Реферат по теме система уравнений

Линейные системы уравнений — реферат

Тема: «Линейные системы уравнений»

1. Уравнения, векторы, матрицы, алгебра

2. Умножение матриц как внешнее произведение векторов

3. Нормы векторов и матриц

4. Матрицы и определители

5. Собственные значения и собственные векторы

6. Ортогональные матрицы из собственных векторов

7. Функции с матричным аргументом

8. Вычисление проекторов матрицы

Пример использования числовых характеристик матриц

10. Оценка величины и нахождение собственных значений

1. Уравнения, векторы, матрицы, линейная алгебра

Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.

Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.

Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:

Здесь – неизвестные,

– заданные числа,

– заданные числовые коэффициенты.

Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:

список переменных – ,

список правых частей – и

матрицу коэффициентов – .

Первые два объекта в линейной алгебре называют вектором-строкой , а второй – квадратной матрицей.

Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц: , – аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.

Если рассмотреть i- тую строку исходной системы

,

то в ней кроме упорядоченного расположения компонент присутствует упорядоченное по индексу j размещение коэффициентов , которые могут рассматриваться как вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:

.

Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.

Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:

.

Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).

Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде несложно определить векторно-матричную операцию , результатом которой является вектор с i- той компонентой, равной .

Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.

2. Умножение векторов и матриц

Среди n- мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:

,

которая при произвольном выборе в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы в наборе называют линейно независимыми . Такими векторами в частности будут единичные векторы , у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j- строке.

Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n- мерную систему координат. Набор компонент любого вектора в этой n- мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.

Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y . Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x . Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:

.

Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:

,

где – элемент матрицы С , равный скалярному произведению вектор-строки матрицы В на вектор-столбец матрицы А .

Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.

3. Нормы векторов и матриц

Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:

,

где – компоненты вектора ,

– евклидова норма вектора, его длина.

В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.

Деление вектора на величину его нормы называют нормированием , т.е. приведением вектора к единичной длине.

Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то

,

где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x , кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству

.

Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.

4. Матрицы и определители

Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:

Учитывая это свойство и зная, что определитель единичной матрицы det(E )=1, можно найти матрицу B и ее определитель из уравнения:

откуда следует, что и .

Из свойств определителей нелишне помнить и такие:

где – транспонированная матрица A ,

n – размер квадратной матрицы A ,

– матрица перестановки строк или столбцов,

s, c= 0,1,…, n – число выполненных перестановок строк и / или столбцов.

Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:

Умножив вектор правых частей на обратную матрицу, получим вектор решения.

Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:

,

где – алгебраическое дополнение, а – минор матрицы A , получаемый вычислением определителя матрицы A , в которой вычеркнуты j- тая строка и i- тый столбец.

Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.

Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.

5. Собственные значения и собственные векторы

Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.

Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:

В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром и неизвестным вектором-столбцом x и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю. Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.

Полагая, что решение все же существует, т.е. и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:

Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n относительно :

Это уравнение называется характеристическим уравнением матрицы и имеет в общем случае n корней, возможно комплексных, которые называются собственными значениями матрицы и в совокупности составляют спектр матрицы . Относительно n корней различают два случая: все корни различные или некоторые корни кратные.

Важным свойством характеристического уравнения матрицы A является то, что согласно теореме Гамильтона-Кели, матрица A удовлетворяет ему:

где k- тая степень матрицы.

Подставляя каждое в однородную систему, получим векторно-матричные уравнения для нахождения векторов или векторов-строк . Эти векторы называются соответственно правыми собственными векторами и левыми собственными векторами матрицы.

Решение однородных уравнений имеет некоторую специфику. Если (как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:

Если все собственные числа различны, то собственные векторы матрицы A образуют систему n линейно независимых векторов таких, что

6. Ортогональные матрицы из собственных векторов

Из правых собственных векторов можно составить матрицу T, а из левых – матрицу , которые обладают уникальными свойствами по отношению к матрице A .

Умножив матрицу A слева на матрицу , а справа – на матрицу T , после несложных преобразований получим:

.

Каждое скалярное произведение в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:

Поэтому, результатом преобразования матрицы A будет диагональная матрица с собственными значениями, расположенными на диагонали:

Если вместо A взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство , откуда следует . Последнее позволяет для преобразования матрицы A в диагональную обходиться только системой правых собственных векторов-столбцов:

Последнее показывает, что умножение матрицы A на слева и на S справа, где S – произвольная не особая матрица, преобразует ее в некоторую матрицу B , которая имеет определитель, равный определителю матрицы A . Такие преобразования матриц называют эквивалентными (подобными ).

Продолжая использовать T- матрицу, несложно получить следующие важные результаты:

.

7. Функции с матричным аргументом

Пусть теперь задана некоторая матричная функция от матрицы A :

.

С другой стороны очевидно и обратное

,

где – матрица с одной единицей на i -том месте диагонали ( ).

где проекторы матрицы A , образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно и . Сумма проекторов .

Проекторы обладают свойствами идемпотентных матриц , т.е. матриц, все степени которых равны первой. Для невырожденных проекторов ( ) матрицы A ( ) справедливо:

Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A :

.

