Реферат по алгебре на тему системы уравнений

Реферат: по математике. На тему: «основные методы решения систем уравнений с двумя переменными»

РЕФЕРАТ ПО МАТЕМАТИКЕ.

«ОСНОВНЫЕ МЕТОДЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ С ДВУМЯ ПЕРЕМЕННЫМИ».

УЧЕНИК 9 КЛАССА «Б»

ГОУ ГИМНАЗИИ № 1505

БАТАЛОВА ВЕРА ИВАНОВНА.

ГОД РЕАЛИЗАЦИИ ИССЛЕДОВАНИЯ:

2) ОСНОВНАЯ ЧАСТЬ РЕФЕРАТА………………………….стр. 3-9

ГЛАВА I: МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ……………. стр.3-7

а) ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ………………………………стр.3

б) ГРАФИЧЕСИЙ МЕТОД………………………………………стр.3-4

в) СПОСОБ ЗАМЕНЫ ПЕРЕМЕННОЙ И АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ И ВЫЧИТАНИЯ………………………………….стр.4-6

г) СПОСОБ ПОЧЛЕННОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ…стр.6

д) СПОСОБ ПОДСТАНОВКИ……………………………………стр.6-7

ГЛАВА II: МЕТОДЫ РЕШЕНИЯ СИСТЕМ НЕЛИНЕЙНЫХ УРАВНЕНИЙ………………………………………………………стр.7-8

а) ОДНОРОДНЫЕ СИСТЕМЫ УРАВНЕНИЙ………………..стр.7-8

б) СИММЕТРИЧНЫЕ СИСТЕМЫ УРАВНЕНИЙ……………стр.8

4) СПИСОК ЛИТЕРАТУРЫ……………………………………..стр.10

I. ИСТОРИЧЕСКАЯ СПРАВКА………………………………. стр.11-12

а) СПОСОБ ЗАМЕНЫ ПЕРЕМЕННОЙ И АЛГЕБРАИЧЕСКОГО СЛОЖЕНИЯ И ВЫЧИТАНИЯ………………………………….стр. 12-14

б) СПОСОБ ПОЧЛЕННОГО УМНОЖЕНИЯ И ДЕЛЕНИЯ..стр. 14

в) ГРАФИЧЕСИЙ МЕТОД………………………………………стр. 14-16

г) СИММЕТРИЧНЫЕ СИСТЕМЫ УРАВНЕНИЙ …………..стр. 16

д) ОДНОРОДНЫЕ СИСТЕМЫ УРАВНЕНИЙ ….……………стр. 16

Тема моего реферата «Основные методы решения систем уравнений с двумя переменными». Эта темя изучается в школьном курсе алгебры: в 7 классе изучаются системы линейных уравнений, а в 9 классе – системы нелинейных уравнений. Решение многих задач по алгебре, физике, геометрии приводит к составлению системы уравнений. Умение решать эти системы означает успешное изучение курсов алгебры, физики, геометрии. Решение систем уравнений включено в государственный экзамен 9 и 11 класса.

Цель моего реферата: разобрать основные методы решения систем уравнений. Для реализации моей цели я ставлю перед собой следующие задачи:

1) Ознакомление с литературой по теме реферата;

2) Обобщить основные методы решения систем линейных уравнений;

3) Познакомиться с некоторыми методами решения систем нелинейных уравнений;

4) Рассмотреть вопросы равносильности систем уравнений.

В результате изучения этой темы я составлю решебник систем уравнений. Я надеюсь что, мой решебник сможет помочь учащимся 8-9 классов лучше подготовиться к выпускным экзаменам. А основные методы решения систем с параметром я буду изучать в 10-м классе.

ГЛАВА I : МЕТОДЫ РЕШЕНИЯ СИСТЕМ ЛИНЕЙНЫХ УРАВНЕНИЙ.

Для начала выясню, что такое линейные и нелинейные уравнения с двумя переменной:

1) Линейные уравнения с двумя переменной – уравнение первой степени.

2) Нелинейные уравнения с двумя переменной – уравнение второй степени.

Теперь выясним, что такое решение системы уравнения с двумя переменными:

Пара значений переменных, обращающая каждое уравнение системы уравнений с двумя переменными в верное равенство, называют решением системы [1] .

