Реферат на тему решение линейных уравнений

Методы решения линейных уравнений

ID (номер) заказа
2158281

ОГЛАВЛЕНИЕ
Введение……………………………………………………………….…3
Теоретические основы систем линейных уравнений…………..5
Методы решения систем линейных уравнений…………………8
Метод Гаусса…………………………………………………..….8
Метод Крамера……………………………………………………9
Матричный метод……………………………………….…. ….10
Пример решения системы линейных уравнений….…………. 11
Заключение……………………………………………….……………..15
Список использованной литературы…………………………………..17

Введение
Линейная алгебра, численные методы – раздел вычислительной математики, посвященный математическому описанию и исследованию процессов численного решения задач линейной алгебры.
Одной из важнейших и наиболее распространённых задач вычислительной математики является задача решения систем линейных алгебраических уравнений. К ним часто приходят при исследовании самых различных проблем науки и техники, в частности, приближенное решение дифференциальных уравнений обыкновенных и в частных производных сводится к решению алгебраических систем. Число неизвестных n может достигать нескольких десятков, сотен и даже тысяч. К решению систем линейных уравнений сводятся такие группы задач:
задачи механики (статические, теплотехнические);
задачи из геодезии, связанные с построением карт на основании данных геодезической съемки;
системы линейных уравнений — основной аппарат при нахождении значений коэффициентов в эмпирических формулах;
задачи приближенного решения уравнений, имеющих большое распространение в высшей математике;
системы линейных уравнений широко используются в области физики и смежных с ней наук: теории относительности, атомной физике, при составлении прогнозов погоды и т.д.
Актуальность выбранной темы обусловлена недостаточной изученностью при широкой практике применения математических методов.
Целью работы является изучение основных методов решения систем математических уравнений.
Для реализации поставленной цели необходимо решить следующие основные задачи:
Изучить теоретические основы систем линейных уравнений;
Рассмотреть основные методы решения данных уравнений:
Метод Гаусса;
Метод Крамера;
Матричный метод;
Продемонстрировать применение данных методов на примере.
Основным объектом исследования является сиситемы линейных алгнебраических уравнений (далее – СЛАУ). Соответствующий предмет работы – методы решения данных систем.
Различным теоретико-методологическим и практическим аспектам бизнес-планирования посвящены работы многих российских исследователей, таких, как: Красс М.С., Кремер Н.Ш., Лизунова Н.А. и т.д.
Методологической, теоретической и эмпирической основой исследования являются положения, сформулированные в трудах отечественных и зарубежных ученых, посвященные теоретическим и прикладным проблемам линейной алгебры.
Информационную базу исследования составляют научные труды российских и зарубежных авторов и методические материалы по исследуемой теме.
Теоретические основы
систем линейных уравнений
Матрица – это прямоугольная таблица чисел, которая содержит m строк и n столбцов. Размер таблицы: m×n . [2, 124 c.]
А= a11…a1ma21…a2m………an1 … anm (1),
где aij – коэффициенты матрицы;
i – Номер строки;
j – Номер столбца.
СЛАУ имеет вид:
a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2…am1x1+am2x2+…+amnxn=bm (2),
где xn — неизвестные;
aij – коэффициенты при неизвестных;
bi – свободные члены.
Коэффициенты и свободные члены могут быть любыми действительными числами.
Решение СЛАУ – это совокупность значений неизвестных xn, обращающая каждое уравнение системы в тождество. При это система может быть нескольких видов (см. рис.1.) [1, 62 c.]
Если 2 системы имеют одно и то же множество решений, то они являются равносильными (эквивалентными).
Любая СЛАУ может быть представлена в виде матричного уравнения:
AX = B (3),
Где А – матрица, которая состоит из неизвестных;
В – матрица-столбец свободных членов;
Х – матрица-столбец неизвестных.
А = a11…a1ma21…a2m………an1 … anm Х= x1x2…xn B= b1b2…bn (4)
Рис.1. Виды СЛАУ
Матрица А – матрица системы. Также существует A – это расширенная матрица системы (см. формула (5)).
A= a11 a12 …a1n b1a21 a22 …a2n b2…am1 am2…amn bm (5)
Однородная СЛАУ – система, в которой свободные члены являются 0. Априори данный вид систем является совместной.
a11x1+a12x2+…+a1nxn=0a21x1+a22x2+…+a2nxn=0…am1x1+am2x2+…+amnxn=0 (6)
Если число уравнений в СЛАУ совпадает с количеством неизвестных, то данная система записывается в следующем виде:
a11x1+a12x2+…+a1nxn=b1a21x1+a22x2+…+a2nxn=b2…an1x1+an2x2+…+annxn=bn (7)
Определитель, или детерминант квадратной матрицы порядка n имеет обозначения:D=detA= deta11 a12 …a1na21 a22 …a2n …am1 am2…amn= a11 a12 …a1na21 a22 …a2n …am1 am2…amn (8)
Квадратная матрица А называется вырожденной, если ее определитель равен нулю, и невырожденной, если ее определитель не равен нулю. Если А – квадратная матрица, то обратной по отношению к А называется матрица, которая при умножении на А (как справа, так и слева), дает единичную матрицу.
Обозначив обратную через А-1, запишем А-1А=АА-1=Е, где Е – единичная матрица.
При условии 𝐷 = |𝐴| ≠ 0 обратная матрица находится по формуле:
A-1= A11DA21DAn1DA12DA22DAn2DA1nDA2nDAnnD (9)
Для нахождения обратной матрицы используют следующую схему:
1. Находят определитель матрицы А.
2. Находят алгебраические дополнения всех элементов 𝑎𝑖𝑗 матрицы А и записывают новую матрицу.
3. Меняют местами столбцы полученной матрицы (транспортируют матрицу).
4. Умножают полученную матрицу на 1/D. [3, 104 c.]
Минором Mij элемента aij определителя n-го порядка называется определитель (n-1)-го порядка, полученный из данного определителя вычеркиванием строки и столбца, на пересечении которых стоит данный элемент.
Методы решения систем линейных уравнений
Метод Гаусса
Метод Гаусса является классическим методом решения СЛАУ. Считается, что автор данного – немецкий математик Карл Фридрих Гаусс [8]. Однако стоит отметить, что первое упоминание данного способа относится к китайскому трактату «Математика в 9 книгах», датированному в X век до н. э. — II век до н. э. [10]
Метод Гаусса применяется для решения СЛАУ с произвольным числом неизвестных и уравнении. Его суть заключается в последовательном исключении неизвестных. [4, 354 c.]
Пусть дана произвольная система линейных уравнений (см. формула (2)).
Для решения данной системы приведем ее к эквивалентной ей системе с треугольной или ступенчатой матрицей.
Для этого выпишем матрицу из коэффициентов при неизвестных системы с добавлением столбца свободных членов, т. е. расширенную матрицу системы:
A= a11 a12 …a1n b1a21 a22 …a2n b2…am1 am2…amn bm (10)
Путем различных последовательных элементарных преобразований (умножение и деление коэффициентов и свободных членов на одно и то же число; сложение и вычитание строк; перестановка строк) приведем матрицу A к треугольному или ступенчатому виду:
b11 b12 … b1r… b1n c1 b21… b2r… b2n c2… brr… brn cr ( r≤n) (11),
где все диагональные элементы brr отличны от нуля, а элементы, расположенные ниже диагональных, равны нулю.
Полученной матрице соответствует более простая система уравнений:
b11x1+b12x2+…+b1rxr+b1nxn=c1b22x2+…+b2rxr+b2nxn=c2…brrxr+brnxn=cr(12)
Процедуру преобразования исходной системы к треугольному или трапецеидальному виду называют прямым ходом метода Гаусса.
Если в полученной системе r = n, то она имеет треугольный вид. Из последнего уравнения находим xn, из предпоследнего уравнения находим xn-1 и так далее, и, наконец, из первого уравнения находим x1.
Описанный процесс называют обратным ходом метода Гаусса. При r = n система имеет единственное решение.
Если же r