Если в качестве матричных функций взять и , то их спектральные разложения будут следующими:

8. Вычисление проекторов матрицы

Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:

По известному спектру проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A , которые вычисляются очевидным образом, например, такие:

Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:

В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:

где – значения i -тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,

– число кратных корней ,

– проекторы кратных корней, в выражении которых содержатся

– проекторы различных корней.

9. Пример использования числовых характеристик матриц

Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.

Для примера построим матрицу с заданными собственными значениями и собственными векторами, основанными на векторах .

Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта .

Для заданных векторов построим систему векторов таких, что , следующим образом:

Откуда последовательно находятся коэффициенты :

Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый был ортогонален каждому , положив и приравняв нулю скалярные произведения :

Определитель этой системы называют определителем Грама :

,

где — матрица, в общем случае комплексно сопряженная с матрицей

, составленной из заданных векторов.

Если грамиан положителен, а он всегда неотрицателен, то векторы линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.

Для заданного выше набора векторов определитель произведения матрицы X на транспонированную X * будет равен

Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:

После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т -матрица с этими векторами есть -матрица ( ); ее строки являются собственными левосторонними векторами:

.

Внешнее (матричное) произведение каждого нормированного вектора самого на себя дает нам проекторы искомой матрицы:

Умножая каждое собственное значение из заданного набора на свой проектор и суммируя, получим:

.

Аналогично получается обратная матрица:

.

С помощью этих же проекторов вычисляется любая аналитическая функция, аргументом которой является матрица A :

.

10. Оценка величины и нахождение собственных значений

Краткое рассмотрение основных теоретических положений линейной алгебры позволяет сделать следующие выводы: для успешного решения систем линейных алгебраических уравнений и вычислений матричных функций необходимо уметь находить ее собственные значения и собственные векторы.

Для любой матрицы A с действительными компонентами и любого ненулевого вектора v существует отношение Рэлея, связывающее скалярное произведение векторов v и Av с минимальным и максимальным собственными значениями:

.

К высказанному необходимо сделать еще ряд замечаний, связанных со случаями, когда исходная матрица имеет кратные собственные значения или оказывается вырожденной.

Характеристическое уравнение матрицы A с кратным корнем можно записать в виде

.

На основании этой записи можно составить минимальное характеристическое уравнение , для которого матрица A также является корнем:

.

Особенности в части определения собственных значений и векторов обычно возникают в несимметричных матрицах ( ). Некоторые из них никакими подобными преобразованиями не удается свести к диагональной. Например, не поддаются диагонализации матрицы n- го порядка, которые не имеют n линейно независимых собственных векторов. Однако любая матрица A размера с помощью преобразования подобия может быть приведена к прямой сумме жордановых блоков или к канонической жордановой форме :

,

где A – произвольная матрица размера ;

– жорданов блок размера ;

V – некоторая невырожденная матрица размера .

Характеристическое уравнение жорданова блока размера независимо от количества единиц в верхней диагонали записывается в виде произведения одинаковых сомножителей и, следовательно, имеет только кратных корней:

.

Если выразить матрицу V в форме вектора с компонентами в виде векторов-столбцов , то из равенства AV=VJ для каждого жорданового блока следует соотношение

.

Здесь в зависимости от структуры верхней диагонали, в которой может быть либо ноль, либо единица. Если жордановы блоки имеют размер , то мы имеем случай симметричной матрицы или матрицы с различными собственными значениями.

При поиске решений систем линейных уравнений с несимметричными матрицами, последние стремятся теми или иными приемами свести к выражению с симметричными матрицами.

Один из возможных подходов к решению несимметричных линейных систем состоит в замене исходной системы эквивалентной системой:

.

Недостаток этого подхода состоит в том, что мера обусловленности произведения матрицы A на свою транспонированную, оцениваемая отношением , оказывается больше, чем у матрицы A .

Под мерой обусловленности понимают отношение наибольшего собственного значения матрицы к наименьшему. Это отношение влияет на скорость сходимости итерационных процедур при решении уравнений.

Итак, основными алгебраическими системами уравнений можно считать неоднородные системы уравнений с симметричными матрицами коэффициентов.

1. Вержбицкий В.М. Основы численных методов: Учебник для вузов – 3-е изд. М: Высшая школа, 2009. – 840 с.

2. Самарcкий А.А. Задачи и упражнения по численным методам. Изд. 3 Изд-во: КомКнига, ЛКИ, 2006. – 208 с.

3. Турчак Л.И., Плотников П.В. Основы численных методов. Изд-во: ФИЗМАТЛИТ®, 2003. – 304 с.

4. Хеннер Е.К., Лапчик М.П., Рагулина М.И. Численные методы. Изд-во: «Академия/Academia», 2004. – 384c.

Реферат: Система линейных уравнений

1. Основные понятия

2. Система n линейных уравнений с n неизвестными. Правило Крамера

3. Однородная система п линейных уравнений, с n неизвестными

4. Метод Гаусса решения общей системы с линейных уравнений

5. Критерий совместности общей системы линейных уравнений

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений, т.е. системы m уравнений 1ой степени сn неизвестными:

a11 x1 + … + a1n xn = b1 ;

a21 x1 + … + a2n x n = b2;

Здесь x1, …, xn – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1-й степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике.