Осталось только два вопроса: во-первых, что является графиком уравнения и, во-вторых, вопрос о равносильности систем уравнений:

1) Графиком уравнения с двумя переменными является изображение точек её решений на плоскости[2] .

2) Две системы называются равносильными , если множества их решений совпадают. Если обе системы не имеют решений, то они также считаются равносильными[3] .

Теперь, когда все основные понятия и определения разобраны, можно приступать к решению систем разных видов основными методами, которые мне известны на данный момент.

Основная цель при решении систем уравнений — решить эту систему, то есть найти все ее решения или доказать, что решений нет. Для решения системы уравнений с двумя переменными используются:

1) графический способ;

2) способ замены переменной и алгебраического сложения и вычитания;

3) способ почленного умножения и деления;

4) способ подстановки.

Все эти способы используются во всех предметах, где необходимы знания математики: алгебра, физика, химия, геометрия.

Рассмотрим способ № 1 : Известно, что графиком линейного уравнения является прямая. Вопрос о числе решений системы двух линейных уравнений сводиться к определению числа общих точек прямых, являющимися графиками уравнений системы. Рассмотрим три случая расположения прямой.

Случай 1 : Прямые, которые являются графиком функции, входящих в данную систему, пересекаются.

Решим эту систему:

Уравнениями у=-1,1х+12 и у=-6х+18 задаются линейные функции. Угловые коэффициенты прямых этих функций различны. Следовательно, эти прямые пересекаются, и система имеет единственное решение. Прировняв правые части уравнений, найдем точку пересечения. Данная система имеет единственное решение: пара чисел равная (1,2; 10,7).

Случай 2 : Прямые, являющиеся графиками уравнений системы, параллельны.

Решим систему уравнений:

Прямые, являющиеся графиками линейных функций у=-0,4х+0,15 и у=-0,4х+3,2, параллельны, так как их угловые коэффициенты одинаковы, а точки пересечения с осью у различны. Отсюда следует, что данная система уравнений не имеет решений.

Случай 3 : Прямые, являющиеся графиками уравнений системы, совпадают.

Очевидно, что графики уравнений совпадают. Это означает, что любая пара чисел (х; у), в которой х — произвольное число, а у = — 2,5х — 9, является решением системы. Система имеет бесконечно много решений.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не правильное построение системы координат (различный единичный отрезок на осях ординат и абсцисс).

Рассмотрим способ № 2(замена переменной): Легче всего это сделать, решив задачу, что мы сейчас и сделаем:

Условие задачи : Ученик задумал два числа. Первое число на 5 больше второго. Если от удвоенного первого числа вычесть утроенное второе число, то получится 25. Какие числа задумал ученик?

Решение : Пусть х — первое число, у — второе число. По условию задачи составим систему уравнений.

В первом уравнении выразим х через у: х=у+5 .

Подставив во второе уравнение вместо переменной х выражение х = у + 7, получим систему

Очевидно, что получившееся второе уравнение является уравнением с одной переменной.

Подставив в первое уравнение системы вместо переменной у ее значение, равное 6, получим:

Ответ : ученик задумал числа равные -6 и -11, т. е. пара чисел (-6; -11) является решением данной системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности по ряду причин:

1) не умение, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 2(алгебраическое сложение): Как и в методе подстановки, мы переходим от данной системы к другой, равносильной ей системе, в которой одно из уравнений содержит только одну переменную.

Решим систему уравнений:

В уравнениях этой системы коэффициенты при у являются противоположными числами (+3y и -3y). Сложив почленно левые и правые части уравнений, получим уравнение с одной переменной:

Заменим одно из данных нам уравнений системы, например первое, уравнением 2x = 18. Получим систему:

Полученная система равносильна данной системе. Решим полученную систему:

Из уравнения 2х=18 находим, что х=9. Подставив это значение х в уравнение 4х-3у=12 , получим уравнение с переменной у.

Решим это уравнение:

Пара чисел (11; — 9) — решение полученной системы, а значит, и данной нам системы.

Воспользовавшись тем, что в уравнениях данной нам системы коэффициенты при у являются противоположными числами, мы свели ее решение к решению равносильной системы, в которой одно из уравнений содержит только одну переменную.