Нет нужной работы в каталоге?

Сделайте индивидуальный заказ на нашем сервисе. Там эксперты помогают с учебой без посредников Разместите задание – сайт бесплатно отправит его исполнителя, и они предложат цены.

Цены ниже, чем в агентствах и у конкурентов

Вы работаете с экспертами напрямую. Поэтому стоимость работ приятно вас удивит

Бесплатные доработки и консультации

Исполнитель внесет нужные правки в работу по вашему требованию без доплат. Корректировки в максимально короткие сроки

Если работа вас не устроит – мы вернем 100% суммы заказа

Техподдержка 7 дней в неделю

Наши менеджеры всегда на связи и оперативно решат любую проблему

Строгий отбор экспертов

К работе допускаются только проверенные специалисты с высшим образованием. Проверяем диплом на оценки «хорошо» и «отлично»

Требуются доработки?
Они включены в стоимость работы

Работы выполняют эксперты в своём деле. Они ценят свою репутацию, поэтому результат выполненной работы гарантирован

Реферат: Способы решения систем линейных уравнений

– очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. Поэтому первая глава моего реферата посвящена теме матриц и определителей. В ней я рассматривала различные действия над матрицами, свойства определителей, метод Гаусса вычисления ранга матрицы, а так же некоторые другие теоретические вопросы. Во второй главе непосредственно рассматриваются системы линейных уравнений и некоторые методы их решения: правило Крамера, метод Гаусса, а так же теорема Кронекера – Капелли. И в той и в другой главах приведены примеры, которые составляют практическую часть моего реферата.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы. Давайте рассмотрим некоторые примеры важнейших моментов этой работы.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ;

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

a). Если  , то система (1) имеет единственное решение,

которое может быть найдено по формулам Крамера: x 1 = , где

определитель n-го порядка  i ( i=1,2. n) получается из определителя системы путем замены i-го столбца свободными членами b 1 , b 2 . b n .

б). Если  , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет . Например:

решить систему уравнений

.

Вычислим определитель системы:

Так как определитель не равен нулю, система уравнений может быть решена по формулам Крамера. Найдем определители ∆x , ∆y:

.

Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n -го порядка:  ,  x 1 ,  x 2 , …,  x n . Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.

Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:

а 11 х 1 + а 12 х 2 + …+ а 1 n х n = b 1 ;

а 21 х 1 + а 22 х 2 + …+ а 2 n х n = b 2 ;

а m1 х 1 + а m2 х 2 + …+ а m n х n = b m

Метод Гаусса решения системы (19) заключается в последовательном исключении переменных. Например:

Решить методом Гаусса систему уравнений

x 1 – 2 x 2 + x 3 + x 4 = –1;

3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;

2 x 1 – x 2 + 2 x 3 – 3 x 4 = 9;

x 1 + 3 x 2 – 3 x 3 – x 4 = –1.

Р е ш е н и е. Составим матрицу В и преобразуем ее. Для удобства вычислений отделим вертикальной чертой столбец, состоящий из свободных членов:

1 –2 1 1 –1

Умножим первую строку матрицы В последовательно на 3, 2 и 1 и вычтем соответственно из второй, третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Третью строку матрицы умножим на 3 и вычтем ее из второй строки. Затем новую вторую строку умножим на 3 и на 5 и вычтем из третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Из коэффициентов последней матрицы составим систему, равносильную исходной:

x 1 – 2 x 2 + x 3 + x 4 = –1;

X 2 – 6 x 3 + 8 x 4 = –28;

Решим полученную систему методом подстановки, двигаясь последовательно от последнего уравнения к первому. Из четвертого уравнения x 4 = –1 , из третьего х 3 = 3 . Подставив значения х 3 и x 4 во второе уравнение, найдем x 2 = 2 . Подставив значения x 2 , x 3 , x 4 в первое уравнение, найдем x 1 = 1.

Теорема совместности Кронекера – Капелли звучит следующим образом: Для того, чтобы система неоднородных линейных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу её основной матрицы. Рассмотрим следующий пример:

5 x 1 – x 2 + 2 x 3 + x 4 = 7;

2 x 1 + x 2 – 4 x 3 – 2 x 4 = 1;

x 1 – 3 x 2 + 6 x 3 – 5 x 4 = 0.