1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a11 x1 + a12 x2 + …+ a1n xn = b1 ;

a21 x1 + a22 x2 + …+ a2n xn = b2; (1)

где х1, х2, …, х nнеизвестные, значения которых подлежат нахождению. Как видно из структуры системы (1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а11, а12, …, а mn называются коэффициентами системы, а b 1 , b 2 , …, bm — её свободными членами. Для удобства коэффициенты системы а ij (i =1, 2. m ; j = 1, 2. n ) и свободные члены bi (i =1, 2. m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i, при которой коэффициент поставлен. Индекс свободного члена bi соответствует номеру уравнения, в которое входит bi .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (1) называется всякая совокупность чисел α 1 , α 2 , αn , которая будучи поставлена в систему (1) на место неизвестных х1, х2, …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной, если она имеет хотя бы одно решение, и несовместной, если не имеет решений. Совместная система уравнений называется определенной, если она имеет одно единственное решение, и неопределенной, если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными, если они имеют одно и тоже множество решений.

2. Система n линейных уравнений с n неизвестными. Правило Крамера

Пусть дана система n линейных уравнений с n неизвестными:

a11 x1 + a12 x2 + …+ a1n xn = b1 ;

a21 x1 + a22 x2 + …+ a2n xn = b2; (2)

Определителем системы (2) называется определитель, составленный из коэффициентов а ij.

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (2) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначатьалгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (2) на алгебраические дополнения элементов i -го столбца определителя , т.е. первое уравнение умножим на А1 i, второе – на А2 i и т.д., наконец, последнее уравнение – на А ni, а затем все полученные уравнения системы сложим. Врезультатебудемиметь

(a11 x1 + a12 x2 + …+ a1i xi + …+ a1n xn )A1i + (a21 x1 + a22 x2 + …+ a2i xi +

+ …+ a2n xn )A2i + …+ (an1 x1 + an2 x2 + …+ ani xi + …+ an xnn )Ani = b1 A1i + b2 A2i + …+ bn Ani

или, сгруппировав члены относительно известных x 1 , x 2 , …, xn , получим

(a11 A1i + a21 A2i + …+ an1 Ani )x1 + … +

+ (a1i A1i + a2i A2i + …+ ani Ani )xi + … +

+ (a1n A1i + a2n A2i + …+ ann Ani ) xn =

= b1 A1i + b2 A2i + …+ bn Ani . (3)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный член уравнения (3) отличается от коэффициента при х1 тем, что коэффициенты а1 i , а2 i , …, а ni заменены свободными членами b 1 , b 2 , …, bn уравнения (2). Следовательно, выражение b 1 A 1 i + b 2 A 2 i + …+ bn Ani есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, которыйзамененстолбцом свободных членов. Обозначив этот определитель xi, будем иметь

Реферат: Способы решения систем линейных уравнений

– очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. Поэтому первая глава моего реферата посвящена теме матриц и определителей. В ней я рассматривала различные действия над матрицами, свойства определителей, метод Гаусса вычисления ранга матрицы, а так же некоторые другие теоретические вопросы. Во второй главе непосредственно рассматриваются системы линейных уравнений и некоторые методы их решения: правило Крамера, метод Гаусса, а так же теорема Кронекера – Капелли. И в той и в другой главах приведены примеры, которые составляют практическую часть моего реферата.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы. Давайте рассмотрим некоторые примеры важнейших моментов этой работы.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ;

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

a). Если  , то система (1) имеет единственное решение,

которое может быть найдено по формулам Крамера: x 1 = , где

определитель n-го порядка  i ( i=1,2. n) получается из определителя системы путем замены i-го столбца свободными членами b 1 , b 2 . b n .

б). Если  , то система (1) либо имеет бесконечное множество решений , либо несовместна ,т.е. решений нет . Например:

решить систему уравнений

.

Вычислим определитель системы:

Так как определитель не равен нулю, система уравнений может быть решена по формулам Крамера. Найдем определители ∆x , ∆y:

.

Практическое значение правила Крамера для решения системы n линейных уравнений с п неизвестными невелико, так как при его применении приходится вычислять п +1 определителей n -го порядка:  ,  x 1 ,  x 2 , …,  x n . Более удобным является так называемый метод Гаусса. Он применим и в более общем случае системы линейных уравнений, т. е. когда число уравнений не совпадает с числом неизвестных.

Итак, пусть дана система, содержащая m линейных уравнений с п неизвестными:

а 11 х 1 + а 12 х 2 + …+ а 1 n х n = b 1 ;

а 21 х 1 + а 22 х 2 + …+ а 2 n х n = b 2 ;

а m1 х 1 + а m2 х 2 + …+ а m n х n = b m

Метод Гаусса решения системы (19) заключается в последовательном исключении переменных. Например:

Решить методом Гаусса систему уравнений

x 1 – 2 x 2 + x 3 + x 4 = –1;

3 x 1 + 2 x 2 – 3 x 3 – 4 x 4 = 2;

2 x 1 – x 2 + 2 x 3 – 3 x 4 = 9;

x 1 + 3 x 2 – 3 x 3 – x 4 = –1.

