если бы угловой коэффициент k был отрицательным числом, то а был бы тупым углом, как это показано на рисунке №2.

Возможен и третий случай, если k = 0, то y = b( см. рисунок № 3).

Решением системы уравнений с двумя переменными называется пара значений переменных, подставив которые в любую из данных уравнений системы, получим верное числовое равенство.

Решить систему уравнений значит найти эту пару значений переменных. Для примера возьмём простую систему уравнений, заодно посмотрим. Как же записывается система уравнений:

В ней уже сразу надо значение переменной x. Значит, подставив во второе уравнение это значение, можно найти значение переменной y, заодно рассмотрим решение системы уравнений с помощью метода подстановки:

Ответ: решением данной системы является пара чисел (5; 7): x = 5; y = 7, именно так расшифровывается запись в скобках.

Система двух линейных уравнений с двумя переменными может иметь единственное решение, бесконечно много решений и не иметь решений, что геометрически интерпретируется соответственно как пересечение, совпадение и параллельность прямых, являющихся графиками уравнений системы: там же. стр. 6 (пункт 9).

Теперь поговорим о равносильности систем уравнений.

Две системы называются равносильными, если множества их решений совпадают. Если обе системы не имеют решений, то они также считаются равносильными.

Решая системы уравнений, обычно заменяют данную систему другой, равносильной исходной, которую решать проще. При этом можно использовать следующие утверждения о равносильности систем уравнений:

1) если одно из уравнений системы заменить на равносильное уравнение, то получим систему. Равносильную исходной;

2) если одно из уравнений систем заменить суммой каких-либо двух уравнений данной системы, то получим систему, равносильную исходной;

3) если одно из уравнений системы выражает зависимость какой-либо переменной, например x, через другие переменные, то, заменив в каждом уравнении системы переменную x на её выражение через другие переменные, то получим систему, равносильную исходной: там же. стр. 107-108 (пункт 2, абзац 3-4).

3) ГЛАВА 2: РАЗБОР МЕТОДОВ РЕШЕНИЯ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕИЙ.

Основная цель при решении систем линейных уравнений — решить эту систему, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются:

1) графический способ;

2) способ замены переменной и алгебраического сложения и вычитания;

3) способ почленного умножения и деления;

4) способ подстановки.

Все эти способы используются во всех предметах, где необходимы знания математики: алгебра, физика, химия, геометрия.

Рассмотрим способ № 1: Известно, что графиком линейного уравнения является прямая. Вопрос о числе решений системы двух линейных уравнений сводиться к определению числа общих точек прямых, являющимися графиками уравнений системы. Рассмотрим три случая расположения прямой.

Случай 1: Прямые, которые являются графиком функции, входящих в данную систему, пересекаются.

Решим эту систему:

Уравнениями у=-1,1х+12 и у=-6х+18 задаются линейные функции. Угловые коэффициенты прямых этих функций различны. Следовательно, эти прямые пересекаются, и система имеет единственное решение. Прировняв правые части уравнений, найдем точку пересечения. Данная система имеет единственное решение: пара чисел равная (1,2; 10,7).

Случай 2: Прямые, являющиеся графиками уравнений системы, параллельны.

Решим систему уравнений:

Прямые, являющиеся графиками линейных функций у=-0,4х+0,15 и у=-0,4х+3,2, параллельны, так как их угловые коэффициенты одинаковы, а точки пересечения с осью у различны. Отсюда следует, что данная система уравнений не имеет решений.

Случай 3: Прямые, являющиеся графиками уравнений системы, совпадают.

Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х — произвольное число, а у = — 2,5х — 9, является решением системы. Система имеет бесконечно много решений.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).

Рассмотрим способ № 2( замена переменной): Легче всего это сделать решив задачу, что мы сейчас и сделаем:

Условие задачи: Ученик задумал два числа. Первое число на 5 больше второго. Если от удвоенного первого числа вычесть утроенное второе число, то получится 25. Какие числа задумал ученик?

Решение: Пусть х — первое число, у — второе число. По условию задачи составим систему уравнений.

В первом уравнении выразим х через у: х=у+5.

Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему

Очевидно, что получившееся второе уравнение является уравнением с одной переменной.

Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:

Ответ: ученик задумал числа равные -6 и -11, т. е. пара чисел (-6; -11) является решением данной системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 2( алгебраическое сложение): Как и в методе подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Решим систему уравнений:

В уравнениях этой системы коэффициенты при у являются противоположными числами ( +3y и -3y). Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:

Заменим одно из данных нам уравнений системы, например первое, уравнением 2x = 18. Получим систему:

Полученная система равносильна данной системе. Решим полученную систему:

Из уравнения 2х=18 находим, что х=9. Подставив это значение х в уравнение 4х-3у=12, получим уравнение с переменной у.

Решим это уравнение:

Пара чисел (11; — 9) — решение полученной системы, а значит, и данной нам системы.