Ранг основной матрицы этой системы равен 2, так как сцществует отличный от нуля минор второго порядка этой матрицы, например

5 –1 = 7,

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 –1 7

Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

МОУ Гимназия № 11

Способы решения систем линейных уравнений

МОУ Гимназия № 11

Способы решения систем линейных уравнений

Реферат по математике

Ученица 9 2 класса

Введение. 2

Глава I. Матрицы и действия над ними. 5

1.1. Основные понятия. –

1.2. Действия над матрицами. 8

1.3. Обратная матрица. 11

1.4. Ранг матрицы. 16

Глава II. Системы линейных уравнений. 23

2.1. Основные понятия. –

2.2. Система n линейных уравнений с n неизвестными. Правило

2.3. Однородная система n линейных уравнений с n

2.4. Метод Гаусса решения общей системы линейных

2.5. Критерий совместности общей системы линейных

Список литературы. 46

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений , т.е. системы m уравнений 1ой степени с n неизвестными:

a 11 x 1 + … + a 1n x n = b 1 ;

a 21 x 1 + … + a 2n x n = b 2 ;

a m1 x 1 + … + a mn x n = b m .

Здесь x 1 , … , x n – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1ой степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г.Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n ) строить так называемые определители , при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы, или матрицы , стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра , т.е. теория

векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Г.Крамером в 1750 году было установлено правило, применимое к любой системе n линейных уравнений c n неизвестными. Оно носит название правила Крамера . Построение полной теории произвольных систем линейных уравнений было закончено только спустя 100 лет Л.Кронекером.

Применение правила Крамера при практическом решении большого числа линейных уравнений может встретить различные трудности, так как нахождение определителей высокого порядка связано с весьма большими вычислениями. Поэтому были разработаны методы численного (приближённого) решения систем линейных уравнений, наиболее известным из которых является метод Гаусса . Система линейных уравнений может иметь как одно единственное решение ( определённая система ), так и несколько (и даже бесконечное множество) решений ( неопределённая система ); может также оказаться, что система линейных уравнений не имеет ни одного решения ( несовместная система ). Вопрос о совместности системы линейных уравнений, т.е. вопрос о существовании решения системы линейных уравнений, решается сравнением ранга матриц [ а ij ] и [ a ij , b j ]. Если ранги совпадают, то система совместна; если ранг матрицы В строго больше ранга матрицы А , то система несовместна ( теорема Кронекера-Капелли ).

Несколько уравнений вида a 1 x 1 + …+ a n x n = b образуют систему линейных уравнений

a j1 x 1 + …+ a jn x n = b j , j = 1, …, m,

которую можно записать как

x 1 a 1 + …+ x n a n = b,

где а 1 , …, а n , b m -мерные векторы, являющиеся столбцами расширенной матрицы В системы. Отсюда следует, что различные линейные уравнения в функциональных пространствах, линейные дифференциальные уравнения, линейные интегральные уравнения

являются бесконечномерными аналогами обычных систем линейных уравнений.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы.

Глава I. Матрицы и действия над ними.

Матрица размерами m Ч n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

А = 3 10 7 — матрица.

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n , то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [ a ij ] и В = [ b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j .

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной

матрицы порядка n ,сумма индексов каждого из которых равна n+1 , –

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

1 0 … 0

Е = 0 1 … 0

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ;

a n1 a n2 … a nn

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 .

a 1n a 2n … a nn

Определитель n -го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

Определитель, содержащий две одинаковые строки, равен нулю.

Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.

Определитель, содержащий две пропорциональные строки, равен нулю.

Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

1.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

А = ………….. ; (1) В = …………… , то (2)

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ………………………

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

А + В = В + А ; (коммутативность)

А + (В + С) = (А + В) + С ; (ассоциативность)

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1 n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj,

где i = 1,2, …, m ; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (1)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (2)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (1). Перемножив их в обратном порядке, получим:

39 54 69

Сравнив правые части выражений (2) и (3), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

А(ВС) = (АВ)С ; (ассоциативность)

А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

Пусть дана квадратная матрица

a 11 … a 1n

= A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Найдем теперь выражение для матрицы А -1 при условии, что матрица

А – обратимая. Пусть дана обратимая квадратная матрица А с элементами а ij . Обозначим через А ij алгебраическое дополнение элемента а ij в определителе ∆ матрицы А и составим матрицу В :

А 11 A 21 … A n1

A 1n A 2n … A nn

Заметим, что в i -й строке матрицы В расположены алгебраические дополнения элементов j -го столбца определителя ∆ . Матрица (4) называется присоединённой для матрицы А . Докажем, что матрицы А и В удовлетворяют матричному равенству

Для этого вычислим элемент, стоящий в i -й строке и j -м столбце произведения АВ . Искомый элемент равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы В:

a i1 A j1 + a i2 A j2 + … + a in A jn . (6)

Согласно правилу разложения определителя по элементам строки (или столбца) выражение (6) равно определителю ∆ при i = j и нулю при i ≠ j . Следовательно, мы установили, что произведение АВ есть матрица вида

∆ 0 … 0 1 0 … 0

Таким образом, АВ = ∆Е. Аналогично доказывается и равенство

Пусть теперь А – невырожденная матрица (т.е. ∆ ≠ 0 ). Тогда, умножив обе части равенства (5) на числовой множитель 1/∆ , получим

Сравнивая равенства (5) и (7) и учитывая единственность обратной

матрицы, замечаем, что

Таким образом, доказано, что, во-первых, обратимы только невырожденные матрицы, и, во-вторых, для матрицы А обратной является матрица

Пусть А невырожденная матрица, тогда АА -1 = Е. Переходя в этом равенстве к определителям, получаем А А -1 = 1 , откуда

А -1 = А -1 .

Таким образом, определитель обратной матрицы равен обратной величине определителя данной матрицы. Из этого следует, что если матрица А – невырожденная, то обратная матрица А -1 также невырожденная.

Пусть теперь дана матрица А -1 . Для неё обратной будет матрица

(А -1 ) -1 .Поэтому из определения обратной матрицы будем иметь

А -1 (А -1 ) -1 = Е . Умножив это соотношение слева на А , получим

АА -1 (А -1 ) -1 = АЕ или (А -1 ) -1 = А.

Пример 1. Найти матрицу обратную матрице

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = –­­ –3 1 = –1;

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

А 31 = 2 3 = 5; А 32 = 1 3 = –10;

–1 1 –3 1

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

1.4. Ранг матрицы.