Р е ш е н и е. Составим матрицу В и преобразуем ее. Для удобства вычислений отделим вертикальной чертой столбец, состоящий из свободных членов:

1 –2 1 1 –1

Умножим первую строку матрицы В последовательно на 3, 2 и 1 и вычтем соответственно из второй, третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Третью строку матрицы умножим на 3 и вычтем ее из второй строки. Затем новую вторую строку умножим на 3 и на 5 и вычтем из третьей и четвертой строк. Получим матрицу, эквивалентную исходной:

1 –2 1 1 –1

Из коэффициентов последней матрицы составим систему, равносильную исходной:

x 1 – 2 x 2 + x 3 + x 4 = –1;

X 2 – 6 x 3 + 8 x 4 = –28;

Решим полученную систему методом подстановки, двигаясь последовательно от последнего уравнения к первому. Из четвертого уравнения x 4 = –1 , из третьего х 3 = 3 . Подставив значения х 3 и x 4 во второе уравнение, найдем x 2 = 2 . Подставив значения x 2 , x 3 , x 4 в первое уравнение, найдем x 1 = 1.

Теорема совместности Кронекера – Капелли звучит следующим образом: Для того, чтобы система неоднородных линейных уравнений была совместной, необходимо и достаточно, чтобы ранг расширенной матрицы системы был равен рангу её основной матрицы. Рассмотрим следующий пример:

5 x 1 – x 2 + 2 x 3 + x 4 = 7;

2 x 1 + x 2 – 4 x 3 – 2 x 4 = 1;

x 1 – 3 x 2 + 6 x 3 – 5 x 4 = 0.

Ранг основной матрицы этой системы равен 2, так как сцществует отличный от нуля минор второго порядка этой матрицы, например

5 –1 = 7,

а все миноры третьего порядка равны нулю.

Ранг расширенной матрицы этой системы равен 3, так как существует отличный от нуля минор третьего порядка этой матрицы, например

5 –1 7

Согласно критерию Кронекера – Капелли система несовместна, т.е. не имеет решений.

В процессе работы я узнала много нового: какие действия можно выполнять над матрицами, какой путь решения систем линейных уравнений наиболее простой и быстрый, а так же многие другие теоретические вопросы и провела практические исследования, приводя примеры в тексте.

Тема решения систем линейных уравнений предлагается на вступительных экзаменах в различные математические вузы, на выпускных экзаменах, поэтому умение их решать очень важно.

Реферат может использоваться как учащимися, так и преподавателями в процессе факультативных занятий, как пособие для самостоятельного изучения по теме „Способы решения систем линейных уравнений ”, а также в качестве дополнительного материала.

МОУ Гимназия № 11

Способы решения систем линейных уравнений

МОУ Гимназия № 11

Способы решения систем линейных уравнений

Реферат по математике

Ученица 9 2 класса

Введение. 2

Глава I. Матрицы и действия над ними. 5

1.1. Основные понятия. –

1.2. Действия над матрицами. 8

1.3. Обратная матрица. 11

1.4. Ранг матрицы. 16

Глава II. Системы линейных уравнений. 23

2.1. Основные понятия. –

2.2. Система n линейных уравнений с n неизвестными. Правило

2.3. Однородная система n линейных уравнений с n

2.4. Метод Гаусса решения общей системы линейных

2.5. Критерий совместности общей системы линейных

Список литературы. 46

Многие теоретические и практические вопросы приводят не к одному уравнению, а к целой системе уравнений с несколькими неизвестными. Особенно важен случай системы линейных уравнений , т.е. системы m уравнений 1ой степени с n неизвестными:

a 11 x 1 + … + a 1n x n = b 1 ;

a 21 x 1 + … + a 2n x n = b 2 ;

a m1 x 1 + … + a mn x n = b m .

Здесь x 1 , … , x n – неизвестные, а коэффициенты записаны так, что индексы при них указывают на номер уравнения и номер неизвестного. Значение систем 1ой степени определяется не только тем, что они простейшие. На практике часто имеют дело с заведомо малыми величинами, старшими степенями которых можно пренебречь, так что уравнения с такими величинами сводятся в первом приближении к линейным. Не менее важно, что решение систем линейных уравнений составляет существенную часть при численном решении разнообразных прикладных задач. Ещё Г.Лейбниц (1693) обратил внимание на то, что при изучении систем линейных уравнений наиболее существенной является таблица, состоящая из коэффициентов, и показал, как из этих коэффициентов (в случае m = n ) строить так называемые определители , при помощи которых исследуются системы линейных уравнений. Впоследствии такие матрицы, или матрицы , стали предметом самостоятельного изучения, так как обнаружилось, что их роль не исчерпывается приложениями к теории систем линейных уравнений. Современная алгебра, понимаемая как учение об операциях над любыми математическими объектами, является одним из разделов математики, формирующих общие понятия и методы для всей математики. Для современной алгебры характерно то, что в центре внимания оказываются свойства операций, а не объектов, над которыми проводятся данные операции. Классическим разделом алгебры является линейная алгебра , т.е. теория

векторных пространств и модулей, частью которых являются сформировавшиеся ещё в XIX веке теория линейных уравнений и теория матриц. Идеи и методы линейной алгебры применяются во многих разделах математики. Так, основным предметом изучения функционального анализа являются бесконечномерные векторные пространства.