Геометрически равносильность систем означает, что графики уравнений 4 x + 3 y = 12 и -2 x — — 3у=38 пересекаются.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по одной причине:

1) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ № 3 : Если при решении систем уравнений учащийся не может ни заменить переменную, ни алгебраически сложить, то можно прибегнуть к этому способу. Разберём на примере.

Решим систему уравнений:

Домножим верхнее уравнение на 3. Получим:

Очевидно, что и в первом и во втором уравнениях есть 3y, только с разными знаками. Дальше решаем так же, как и прошлой системе (см. 3 разбор).

В конце получаем, что пара чисел (4,2; -4,8) является решением данной нам системы.

Во время решения систем нелинейных уравнений данным способом вызывает у учащихся трудности только по ряду причине:

1) не видят, что и насколько надо домножить;

2) не умение, подставить уже полученную переменную (забывают или не видят).

Рассмотрим способ подстановки : Этот метод или способ решения систем уравнений используется чаще всех. Грубо говоря, этот способ мы разобрали во всех остальных, т.к. заменяя одну систему на равносильную ей, мы находим одну переменную, а затем подставляем её значение в одно из уравнений данной нам системы. А, следовательно, возникающие проблемы при решении систем уравнений этим способом такие же, как и у всех остальных методов:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

Итак, из всего выше сказанного можно сделать вывод:

во время решения систем нелинейных уравнений у учащихся возникают проблемы по ряду двум причинам:

1) не умения, выражать одну переменную через другую;

2) не умение, подставить уже полученную переменную;

3) не видят, что и насколько надо домножить.

В этой части реферата я рассмотрю два основных метода решения систем нелинейных уравнений:

1) Однородные системы уравнений;

2) Симметричные системы уравнений.

1) Однородные системы уравнений:

Уравнения называются однородными, если все слагаемые, содержащие неизвестные, имеют одну и ту же степень (показатели степеней разных неизвестных в слагаемых складываются).

Почему же мы выделяем такие системы? Оказывается, существует стандартная подстановка x = t×y (y ≠ 0), которая позволяет решить систему.

Пусть x = t×y (y ≠ 0), тогда

Зная t, легко сразу найти , учитывая, что . Используя это, найдём y, а затем и x.

b) t =

При y = 0 решения нет.

2) Системы симметричных уравнений:

Выражение с двумя неизвестными называется симметричным, если при замене одного неизвестного на другое и наоборот выражение не изменяется.

Любое симметричное выражение с двумя неизвестными может быть представлено, как алгебраическая комбинация, через два простейших симметричных выражения: a + b = t и a×b = z.

Пусть , тогда система имеет вид: .

Вычтем из первого уравнения второе уравнение:

a)

По теореме, обратной теореме Виета, данная система порождает квадратное уравнение + 4m + 3 = 0, корнями которого являются x и y. В силу симметричности имеем: (1; 3); (3; 1).

b)

Из порождённого квадратного уравнения — 4n + 3 = 0 следует решения (-3; -1); (-1; -3).

Итак, в своём реферате я, во-первых, обобщил основные методы решения систем линейных уравнений с двумя переменными, во-вторых, рассмотрел некоторые методы решения систем нелинейных уравнений с двумя переменными, в-третьих, составил решебник, который, я надеюсь, поможет читающим мой реферат лучше понять тему, которую я выбрал, и сформирует навык решения систем уравнений. Другими словами я решил все задачи, которые стояли передо мной, и справился с моей целью. Надеюсь, мой реферат был интересен для чтения, повторения прошлого и знакомства с частью нового материала. Я постараюсь продолжить работу над этой темой в 10 классе в качестве дипломной работы.

Доклад по математике на тему: «Виды уравнений и способы их решения»

Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И МОЛОДЕЖНОЙ ПОЛИТИКИ КАМЧАТСКОГО КРАЯ

КРАЕВОЕ ГОСУДАРСТВЕННОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ БЮДЖЕТНОЕ УЧЕРЕЖДЕНИЕ «КАМЧАТСКИЙ ИНДУСТРИАЛЬНЫЙ ТЕХНИКУМ»

Доклад по математике на тему:

«Виды уравнений и способы их решения»

Малиновская Вероника Андреевна

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположила материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попыталась показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стала ограничиваться только действительным решением, но и указала комплексное, так как считаю, что иначе уравнение просто не законченно. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

1. УРАВНЕНИЯ. АЛГЕБРАИЧЕСКИЕ УРАВНЕНИЯ

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв). Для записи тождества наряду со знаком также используется знак .