Рассмотрим произвольную прямоугольную матрицу

а 11 … а 1 n

Выделим некоторое число k строк этой матрицы и такое же число столбцов. Элементы матрицы (8), стоящие на пересечение выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k -го порядка матрицы А . Если не все числа а ij матрицы А равны нулю, то всегда можно указать число r такое, что у матрицы А имеется минор,

имеющий порядок r + 1 и выше, равен нулю.

Число r , представляющее собой наибольший из порядков отличных от нуля миноров матрицы А , называется рангом матрицы и обозначается rangA . Если все элементы а ij равны нулю, то ранг матрицы принимается равным нулю. Отличный от нуля минор r -го порядка матрицы A (таких миноров у матрицы А может быть несколько, но все они имеют один и тот же порядок r ) называется базисным минором матрицы А. Строки и столбцы, из которых построен базисный минор, называют базисными . Понятие ранга матрицы широко применяется в различных приложениях теории матриц.

Выделим в матрице А произвольно k строк. Пусть это будут строки

а α 1 1 , а α 1 2 , … , а α 1 n ;

а α 2 1 , а α 2 2 , … , а α 2 n ;

а α k 1 , а α k 2 , … , а α k n .

Если существуют такие числа λ 1 , λ 2 , …, λ k , не все равные нулю, что для элементов некоторой другой, отличной от выделенной, строки i выполняются следующие соотношения:

то говорят, что i -я строка линейно выражается через строки

α 1 , α 2 , …, α k . В случае, если равенства (9) выполняются тогда и только тогда, когда все числа λ 1 , λ 2 , …, λ k – нули, то говорят, что i -я строка линейно зависима от строк α 1 , α 2 , …, α k . Аналогичным образом можно ввести понятие линейной зависимости и линейной независимости между столбцами матрицы.

Теорема 1.2.(о базисном миноре) Любая строка матрицы А является линейной комбинацией её базисных строк.

Д о к а з а т е л ь с т в о. Предположим, что базисный минор матрицы (8) расположен в её верхнем левом углу, т.е. в первых r строках и первых r столбцах. Такое предположение не уменьшает общности рассуждения. Пусть k – номер любой строки матрицы А ( k может принимать значения от 1 до m ), а l – номер любого её столбца (l может принимать значения от 1 до n ).

Рассмотрим следующий минор матрицы (8):

a 11 a 12 … a 1r a 1 l

a 21 a 22 … a 11 a 1l

a r1 a r2 … a rr a rl

………………………

a k1 a k2 … a kr a k l

Если k r , то ∆ = 0, так как в нем имеется две одинаковые строки. Аналогично ∆ = 0 и при l r .

Разложив определитель ∆ по элементам последнего столбца, получим

a 1 l A 1 l + a 2 l A 2 l + … + a r l A r l + a k l A k l = 0,

Придавая l значения, получаем:

Равенства (11) показывают, что k -я строка матрицы А является линейной комбинацией первых r строк с коэффициентами

λ 1 , λ 2 , …, λ r . Так как эти равенства справедливы при любом k от 1 до n , то т е о р е м а д о к а з а н а полностью.

Основываясь на теореме о базисном миноре, докажем справедливость следующих предложений.

1. Ранг матрицы не изменяется, если к ней приписать строку, являющуюся линейной комбинацией строк матрицы.

Действительно, базисные строки исходной матрицы будут также базисными строками в дополнительной матрице, так как строку из линейной комбинации всех строк исходной матрицы можно

представить как линейную комбинацию базисных строк.

2. Ранг матрицы А не изменится, если вычеркнуть из неё строку, являющуюся линейной комбинацией остальных строк матрицы.

В самом деле, исходная матрица А получается из матрицы с вычеркнутой строкой путем добавления строки, являющейся линейной комбинацией строк матрицы А . Таким образом, предложение 2 сводится к предложению 1.

Нахождение ранга матрицы, как это следует из его определения, требует вычисления большого числа миноров (т.е. определителей разных порядков) матрицы. Однако этот процесс можно упростить: вычисляя ранг матрицы, гораздо удобнее переходить от миноров меньших порядков к минорам больших порядков. Если найден минор r -го порядка, отличный от нуля, то при следующем шаге нужно вычислять миноры ( r + 1 )-го порядка, окаймляющие прежний минор. Если все они равны нулю, то ранг матрицы равен r.

Другим простым способом вычисления ранга матрицы является метод Гаусса, основанный на так называемых элементарных преобразованиях , выполняемых над матрицей. Такими преобразованиями будем считать:

вычеркивание строки состоящей из нулей;

прибавление к элементам одной из строк соответствующих элементов других строк, умноженных на любое число;

перестановку двух столбцов.

Теорема 1.3. Элементарные преобразования не изменяют ранга матрицы.

Д о к а з а т е л ь с т в о. Преобразование 1 следует из теоремы о линейной комбинации элементов любой строки матрицы. В самом деле, так как нулевая строка не может быть базисной, то её исключение, как и включение, не изменит ранга матрицы.

Преобразование 3 очевидно, так как перестановка двух столбцов матрицы не нарушает никаких линейных зависимостей между её строками.

Остается рассмотреть преобразование 2. Пусть к k элементам i -ой строки матрицы А прибавляются соответствующие элементы j -ой строки, умноженные на число k . Указанное преобразование можно выполнить в два приёма: сначала добавить к матрице А новую строку

с элементами a il + ka jl , вставив её после i -й строки, затем из полученной матрицы вычеркнуть j -ю строку. При первой операции ранг полученной матрицы будет равен рангу матрицы А согласно предложению 1, а при второй операции – согласно предложению 2.

Т е о р е м а д о к а з а н а.

Метод Гаусса вычисления ранга матрицы заключается в том, что путем элементарных преобразований можно привести данную матрицу А к виду

b 1 l b 1 2 … b 1 r … b 1 n

B = 0 b 22 … b 2r … b 2n

0 0 … b rr … b rn

в котором все диагональные элементы b 1 l , b 22 , …, b rr отличны от нуля, а элементы других строк, расположенные ниже диагональных, равны нулю.

Учитывая, что ранг не меняется при элементарных преобразованиях, имеем rang A = rang B .