Г.Крамером в 1750 году было установлено правило, применимое к любой системе n линейных уравнений c n неизвестными. Оно носит название правила Крамера . Построение полной теории произвольных систем линейных уравнений было закончено только спустя 100 лет Л.Кронекером.

Применение правила Крамера при практическом решении большого числа линейных уравнений может встретить различные трудности, так как нахождение определителей высокого порядка связано с весьма большими вычислениями. Поэтому были разработаны методы численного (приближённого) решения систем линейных уравнений, наиболее известным из которых является метод Гаусса . Система линейных уравнений может иметь как одно единственное решение ( определённая система ), так и несколько (и даже бесконечное множество) решений ( неопределённая система ); может также оказаться, что система линейных уравнений не имеет ни одного решения ( несовместная система ). Вопрос о совместности системы линейных уравнений, т.е. вопрос о существовании решения системы линейных уравнений, решается сравнением ранга матриц [ а ij ] и [ a ij , b j ]. Если ранги совпадают, то система совместна; если ранг матрицы В строго больше ранга матрицы А , то система несовместна ( теорема Кронекера-Капелли ).

Несколько уравнений вида a 1 x 1 + …+ a n x n = b образуют систему линейных уравнений

a j1 x 1 + …+ a jn x n = b j , j = 1, …, m,

которую можно записать как

x 1 a 1 + …+ x n a n = b,

где а 1 , …, а n , b m -мерные векторы, являющиеся столбцами расширенной матрицы В системы. Отсюда следует, что различные линейные уравнения в функциональных пространствах, линейные дифференциальные уравнения, линейные интегральные уравнения

являются бесконечномерными аналогами обычных систем линейных уравнений.

Способы решения систем линейных уравнений – очень интересная и важная тема. Системы уравнений и методы их решения рассматриваются в школьном курсе математики, но недостаточно широко. А для того, чтобы перейти к исследованию данной темы, также нужно было познакомиться с темой матриц и определителей. Этот же материал вообще в школьной программе не изучается. В процессе знакомства с данной работой приобретаются навыки, с помощью которых в последующем решение систем линейных уравнений станет намного проще, понятнее и быстрее.

Цель моей работы заключается в том, чтобы изучить различные способы решения систем линейных уравнений для применения их на практике. Для достижения любой цели необходимо выполнить какие-то определенные задачи. Мне нужно выполнить следующие задачи: исследовать литературу по темам матриц, определителей и систем линейных уравнений; изучить современное состояние данного вопроса; отобрать и классифицировать исследуемый материал; а также провести практическую часть работы.

Глава I. Матрицы и действия над ними.

Матрица размерами m Ч n – совокупность mn чисел, расположенных в виде прямоугольной таблицы из m строк и n столбцов, например (обозначим за А )

А = 3 10 7 — матрица.

Числа, из которых состоит матрица, называются элементами матрицы. В общем виде матрицы:

а 11 a 12 … a 1n

a 21 a 22 … a 2n

M = a 31 a 32 … a 3n

a m1 a m2 … a mn

они обозначаются буквами с двумя индексами: 1ый индекс указывает номер строки, а 2ой – номер столбца, в которых содержится этот элемент.

Если m = n , то матрица называется квадратной , а число строк (или столбцов) – её порядком .

Две матрицы, имеющие одинаковое количество строк и столбцов, называются матрицами одинакового типа. Две матрицы А = [ a ij ] и В = [ b ij ] одинакового типа называются равными , если a ij = b ij при всех i и j .

Матрица, состоящая из одной строки (одного столбца), называется матрицей-строкой ( матрицей-столбцом ), а матрица, у которой все элементы а ij = 0 , – нулевой или нуль матрицей.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ , а элементы квадратной

матрицы порядка n ,сумма индексов каждого из которых равна n+1 , –

Сумма элементов главной диагонали квадратной матрицы называется следом матрицы. Квадратные матрицы, у которых все элементы вне главной диагонали равны нулю, называются диагональными (обозначается Е ):

1 0 … 0

Е = 0 1 … 0

Квадратная матрица, все элементы которой, стоящие ниже (выше) главной диагонали, равны нулю, называется треугольной :

a 11 а 12 … а 1n b 11 0 … 0

А = 0 а 22 … а 2n ; B = b 21 b 22 … 0

0 0 … a nn b n1 b n2 … b nn

Диагональная матрица является частным случаем треугольной. Преобразование элементов квадратной матрицы, состоящее в замене строк соответствующими столбцами, называется транспонированием матрицы. Таким образом, если

a 11 a 12 … a 1n

A = a 21 a 22 … a 2n ;

a n1 a n2 … a nn

a 11 a 21 … a n1

A T = a 12 a 22 … a n2 .

a 1n a 2n … a nn

Определитель n -го порядка матрицы

а 11 а 12 … а 1n

А = а 21 а 22 … а 2n

а n1 а n2 … а nn

а 11 а 12 … а 1n

∆ = а 21 а 22 … а 2n = ∑ (-1) I(k , k , …, k ) a 1k a 2k … a nk

а n1 а n2 … а nn

Здесь суммирование распространяется на всевозможные перестановки индексов элементов а ij , т.е. на всевозможные перестановки ( k 1 , k 2 , …, k n ). Числа а ij называют элементами определителя .