Пример: 5 *7 – 6 = 20 + 9

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита: ,, c , . – или теми же буквами, снабженными индексами:, , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: x , y , z . По числу неизвестных уравнения разделяются на уравнения с одним, двумя, тремя и т. д. неизвестными

Решением уравнения называют такой буквенный или числовой набор неизвестных, которые обращает его в тождество (соответственно числовое или буквенное). Часто решение уравнения называют его также его корнем.

1.1. Линейное уравнение

Линейным уравнением с одним неизвестным называют уравнение вида

ax + b = c , где a ≠ 0

Это уравнение имеет единственное решение:

1.2 Квадратное уравнение

Квадратным уравнением с одним неизвестным называют уравнение вида

a + bx + c = 0, где a ≠ 0

Дискриминантом квадратного уравнения называют число D =

Справедливы следующие утверждения

Если D 0 , то уравнение решений не имеет

Если D = 0 , то уравнение имеет единственное решение

Если D 0, то уравнение имеет 2 решения

Обе эти формулы часто записывают в виде

1.2.1 Неполное квадратное уравнение

Неполным квадратным уравнением называют квадратное уравнение, в котором хотя бы один из коэффициентов b или c равен нулю.

При c =0, уравнение принимает вид:

a+ bx = 0 или x (ax + b) = 0

т.е. либо х=0, либо ax + b = 0, откуда х=0,

При b =0, уравнение принимает вид: a + c = 0

если выражение 0, то уравнение решений не имеет

если с=0, то уравнение имеет единственное решение: х=0

если выражение, 0,то решений два:

1.2.2 Приведённое квадратное уравнение. Теорема Виета

Приведённым квадратным уравнением называют уравнение вида

т.е. квадратное уравнение, в котором первый коэффициент равен единице.

Любое квадратное уравнение можно сделать приведённым. Для этого достаточно каждый коэффициент данного уравнения разделить на первый коэффициент, т.е. на а

Теорема Виета : Если приведённое квадратное уравнение имеет действительные корни, то их сумма равна второму коэффициенту, взятому со знаком минус, т.е. –p, а их произведение- свободному члену q.

Теорема, обратная теореме Виета : Если сумма двух чисел и равна числу –p, а их произведение равно числу q, то они являются корнями приведённого квадратного уравнения + px + q =0

Пример: Используя теорему, обратную теореме Виета, найти корни уравнения

Это уравнение имеет целые корни, Корни легко угадать: это действительно: (-1) * (-2) = 2 и (-1) +(-2) = -3. Значит, числа -1 и -2 являются корнями данного уравнения.

Уравнение вида a + b + c = 0 называют биквадратным

Такое уравнение решается методом замены переменной. Обозначим , тогда . Заметим что t ≥ 0, так как t = исходное уравнение имеет вид

Т.е. является обыкновенной квадратным уравнением, которое решается по приведенной выше схеме.

Пусть и – корни полученного квадратного уравнения. Если > 0 и , исходное биквадратное уравнение имеет четыре корня:

Если одно из чисел или отрицательно, а другое неотрицательно, то имеем два корня, либо один ( x = 0).

Введение нового переменного – наиболее распространенный метод решения самых разных уравнений.

Решение. Обозначим и заметим, что t ≥ 0

Тогда исходное уравнение примет вид:

Так как D > 0, то полученное квадратное уравнение имеет два корня

Оба эти корня удовлетворяют условию (*) следовательно, уравнение имеет четыре действительных решения

Разложение квадратного трёхчлена на множители

Из теоремы Виета следует очень важное утверждение:

теорема о разложении квадратного трёхчлена на множители.

Если квадратное уравнение a + bx + c = 0, где a ≠ 0 имеет действительные корни то квадратный трёхчлен

a + bx + c = 0 раскладывается на множители следующим образом: a + bx + c = а ( х- ) ( х — )

Пример: Разложить н множители выражение 3 + 5 x

Решение: Найдём корни уравнения 3 + 5 x = 0

По теореме о разложении квадратного трёхчлена на множители имеем:

Уравнение, содержащие переменную под знаком модуля

Модулем числа называют само это число, если оно неотрицательно, либо число — | |.