Воспользовавшись тем, что в уравнениях данной нам системы коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы, в которой одно из уравнений содержит только одну переменную.

Геометрически равносильность систем означает, что графики уравнений 4x + 3y = 12 и -2x — — 3у=38 пересекаются.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по одной причине:

1) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 3: Если при решении систем уравнений учащийся не может ни заменить переменную, ни алгебраически сложить, то можно прибегнуть к этому способу. Разберём на примере.

Решим систему уравнений:

Домножим верхнее уравнение на 3. Получим:

Очевидно, что и в первом и во втором уравнениях есть 3y, только с разными занками. Дальше решаем так же, как и прошлой системе ( см. 3 разбор).

В конце получаем, что пара чисел (4,2; -4,8) является решением данной нам системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по ряду причине:

1) не видят, что и на сколько надо домножить;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ подстановки: Этот метод или способ решения систем уравнений используется чаще всех. Грубо говоря, этот способ мы разобрали во всех остальных, т. к. заменяя одну систему на равносильную ей, мы находим одну переменную, а затем подставляем её значение в одно из уравнений данной нам системы. А следовательно, возникающие проблемы при решении систем уравнений этим способом такие же, как и у всех остальных методов:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

Итак, из всего выше сказанного можно сделать вывод:

во время решения систем нелинейных уравнений у учащихся возникают проблемы по ряду двум причинам:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

3) не видят, что и на сколько надо домножить.

В этой части реферата написан решебник на мою тему с целью помочь читающим попрактиковаться в решении систем уравнений с двумя переменными. Для каждого метода будет представлено по примера и решение одного из них, в качестве примера как их решать тем или иным методом.

1) Метод замены переменной и алгебраического сложения и вычитания:

Для начала метод алгебраического сложения.

Можно заметить, что в двум уравнениях присутствует одна и та же переменная: 3y, только с разными знаками. Следовательно, их можно алгебраически сложить и мы получим равносильную систему:

Итак, мы нашли значение первой переменной: x = 1. теперь подставляем это значение в любую из уравнений, чтобы найти значение второй переменной:

Метод алгебраического вычитания почти такой же как и метод алгебраического сложения, только вместо того, чтоб складывать уравнения, мы вычитаем одно из другого.

Теперь разберём последовательность решения методом замены переменной:

Вначале я перенёс одну переменную из уравнения 1 вправо и получил: x = 1 –y. Затем, я подтсавил полученное значение во второе уравнение и нашёл значение переменной y: y = 0. после этого. Я подставил это значение во второе уравнение и получил значение переменной x: x = 1.

Теперь потренируйтесь самостоятельно.

Пример №3 (метод алгебраического сложения):

У вас должен получиться ответ: (2; -0,(3) ).

Пример №4 (метод замены переменной):

2) Метод почленного умножения и деления:

Домножим первое уравнение на два и получим:

Теперь вычтем из первого уравнения второе (включаем в решение метод алгебраического вычитания). Затем решаем всё как и в прошлых примерах: находим значение одной переменной, затем второй и пишем ответ.

Метод почленного деления очень похож, но вместо умножения каждого члена уравнения на какое-либо число мы на него их делим.

Пример №2 (метод почленного деления):

Пример №3 (метод почленного умножения):

У вас должен получиться ответ: (3 -4) и (-3; 4).

Для начала перенесём переменную x в правую сторону, чтобы получить уравнение функции:

Теперь начертим графики полученных функций:

Теперь найдём их пересечение:

Теперь потренируйтесь сами.

У вас должен получиться ответ: (-2; -1) и (-1; 0).

Итак, я рассмотрел все методы решения систем уравнений с двумя переменными и составил решебник, который поможет тем, кто читает мой реферат, лучше усвоит каждый метод и попрактиковаться в решении систем уравнений с двумя переменными. Я надеюсь, что мой реферат был понятен каждому и помог разобраться во всём. Я надёюсь, что в 10-ом классе я изучу системы уравнений с тремя переменными и с методы их решения. Возможно, я напишу реферат именно на эту тему, чтобы поделиться моими знаниями с другими людьми.

6) СПИСОК ЛИТЕРАТУРЫ.

1. , , «АЛГЕБРА. Учебник для 9 класса с углублённым изучением математики» Москва 2006 год, 5-е издание — М.:Мнемозина, 439 страниц, иллюстрации.

2. , , «Сборник задач по алгебре 8-9 классы» Москва «Просвещение» 1994 год, 271 страница.


источники:

http://dodiplom.ru/ready/129405

http://pandia.ru/text/78/389/48456.php

Название: Способы решения систем линейных уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:42:34 10 июля 2005 Похожие работы
Просмотров: 13600 Комментариев: 22 Оценило: 14 человек Средний балл: 3.9 Оценка: 4 Скачать