Квадратная матрица, определитель которой отличен от нуля, называется невырожденной, а матрица с определителем, равным нулю – вырожденной .

Определитель обладает некоторыми свойствами. Перечислим их:

При транспонировании матрицы её определитель не изменяется.

2. Если все элементы некоторой строки определителя состоят из

нулей, определитель равен нулю.

3.От перестановки двух строк определитель меняет знак.

Определитель, содержащий две одинаковые строки, равен нулю.

Общий множитель всех элементов некоторой строки определителя можно вынести за знак определителя, или, если все элементы некоторой строки определителя умножить на одно и тоже число, то определитель умножается на это число.

Определитель, содержащий две пропорциональные строки, равен нулю.

Если все элементы i -й строки определителя представлены в виде суммы двух слагаемых, то определитель равен сумме двух определителей, у которых все строки, кроме i -й, те же, что и у данного определителя; i -я строка определителя состоит из первых слагаемых элементов i -й строки данного определителя, а i -я

строка другого – из вторых слагаемых элементов i -й строки.

Определитель не изменяется, если к элементам одной строки прибавить соответствующие элементы другой строки, умноженные на одно и тоже число.

1.2. Действия над матрицами.

Основные операции, которые производятся над матрицами, – сложение, вычитание, умножение, а также умножение матрицы на число. Указанные операции являются основными операциями алгебры матриц – теории, играющей весьма важную роль в различных разделах математики и естествознания.

Суммой двух матриц А и В одинаковых размеров называется матрица того же размера, элементы которой равны сумме соответствующих элементов матриц А и В . Таким образом, если

а 11 … а 1n b 11 … b 1n

А = ………….. ; (1) В = …………… , то (2)

a m1 … а mn b m1 … b mn

a 11 + b 11 … a 1n + b 1n

a m1 + b m1 … a mn + b mn

Операция нахождения суммы матриц называется сложением матриц и распространяется на случай конечного числа матриц одинаковы размеров.

Так же, как и сумма, определяется разность двух матриц

a 11 – b 11 … a 1n – b 1n

A – B = ………………………

a m1 – b m1 … a mn – b mn

Операция нахождения разности двух матриц называется вычитанием матриц . Проверкой можно убедиться, что операция сложения матриц удовлетворяет следующим свойствам:

А + В = В + А ; (коммутативность)

А + (В + С) = (А + В) + С ; (ассоциативность)

Здесь А, В, С – произвольные матрицы одинаковых размеров; О – нулевая матрица того же размера.

Произведением матрицы А = [а ij ] на число λ называется матрица, элементы которой получаются из соответствующих элементов матрицы А умножением их на число λ. Произведение обозначим

λА. Таким образом от умножения матрицы (1) на число, получим:

a 11 … a 1n λa 11 … λa 1n

a m1 … a mn λa m1 … λa mn

Операция нахождения произведения матрицы на число называется умножением матрицы на число. Матрица –А = –1А называется противоположной матрице А . Проверкой можно убедиться, что операция умножения матрицы на число удовлетворяет следующим свойствам:

Здесь А, В – произвольные матрицы; μ, λ — произвольные числа; О – нулевая матрица.

Произведение АВ матрицы А на матрицу В определяется только в том случае, когда число столбцов матрицы А равно числу строк матрицы В . Пусть матрицы А и В такие, что число столбцов матрицы А равно числу строк матрицы В :

а 11 … а 1 n b 11 … b 1n

a m1 … a mn b m1 … b mn

В этом случае произведением матрицы А на матрицу В , которые

заданы в определенном порядке ( А – 1ая, В – 2ая ), является матрица С , элемент которой с ij определяется по следующему правилу:

c ij = a i1 b 1j + a i2 b 2j + … + a in b nj = ∑ n α = 1 a iα b αj,

где i = 1,2, …, m ; j = 1, 2, …, k.

Для получения элемента с ij матрицы произведения С = АВ нужно элементы i -й строки матрицы А умножить на соответствующие элементы j -го столбца матрицы В и полученные произведения сложить. Например, если:

1 2 3 7 8

А = ; В = 9 10 , то (1)

4 5 6 11 12

1 7 + 2 9 + 3 11 1 8 + 2 10 + 3 12 58 64

АВ = = (2)

4 7 + 5 9 + 6 11 4 8 + 5 10 + 6 12 139 154

Число строк матрицы С = АВ равно числу строк матрицы А , а число столбцов – числу столбцов матрицы В .

Операция нахождения произведения двух матриц называется умножением матриц . Умножение матриц некоммутативно, т.е.

АВ ≠ ВА . Убедимся в примере матриц (1). Перемножив их в обратном порядке, получим:

39 54 69

Сравнив правые части выражений (2) и (3), убедимся, что АВ ≠ ВА.

Матрицы А и В , для которых АВ = ВА, называются перестановочными . Например:

1 2 -3 2

А = ; В = перестановочны, т.к.

-2 0 -2 -4

-7 -6

Проверкой можно показать, что умножение матриц удовлетворяет следующим свойствам:

А(ВС) = (АВ)С ; (ассоциативность)

А(В + С) = АВ + АС . (дистрибутивность)

Здесь А, В, С – матрицы соответствующих определению умножения матриц размеров; λ — произвольное число.