Формальная запись этого определения такова:

При решении уравнений, содержащих переменную плд знаком модуля, используется определение модуля.

пример: решить уравнение: | |=

решение: по определению модуля:

Говорят, что выражение модулем меняет свой знак в точке x =1, поэтому все множество чисел разбивается на два числовых промежутка.

а) При x ≥ 1 исходное уравнение принимает вид:

Уравнения, содержащие один знак радикала второй степени

Возведение обеих частей уравнения в степень

При возведении обеих частей уравнения в четную степень (в частности, в квадрат) получается уравнение, неравносильному исходному.

Кроме корней исходного уравнения могут появиться посторонние корни, т.е. числа, являющиеся решениями возведенного в четную степень уравнения, но не являющимися корнями исходного уравнения.

Избавиться от посторонних корней помогает непосредственная проверка полученных корней в исходном уравнении, т.е. корни поочередно подставляет в начальное уравнение и проверяют, верное ли получается числовое неравенство.

Пример. Решить уравнение

Решение возведем обе части уравнения в квадрат. Имеем:

Проверка. При но 1 ≠ -1 следовательно корень x =-1 посторонний

При x = 2; так как 2=2, то проверяемое число действительно является корнем исходного уравнения

1.7 Тригонометрические уравнения

Решение: так как то уравнение можно переписать следующим образом:

2 ( 1 — ) + 7 — 5 = 0, т.е. 27

Полагая, что = y , приходим к квадратному уравнению

2 – 7 y + 3 = 0, откуда = = 3, и получаем совокупность двух простейших уравнений

Первое из них имеет решение

, а второе решений не имеет

1.8 Системы уравнений

Система уравнений состоит из двух и более алгебраических уравнений.

Решением системы называют такой набор значений переменных, который при подстановке обращает каждое уравнение системы в числовое или буквенное тождество.

Решить систему – значит найти все её решения или доказать, что их нет.

2. СПОСОБЫ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ

Рассмотрим несколько способов решения систем уравнений

2.1 Графический способ решения системы уравнений

Решение. Каждое уравнение системы задаёт линейную функцию. Построим графики этих уравнений в одной системе координат. Координаты пересечений графиков обращают оба уравнения системы в верные равенства. Решением системы является пара значений переменных: х=1,у=1. Ответ можно записать так: ( 1; 1 )

Графический способ решения систем уравнения состоит в следующем:

Строятся графики каждого уравнения системы

Определяются точки пересечения графиков

Записывается ответ: координаты точек пересечения построенных графиков.

2.2 Метод подстановки

Решение: Из первого уравнения выразим x через y :

Подставив полученное выражение во второе уравнение системы, получим уравнение с одним неизвестным

Подставив это число в выражение

Получим ответ: x = 3

Алгоритм решения систем уравнений методом подстановки

Из одного уравнения системы одна переменная выражается через другую.

Полученное выражение подставляется во второе уравнение системы.

Решается полученное после подстановки уравнение

Полученное решение подставляется в выражение из п.1

Если при решении последнего уравнения получается тождество 0=0, то это означает, что исходная система имеет бесконечное множество решений вида (х, у), каждое из которых удовлетворяет первому уравнению системы. Если же при тождественных преобразованиях последнего уравнения получится неверное числовое равенство, то система решений не имеет.

2.3 Метод сложения

Решение: Домножим первое уравнение системы на 2, а второе — на 3. Сложим получившиеся уравнения почленно и запишем результат вместо второго уравнения системы.

Числа, на которые домножают уравнения перед сложением, выбирают так, чтобы при суммировании коэффициент перед одной из переменных стал равен нулю.

В результате преобразований уравнений системы и замены одного из уравнений результатом суммирования других получены равносильные системы.

Две системы называют равносильными, если каждое решение одной системы является решением другой системы и наоборот.

2.4 Метод введения новой переменной

При решении систем нелинейных уравнений, как правило, применя-ются различные комбинации нескольких методов решения систем.