Пример 1. Вычислить ранг матрицы

1 –2 –1 3

Р е ш е н и е. Выберем минор второго порядка, стоящий в верхнем левом углу:

М 2 = 1 –2 = 4.

Так как М 2 ≠ 0, то, следовательно, ранг матрицы не меньше двух. Составляем миноры третьего порядка, окаймляющие минор второго порядка отличный от нуля. Для этого добавим к М 2 третью строку и третий столбец:

М 3 = 2 0 1 = 2 + 4 + 2 – 8 = 0.

Заменим третий столбец четвертым:

М′ 3 = 2 0 –1 = –2 – 12 – 2 + 16 = 0.

В миноре М 3 заменим третью строку четвертой:

1 –2 –1

М″ 3 = 2 0 1 = –14 + 12 + 6 – 4 = 0.

В миноре М′ 3 заменим третью строку четвертой:

1 –2 3

М′″ 3 = 2 0 –1 = 14 – 36 – 6 + 28 = 0.

Все миноры третьего порядка, окаймляющие минор второго порядка, равны нулю. А это значит, что rang A = 2.

Пример 2. Найти ранг матрицы

1 2 3 4 5

Р е ш е н и е. Произведем следующие элементарные преобразования над матрицей А . Путем умножения элементов строк на числа и сложения их с соответствующими элементами других строк добьемся, чтобы все элементы первого столбца, кроме первого, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на два, получим

1 2 3 4 5

Применим теперь элементарные преобразования таким образом, чтобы в матрице В все элементы второго столбца, кроме первых двух, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на 2, получим

Оставив три строки матрицы С без изменения и сложив четвертую строку с третьей, умноженной на –1, получим

1 2 3 4 5

Очевидно, что ранг матрицы D равен трем, так как минор третьего порядка

1 2 5

а все миноры четвертого порядка, окаймляющие минор М , равны нулю. На основании теоремы 1.3. заключаем, что rang А = 3.

Глава II. Системы линейных уравнений.

2.1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (13)

a m1 x 1 + a m2 x 2 + …+ a mn x n = b m ;

где х 1 , х 2 , … , х n — неизвестные, значения которых подлежат нахождению. Как видно из структуры системы (2.1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а 11 , а 12 , … , а mn называются коэффициентами системы , а b 1 , b 2 , … , b m — её свободными членами. Для удобства коэффициенты системы а ij

( i = 1, 2, . . ., m ; j = 1, 2, . . .,n ) и свободные члены b i ( i=1, 2, . . .,m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i , при которой коэффициент поставлен. Индекс свободного члена b i соответствует номеру уравнения, в которое входит b i .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (13) называется всякая совокупность чисел α 1 , α 2 , α n , которая будучи поставлена в систему (13) на место неизвестных х 1 , х 2 , …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений. Совместная система уравнений называется определенной , если она имеет одно единственное решение, и неопределенной , если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными , если они имеют одно и тоже множество решений.

2.2. Система n линейных уравнений с n

неизвестными. Правило Крамера.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (14)

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

Определителем системы (14) называется определитель, составленный из коэффициентов а ij .

a 11 a 12 … a 1n

∆ = a 21 a 22 … a 2n

a n1 a n2 … a nn

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (14) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначать алгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (14) на алгебраические дополнения элементов i -го столбца определителя ∆ , т.е. первое уравнение умножим на А 1i , второе – на А 2i и т.д., наконец, последнее уравнение – на А ni , а затем все полученные уравнения системы сложим. В результате будем иметь

( a 11 x 1 + a 12 x 2 + …+ a 1i x i + …+ a 1n x n ) A 1i + ( a 21 x 1 + a 22 x 2 + …+ a 2i x i +

+ …+ a 2n x n ) A 2i + …+ ( a n1 x 1 + a n2 x 2 + …+ a ni x i + …+ a n x nn ) A ni = b 1 A 1i + b 2 A 2i + …+ b n A ni

или, сгруппировав члены относительно известных x 1 , x 2 , …, x n , получим

( a 11 A 1i + a 21 A 2i + …+ a n1 A ni ) x 1 + … +

+ ( a 1i A 1i + a 2i A 2i + …+ a ni A ni ) x i + … +

+ ( a 1n A 1i + a 2n A 2i + …+ a nn A ni ) x n =

= b 1 A 1i + b 2 A 2i + …+ b n A ni . (15)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный

член уравнения (15) отличается от коэффициента при х 1 тем, что коэффициенты а 1i , а 2i , …, а ni заменены свободными членами

b 1 , b 2 , …, b n уравнения (14). Следовательно, выражение

b 1 A 1i + b 2 A 2i + …+ b n A ni есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, который заменен столбцом свободных членов. Обозначив этот определитель ∆ x i , будем иметь

a 11 a 12 … b 1 … a 1n

Реферат на тему решение линейных уравнений

    Главная
  • Список секций
  • Математика
  • РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ

Автор работы награжден дипломом победителя I степени

Миллионы людей занимаются математическими расчетами, иногда в силу влечения к таинствам математики и ее внутренней красоте, а чаще в силу профессиональной или иной необходимости, не говоря уже об учебе.

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных алгебраических уравнений. Значение систем определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г. Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n) строить так называемые определители, при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра, т.е. теория векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. На уроках алгебры мы использовали такие способы, как сложение, подстановка и графический.

Я решил узнать, какие еще существуют методы нахождения решений систем линейных алгебраических уравнений.

Целью работы является изучение различных способов решения систем линейных алгебраических уравнений для применения их на практике.

Актуальность заключается в том, что системы линейных алгебраических уравнений – это математический аппарат, который имеет широкое применение в решении многих задач практического приложения математики.

Задачи:

Изучить литературу по методам решения систем линейных алгебраических уравнений.

Рассмотреть способы решения систем линейных алгебраических уравнений различными методами.

Показать применение систем линейных алгебраических уравнений на практике.

Разработать компьютерную программу, которая на основе введённых числовых коэффициентов находит решение системы линейных уравнений.

Сделать вывод о проделанной работе.