Операция умножения двух прямоугольных матриц распространяется на случай, когда число столбцов в 1ом множителе равно числу строк во 2ом, в остальных случаях произведение не определяется. А также, если матрицы А и В – квадратные одного и того же порядка, то умножение матриц всегда выполнимо при любом порядке следования сомножителей.

Пусть дана квадратная матрица

a 11 … a 1n

= A – её определитель.

Если существует матрица Х такая, что АХ = ХА = Е, где Е – единичная матрица, то матрица Х называется обратной по отношению к матрице А , а сама матрица А – обратимой . Обратная матрица для А обозначается А -1 .

Теорема 1.1. Для каждой обратимой матрицы существует только одна обратная ей матрица.

Д о к а з а т е л ь с т в о. Пусть для матрицы А наряду с матрицей Х существует еще хотя бы одна отличная от Х обратная матрица, которую обозначим за Х 1 . Тогда должны выполняться следующие условия: ХА = Е, АХ 1 = Е . Умножив второе равенство на матрицу Х , получим ХАХ 1 = ХЕ =Х. Но, т.к. ХА = Е , то предыдущее равенство можно записать в виде ЕХ 1 = Х или Х = Х 1 .

Т е о р е м а д о к а з а н а.

Найдем теперь выражение для матрицы А -1 при условии, что матрица

А – обратимая. Пусть дана обратимая квадратная матрица А с элементами а ij . Обозначим через А ij алгебраическое дополнение элемента а ij в определителе ∆ матрицы А и составим матрицу В :

А 11 A 21 … A n1

A 1n A 2n … A nn

Заметим, что в i -й строке матрицы В расположены алгебраические дополнения элементов j -го столбца определителя ∆ . Матрица (4) называется присоединённой для матрицы А . Докажем, что матрицы А и В удовлетворяют матричному равенству

Для этого вычислим элемент, стоящий в i -й строке и j -м столбце произведения АВ . Искомый элемент равен сумме произведений элементов i -й строки матрицы А на соответствующие элементы j -го столбца матрицы В:

a i1 A j1 + a i2 A j2 + … + a in A jn . (6)

Согласно правилу разложения определителя по элементам строки (или столбца) выражение (6) равно определителю ∆ при i = j и нулю при i ≠ j . Следовательно, мы установили, что произведение АВ есть матрица вида

∆ 0 … 0 1 0 … 0

Таким образом, АВ = ∆Е. Аналогично доказывается и равенство

Пусть теперь А – невырожденная матрица (т.е. ∆ ≠ 0 ). Тогда, умножив обе части равенства (5) на числовой множитель 1/∆ , получим

Сравнивая равенства (5) и (7) и учитывая единственность обратной

матрицы, замечаем, что

Таким образом, доказано, что, во-первых, обратимы только невырожденные матрицы, и, во-вторых, для матрицы А обратной является матрица

Пусть А невырожденная матрица, тогда АА -1 = Е. Переходя в этом равенстве к определителям, получаем А А -1 = 1 , откуда

А -1 = А -1 .

Таким образом, определитель обратной матрицы равен обратной величине определителя данной матрицы. Из этого следует, что если матрица А – невырожденная, то обратная матрица А -1 также невырожденная.

Пусть теперь дана матрица А -1 . Для неё обратной будет матрица

(А -1 ) -1 .Поэтому из определения обратной матрицы будем иметь

А -1 (А -1 ) -1 = Е . Умножив это соотношение слева на А , получим

АА -1 (А -1 ) -1 = АЕ или (А -1 ) -1 = А.

Пример 1. Найти матрицу обратную матрице

Р е ш е н и е. Проверим, обратима матрица А или нет, т.е. является ли она невырожденной:

1 2 3 1 2 5

∆ А = –3 –1 1 = –3 –1 0 = 5 –3 1 = 5 (–3 + 2) = –5 ≠ 0.

2 1 –1 2 1 0 2 1

Найдем алгебраические дополнения всех элементов матрицы А :

А 11 = –1 1 = 0; А 12 = –­­ –3 1 = –1;

А 13 = –3 –1 = –1; А 21 = – 2 3 = 5;

А 22 = 1 3 = –7; А 23 = – 1 2 = 3;

А 31 = 2 3 = 5; А 32 = 1 3 = –10;

–1 1 –3 1

А 33 = 1 2 = 5.

Составим присоединённую матрицу для матрицы А :

Отсюда находим обратную матрицу:

Пример 2. Найти неизвестную матрицу Х из уравнения АХ = В , если:

Р е ш е н и е. Умножив обе части данного матричного уравнения слева на матрицу А -1 , получим:

А -1 АХ = А -1 В; Х = А -1 В.

Найдем А -1 : ∆ А = 1, А 11 = 2, А 12 = -1, А 21 = -3, А 22 = 1 , следовательно,

Найдем матрицу Х:

Х = А -1 В = 2 -3 3 4 = 9 5 .

1.4. Ранг матрицы.