Решение. Преобразуем второе уравнение системы воспользовавшись формулой сокращенного умножения

Из первого уравнения системы x — y =1; подставим 1 во второе уравнение. Запишем получившуюся систему:

К этой системе уже вполне применим метод – выразить одно неизвестное из первого уравнения системы и подставить во второе:

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XX I век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мой доклад может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного доклада я не ставила себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

На основании всего выше изложенного можно сделать вывод, что уравнения необходимы в современном мире не только для решения практических задач, но и в качестве научного инструмента. Поэтому так много ученых изучали этот вопрос и продолжают изучать.

Реферат: Система линейных уравнений

1. Основные понятия

2. Система n линейных уравнений с n неизвестными. Правило Крамера

3. Однородная система п линейных уравнений, с n неизвестными

4. Метод Гаусса решения общей системы с линейных уравнений

5. Критерий совместности общей системы линейных уравнений

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т.е. системы m уравнений 1ой степени сn неизвестными:

a11 x1 + … + a1n xn = b1 ;

a21 x1 + … + a2n x n = b2;

Здесь x1, …, xn – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1-й степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике.

1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a11 x1 + a12 x2 + …+ a1n xn = b1 ;

a21 x1 + a22 x2 + …+ a2n xn = b2; (1)

где х1, х2, …, х nнеизвестные, значения которых подлежат нахождению. Как видно из структуры системы (1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а11, а12, …, а mn называются коэффициентами системы, а b 1 , b 2 , …, bm — её свободными членами. Для удобства коэффициенты системы а ij (i =1, 2. m ; j = 1, 2. n ) и свободные члены bi (i =1, 2. m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i, при которой коэффициент поставлен. Индекс свободного члена bi соответствует номеру уравнения, в которое входит bi .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (1) называется всякая совокупность чисел α 1 , α 2 , αn , которая будучи поставлена в систему (1) на место неизвестных х1, х2, …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если не имеет решений. Совместная система уравнений называется определенной, если она имеет одно единственное решение, и неопределенной, если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными, если они имеют одно и тоже множество решений.

2. Система n линейных уравнений с n неизвестными. Правило Крамера

Пусть дана система n линейных уравнений с n неизвестными:

a11 x1 + a12 x2 + …+ a1n xn = b1 ;

a21 x1 + a22 x2 + …+ a2n xn = b2; (2)

Определителем системы (2) называется определитель, составленный из коэффициентов а ij.

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (2) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначатьалгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (2) на алгебраические дополнения элементов i -го столбца определителя , т.е. первое уравнение умножим на А1 i, второе – на А2 i и т.д., наконец, последнее уравнение – на А ni, а затем все полученные уравнения системы сложим. Врезультатебудемиметь

(a11 x1 + a12 x2 + …+ a1i xi + …+ a1n xn )A1i + (a21 x1 + a22 x2 + …+ a2i xi +

+ …+ a2n xn )A2i + …+ (an1 x1 + an2 x2 + …+ ani xi + …+ an xnn )Ani = b1 A1i + b2 A2i + …+ bn Ani

или, сгруппировав члены относительно известных x 1 , x 2 , …, xn , получим

(a11 A1i + a21 A2i + …+ an1 Ani )x1 + … +

+ (a1i A1i + a2i A2i + …+ ani Ani )xi + … +

+ (a1n A1i + a2n A2i + …+ ann Ani ) xn =

= b1 A1i + b2 A2i + …+ bn Ani . (3)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный член уравнения (3) отличается от коэффициента при х1 тем, что коэффициенты а1 i , а2 i , …, а ni заменены свободными членами b 1 , b 2 , …, bn уравнения (2). Следовательно, выражение b 1 A 1 i + b 2 A 2 i + …+ bn Ani есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, которыйзамененстолбцом свободных членов. Обозначив этот определитель xi, будем иметь


источники:

http://infourok.ru/doklad-po-matematike-na-temu-vidi-uravneniy-i-sposobi-ih-resheniya-3699326.html

http://ronl.org/referaty/matematika/141613/

Название: по математике. На тему: «основные методы решения систем уравнений с двумя переменными»
Раздел: Остальные рефераты
Тип: реферат Добавлен 07:02:53 12 сентября 2011 Похожие работы
Просмотров: 1445 Комментариев: 18 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно Скачать