II Основная часть2.1 Определение системы линейных алгебраических уравнений. Классификация систем

Под системой линейных алгебраических уравнений(СЛАУ) подразумевают систему

x1, х2,…. хn- неизвестные переменные, аij, i = 1,2. p, j = 1,2,…,n — коэффициенты, b1,b2. bp – свободные члены. [2]

Такую форму записи СЛАУ называют координатной.

Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных x1 = a1, x2 = a2,…, xn = an, обращающий все уравнения системы в тождества.

Если система уравнений имеет хотя бы одно решение, то она называется совместной.

Если система уравнений решений не имеет, то она называется несовместной.

Если СЛАУ имеет единственное решение, то ее называют определенной; если решений больше одного, то – неопределенной.

Если свободные члены всех уравнений системы равны нулю b1 = b2 = … = bn = 0, то система называется однородной, в противном случае – неоднородной.

Если число уравнений системы равно числу неизвестных переменных и определитель ее основной матрицы не равен нулю, то такие СЛАУ будем называть элементарными. Такие системы уравнений имеют единственное решение, причем в случае однородной системы все неизвестные переменные равны нулю.

Такие СЛАУ мы начинали изучать в средней школе. При их решении мы брали какое-нибудь одно уравнение, выражали одну неизвестную переменную через другие и подставляли ее в оставшиеся уравнения, затем брали следующее уравнение, выражали следующую неизвестную переменную и подставляли в другие уравнения и так далее. Или пользовались методом сложения, то есть, складывали два или более уравнений, чтобы исключить некоторые неизвестные переменные. Не будем подробно останавливаться на этих методах, так как они по сути являются модификациями метода Гаусса.

Основными методами решения элементарных систем линейных уравнений являются метод Крамера, матричный метод и метод Гаусса.

2.2 Матрицы и действия над ними. Алгебра матриц

Матрица размерами m × n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А)

Числа, из которых состоит матрица, называются элементами матрицы. Они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент. В общем виде матрицы записываются в следующем виде:

Матрица A , имеющая i строк и j столбцов, называется матрицей размера i на j и обозначается Aixj.

Элемент aij матрицы A = ij> стоит на пересечении i — ой строки и j — го столбца.

Если i = j, то матрица называется квадратной, а число строк (или столбцов) – её порядком.

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = ij> и В = ij> одинакового типа называются равными, если aij = bij при всех i и j. [3]

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой (матрицей-столбцом), а матрица, у которой все элементы аij = 0, – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ, а элементы квадратной матрицы порядка n,сумма индексов каждого из которых равна n+1, – побочную диагональ.

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е):

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной:

Диагональная матрица является частным случаем треугольной.

Транспонированием матрицы A=ij> называется операция, результатом которой является матрица A T = ji>.

Таким образом, если

Две матрицы А и В называются матрицами одного порядка, если они имеют одинаковое количество строк и одинаковое количество столбцов.

Матрицы А и В называются равными, если они одного порядка m´n, и aij= bij,

где i = 1, 2, 3, …, m, а j = 1, 2, 3, …, n.

Умножение матрицы на число.

Умножение матрицы А на число λ приводит к умножению каждого элемента матрицы на число λ:

Из данного определения следует, что общий множитель всех элементов матрицы можно выносить за знак матрицы.

Свойства умножения матрицы на число:

2) (λμ)А = λ(μА) = μ(λА), где λ,μ R;

Сумма (разность) матриц.

Сумма (разность) определяется лишь для матриц одного порядка m´n.

Суммой (разностью) двух матриц А и В порядка m´n называется матрица С того же порядка, где cij = aij± bij(i = 1,2,3…m; j = 1,2,3…n).

Иными словами, матрица С состоит из элементов, равных сумме (разности) соответствующих элементов матриц А и В.

Из данных выше определений следуют свойства суммы матриц:

1) коммутативность А+В=В+А;

2) ассоциативность (А+В)+С=А+(В+С);

3) дистрибутивность к умножению на число λR: λ(А+В) = λА+λВ;

4) 0+А=А, где 0 – нулевая матрица;

5) А+(–А)=0, где (–А) – матрица, противоположная матрице А;

Операция произведения определяется не для всех матриц, а лишь для согласованных.

Произведением двух согласованных матриц Amxn, а Bnxm, где

называется матрица С порядка m´k: Сmnx= Amnx ∙ Bmnx, элементы которой вычисляются по формуле:

то есть элемент cij i –ой строки и j –го столбца матрицы С равен сумме произведений всех элементов i –ой строки матрицы А на соответствующие элементы j –го столбца матрицы В.

Рассмотрим свойства произведения матриц:

1) не коммутативность: АВ ≠ ВА, даже если А и В, и В и А согласованы. Если же АВ = ВА, то матрицы А и В называются коммутирующими (матрицы А и В в этом случае обязательно будут квадратными).

2) для любых квадратных матриц единичная матрица Е является коммутирующей к любой матрице А того же порядка, причем в результате получим ту же матрицу А, то есть АЕ = ЕА = А.

4) произведение двух матриц может равняться нулю, при этом матрицы А и В могут быть ненулевыми.

5) ассоциативность АВС=А(ВС)=(АВ)С:

6) дистрибутивность относительно сложения:

(А+В)∙С = АС + ВС, А∙(В + С)=АВ + АС.

8) λ(АּВ) = (λА)ּ В = Аּ (λВ), λR.

2.3 Определители квадратной матрицы и их свойства

Пусть А – квадратная матрица порядка n:

Каждой такой матрице можно поставить в соответствие единственное действительное число, называемое определителем (детерминантом) матрицы и обозначаемое

Отметим, что определитель существует только для квадратных матриц.

Рассмотрим правила вычисления определителей и их свойства для квадратных матриц второго и третьего порядка, которые будем называть для краткости определителями второго и третьего порядка соответственно.

Определителем второго порядкаматрицы А2х2 называется число, определяемое по правилу:

т. е. определитель второго порядка есть число, равное произведению элементов главной диагонали минус произведение элементов побочной диагонали.

Из определения определителя второго порядка следуют его свойства:

1. Определитель не изменится при замене всех его строк соответствующими столбцами:

2. Знак определителя меняется на противоположный при перестановке строк (столбцов) определителя:

3. Общий множитель всех элементов строки (столбца) определителя можно вынести за знак определителя:

4. Если все элементы некоторой строки (столбца) определителя равны нулю, то определитель равен нулю.

5. Определитель равен нулю, если соответствующие элементы его строк (столбцов) пропорциональны:

6. Если элементы одной строки (столбца) определителя равны сумме двух слагаемых, то такой определитель равен сумме двух определителей:

7. Значение определителя не изменится, если к элементам его строки (столбца) прибавить (вычесть) соответственные элементы другой строки (столбца), умноженные на одно и тоже число :

так как по свойству 5.

Остальные свойства определителей рассмотрим ниже.

Введем понятие определителя третьего порядка: определителем третьего порядкаквадратной матрицы называется число

т. е. каждое слагаемое в формуле представляет собой произведение элементов определителя, взятых по одному и только одному из каждой строки и каждого столбца. Чтобы запомнить, какие произведения брать со знаком плюс, а какие со знаком минус, полезно знать правило треугольников и правило Саррюса.

Схематически правило треугольника можно изобразить следующим образом:

Произведение элементов в первом определителе, которые соединены прямыми, берется со знаком «плюс»; аналогично, для второго определителя — соответствующие произведения берутся cо знаком «минус».

Правило Саррюса: справа от определителя дописывают первых два столбца и произведения элементов на главной диагонали и на диагоналях, ей параллельных, берут со знаком «плюс»; а произведения элементов побочной диагонали и диагоналей, ей параллельных, со знаком «минус»: [7]

Примеры расчета определителя с помощью правила Сюрраса и методом треугольников разобраны в Приложении 1.

Следует отметить, что свойства определителя второго порядка, рассмотренные выше, без изменений переносятся на случай определителей любого порядка, в том числе и третьего.

Рассмотрим еще два очень важных свойства определителей.

Введем понятия минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из исходного определителя вычеркиванием той строки и того столбца, которым принадлежит данный элемент.[5] Обозначают минор элемента αij через Mij.

Пример. Тогда, например

Алгебраическим дополнением элемента αijопределителя |A| называется его минор Mij, взятый со знаком (-1) i+j . Алгебраическое дополнение будем обозначать Aij, то есть

Таким образом, мы получаем восьмое свойство определителя:

Теорема Лапласа. Определитель равен сумме всех произведений элементов какой-либо строки (столбца) на соответствующие алгебраические дополнения элементов этой строки (столбца).

Заметим, что данное свойство определителя есть не что иное, как определение определителя любого порядка. На практике его используют для вычисления определителя любого порядка. Как правило, прежде чем вычислять определитель, используя свойства 1 – 7, добиваются того, если это возможно, чтобы в какой-либо строке (столбце) были равны нулю все элементы, кроме одного, а затем раскладывают по элементам строки (столбца).

Девятое свойство определителя носит название теорема аннулирования:

сумма всех произведений элементов одной строки (столбца) определителя на соответствующие алгебраические дополнения элементов другой строки (столбца) равна нулю, то есть

Примеры вычислений определителя с помощью теоремы Лапласа и теоремы аннулирования представлены в Приложении 2 и Приложении 3 соответственно.

2.4 Обратная матрица

В теории чисел наряду с числом α определяют число, противоположное ему (-α) такое, что α +(- α ) = 0, и число, обратное ему , что .

Аналогично, в теории матриц мы уже ввели понятие противоположной матрицы, ее обозначение (– А).

Обратной матрицейдля квадратной матрицы А порядка n называется матрица , если выполняются равенства

Где Е – единичная матрица порядка n.

Обратная матрица существует только для квадратных невырожденных матриц.

Квадратная матрица называется невырожденной(неособенной), если det A ≠ 0. Если же det A = 0, то матрица А называется вырожденной(особенной).

Невырожденная матрица А имеет единственную обратную матрицу А -1 .

Найдем определитель обратной матрицы. Так как определитель произведения двух матриц А и В одинакового порядка равен произведению определителей этих матриц, т. е. , следовательно, произведение двух невырожденных матриц АВ есть невырожденная матрица.[4]

Определитель обратной матрицы есть число, обратное определителю исходной матрицы.

Отметим ряд особых свойств обратной матрицы:

1) для данной матрицы А ее обратная матрица А -1 является единственной;

2) если существует обратная матрица А -1 , то правая обратная и левая обратная матрицы совпадают с ней;

3) особенная (вырожденная) квадратная матрица не имеет обратной матрицы.

Основные свойства обратной матрицы:

1) определитель обратной матрицы и определитель исходной матрицы являются обратными величинами;

2) обратная матрица произведения квадратных матриц равна произведению обратных матриц сомножителей, взятому в обратном порядке:

3) транспонированная обратная матрица равна обратной матрице от данной транспонированной матрицы:

2.5 Матричный метод решения систем линейных уравнений

Пусть дана система n линейных уравнений с n неизвестными: , где

Будем предполагать, что основная матрица A невырожденная. Тогда существует обратная матрица A -1 . Помножив матричное уравнение на матрицу A -1 , получим формулу, на которой основан матричный метод решения систем линейных уравнений:

Пример.Решить систему линейных уравнений матричным методом.

Задана система трёх линейных уравнений с тремя неизвестными , где

Основная матрица системы уравнений невырожденная, поскольку её определитель отличен от нуля:

Обратную матрицу A -1 составим одним из методов, описанных выше:

По формуле матричного метода решения систем линейных уравнений получим

Матричный метод подходит для решения СЛАУ, в которых количество уравнений совпадает с числом неизвестных переменных и определитель основной матрицы системы отличен от нуля.[9] Если система содержит больше трех уравнений, то нахождение обратной матрицы требует значительных вычислительных усилий, поэтому, в этом случае целесообразно использовать для решения метод Гаусса.

2.6 МетодКрамера

Метод Крамера применяется для решения систем линейных алгебраических уравнений, в которых число неизвестных переменных равно числу уравнений и определитель основной матрицы отличен от нуля.

Пусть нам требуется решить систему линейных уравнений вида

где x1, x2, …, xn – неизвестные переменные, ai j , i = 1, 2, …, n, j = 1, 2, …, n – числовые коэффициенты, b1, b2, …, bn — свободные члены. Решением СЛАУ называется такой набор значений x1, x2, …, xn, при которых все уравнения системы обращаются в тождества.

В матричном виде эта система может быть записана как, где

— основная матрица системы, ее элементами являются коэффициенты при неизвестных переменных, — матрица – столбец свободных членов, а — матрица – столбец неизвестных переменных. После нахождения неизвестных переменных x1, x2, …, xn, матрица становится решением системы уравнений и равенство A ⋅ X = B обращается в тождество A ⋅ X = B.

Будем считать, что матрица А – невырожденная, то есть, ее определитель отличен от нуля. В этом случае система линейных алгебраических уравнений имеет единственное решение, которое может быть найдено методом Крамера.

Метод Крамера основывается на двух свойствах определителя матрицы:

Определитель квадратной матрицы равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

Сумма произведений элементов какой-либо строки (столбца) квадратной матрицы на алгебраические дополнения соответствующих элементов другой строки (столбца) равна нулю:

Итак, приступим к нахождению неизвестной переменной x1. Для этого умножим обе части первого уравнения системы на А11 , обе части второго уравнения – на А21 , и так далее, обе части n-ого уравнения – на Аn1 (то есть, уравнения системы умножаем на соответствующие алгебраические дополнения первого столбца матрицы А):

Сложим все левые части уравнения системы, сгруппировав слагаемые при неизвестных переменных x1, x2, …, xn, и приравняем эту сумму к сумме всех правых частей уравнений:

Если обратиться к озвученным ранее свойствам определителя, то имеем

и предыдущее равенство примет вид

Аналогично находим x2. Для этого умножаем обе части уравнений системы на алгебраические дополнения второго столбца матрицы А:

Складываем все уравнения системы, группируем слагаемые при неизвестных переменных x1, x2, …, xn и применяем свойства определителя:

Аналогично находятся оставшиеся неизвестные переменные.

то получаем формулы для нахождения неизвестных переменных по методу Крамера

Если система линейных алгебраических уравнений однородная, то есть b1=b2=…=bn=0, то она имеет лишь тривиальное решение =x2=…=xn=0 (при |A|≠0). Действительно, при нулевых свободных членах все определители будут равны нулю, так как будут содержать столбец нулевых элементов. Следовательно, формулы дадут x1=x2=…=xn=0 .

Алгоритм решения систем линейных алгебраических уравнений методом Крамера.

Вычисляем определитель основной матрицы системы

и убеждаемся, что он отличен от нуля.

которые являются определителями матриц, полученных из матрицы А заменой k-ого столбца (k = 1, 2, …, n) на столбец свободных членов.

Выполняем проверку результатов, подставляя x1, x2, …, xn в исходную СЛАУ. Все уравнения системы должны обратиться в тождества. Можно также вычислить произведение матриц A ⋅ X, если в результате получилась матрица, равная B, то решение системы найдено верно. В противном случае в ходе решения была допущена ошибка.

Пример решения системы уравнений методом Крамера представлен в Приложении 4.

2.7 Метод Гаусса

Пусть нам требуется решить систему из n линейных алгебраических уравнений с nнеизвестными переменными вида

и пусть определитель ее основной матрицы отличен от нуля.

Будем считать, что α11≠0, так как мы всегда можем этого добиться перестановкой местами уравнений системы. Исключим неизвестную переменную x1 из всех уравнений системы, начиная со второго. Для этого ко второму уравнению системы прибавим первое, умноженное на — , к третьему уравнению прибавим первое, умноженное на — , и так далее, к n-ому уравнению прибавим первое, умноженное на -. Система уравнений после таких преобразований примет вид

К такому же результату мы бы пришли, если бы выразили x1 через другие неизвестные переменные в первом уравнении системы и полученное выражение подставили во все остальные уравнения. Таким образом, переменная x1 исключена из всех уравнений, начиная со второго.

Далее действуем аналогично, но лишь с частью полученной системы

Будем считать, что (в противном случае мы переставим местами вторую строку с k-ой, где ). Приступаем к исключению неизвестной переменной x2 из всех уравнений, начиная с третьего.

Для этого к третьему уравнению системы прибавим второе, умноженное на , к четвертому уравнению прибавим второе, умноженное на , и так далее, к n-ому уравнению прибавим второе, умноженное на . Система уравнений примет вид

Таким образом, переменная x2 исключена из всех уравнений, начиная с третьего.

Так продолжаем прямой ход метода Гаусса пока система не примет вид

С этого момента начинаем обратный ход метода Гаусса: вычисляем xn из последнего уравнения как , с помощью полученного значения xn находим xn-1 из предпоследнего уравнения, и так далее, находим x1 из первого уравнения.

При использовании метода Гаусса для решения систем линейных алгебраических уравнений следует избегать приближенных вычислений, так как это может привести к абсолютно неверным результатам.[8]

Решение системы уравнений методом Гаусса представлено в Приложении 5.

Системы уравнений, основная матрица которых прямоугольная или квадратная вырожденная, могут не иметь решений, могут иметь единственное решение, а могут иметь бесконечное множество решений.[1]

Метод Гаусса позволяет установить совместность или несовместность системы линейных уравнений, а в случае ее совместности определить все решения (или одно единственное решение).[7]

На определенном этапе исключения неизвестных переменных некоторые уравнения системы могут обратиться в тождества . Это говорит о том, что такие уравнения излишни, то есть, их можно смело убрать из системы уравнений и продолжить прямой ход метода Гаусса.

При проведении прямого хода метода Гаусса одно (или несколько) уравнений системы могут принять вид , где λ — некоторое число, отличное от нуля. Это говорит о том, что уравнение, которое обратилось в равенство , не может обратиться в тождество ни при каких значениях неизвестных переменных. Другими словами, система линейных алгебраических уравнений в этом случае несовместна (не имеет решения). Наиболее часто такие ситуации встречаются, когда число уравнений в системе больше числа неизвестных переменных.

Предположим, что мы выполняем прямой ход метода Гаусса, и мы подошли к моменту исключения неизвестной переменной xk, а на каком-то предыдущем i-ом шаге (i z then


источники:

http://www.bestreferat.ru/referat-46762.html

http://school-science.ru/2/7/31200

Название: Способы решения систем линейных уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:42:34 10 июля 2005 Похожие работы
Просмотров: 13600 Комментариев: 22 Оценило: 14 человек Средний балл: 3.9 Оценка: 4 Скачать