Рассмотрим произвольную прямоугольную матрицу

а 11 … а 1 n

Выделим некоторое число k строк этой матрицы и такое же число столбцов. Элементы матрицы (8), стоящие на пересечение выделенных строк и столбцов, образуют квадратную матрицу k -го порядка. Определитель этой матрицы называется минором k -го порядка матрицы А . Если не все числа а ij матрицы А равны нулю, то всегда можно указать число r такое, что у матрицы А имеется минор,

имеющий порядок r + 1 и выше, равен нулю.

Число r , представляющее собой наибольший из порядков отличных от нуля миноров матрицы А , называется рангом матрицы и обозначается rangA . Если все элементы а ij равны нулю, то ранг матрицы принимается равным нулю. Отличный от нуля минор r -го порядка матрицы A (таких миноров у матрицы А может быть несколько, но все они имеют один и тот же порядок r ) называется базисным минором матрицы А. Строки и столбцы, из которых построен базисный минор, называют базисными . Понятие ранга матрицы широко применяется в различных приложениях теории матриц.

Выделим в матрице А произвольно k строк. Пусть это будут строки

а α 1 1 , а α 1 2 , … , а α 1 n ;

а α 2 1 , а α 2 2 , … , а α 2 n ;

а α k 1 , а α k 2 , … , а α k n .

Если существуют такие числа λ 1 , λ 2 , …, λ k , не все равные нулю, что для элементов некоторой другой, отличной от выделенной, строки i выполняются следующие соотношения:

то говорят, что i -я строка линейно выражается через строки

α 1 , α 2 , …, α k . В случае, если равенства (9) выполняются тогда и только тогда, когда все числа λ 1 , λ 2 , …, λ k – нули, то говорят, что i -я строка линейно зависима от строк α 1 , α 2 , …, α k . Аналогичным образом можно ввести понятие линейной зависимости и линейной независимости между столбцами матрицы.

Теорема 1.2.(о базисном миноре) Любая строка матрицы А является линейной комбинацией её базисных строк.

Д о к а з а т е л ь с т в о. Предположим, что базисный минор матрицы (8) расположен в её верхнем левом углу, т.е. в первых r строках и первых r столбцах. Такое предположение не уменьшает общности рассуждения. Пусть k – номер любой строки матрицы А ( k может принимать значения от 1 до m ), а l – номер любого её столбца (l может принимать значения от 1 до n ).

Рассмотрим следующий минор матрицы (8):

a 11 a 12 … a 1r a 1 l

a 21 a 22 … a 11 a 1l

a r1 a r2 … a rr a rl

………………………

a k1 a k2 … a kr a k l

Если k r , то ∆ = 0, так как в нем имеется две одинаковые строки. Аналогично ∆ = 0 и при l r .

Разложив определитель ∆ по элементам последнего столбца, получим

a 1 l A 1 l + a 2 l A 2 l + … + a r l A r l + a k l A k l = 0,

Придавая l значения, получаем:

Равенства (11) показывают, что k -я строка матрицы А является линейной комбинацией первых r строк с коэффициентами

λ 1 , λ 2 , …, λ r . Так как эти равенства справедливы при любом k от 1 до n , то т е о р е м а д о к а з а н а полностью.

Основываясь на теореме о базисном миноре, докажем справедливость следующих предложений.

1. Ранг матрицы не изменяется, если к ней приписать строку, являющуюся линейной комбинацией строк матрицы.

Действительно, базисные строки исходной матрицы будут также базисными строками в дополнительной матрице, так как строку из линейной комбинации всех строк исходной матрицы можно

представить как линейную комбинацию базисных строк.

2. Ранг матрицы А не изменится, если вычеркнуть из неё строку, являющуюся линейной комбинацией остальных строк матрицы.

В самом деле, исходная матрица А получается из матрицы с вычеркнутой строкой путем добавления строки, являющейся линейной комбинацией строк матрицы А . Таким образом, предложение 2 сводится к предложению 1.

Нахождение ранга матрицы, как это следует из его определения, требует вычисления большого числа миноров (т.е. определителей разных порядков) матрицы. Однако этот процесс можно упростить: вычисляя ранг матрицы, гораздо удобнее переходить от миноров меньших порядков к минорам больших порядков. Если найден минор r -го порядка, отличный от нуля, то при следующем шаге нужно вычислять миноры ( r + 1 )-го порядка, окаймляющие прежний минор. Если все они равны нулю, то ранг матрицы равен r.

Другим простым способом вычисления ранга матрицы является метод Гаусса, основанный на так называемых элементарных преобразованиях , выполняемых над матрицей. Такими преобразованиями будем считать:

вычеркивание строки состоящей из нулей;

прибавление к элементам одной из строк соответствующих элементов других строк, умноженных на любое число;

перестановку двух столбцов.

Теорема 1.3. Элементарные преобразования не изменяют ранга матрицы.

Д о к а з а т е л ь с т в о. Преобразование 1 следует из теоремы о линейной комбинации элементов любой строки матрицы. В самом деле, так как нулевая строка не может быть базисной, то её исключение, как и включение, не изменит ранга матрицы.

Преобразование 3 очевидно, так как перестановка двух столбцов матрицы не нарушает никаких линейных зависимостей между её строками.

Остается рассмотреть преобразование 2. Пусть к k элементам i -ой строки матрицы А прибавляются соответствующие элементы j -ой строки, умноженные на число k . Указанное преобразование можно выполнить в два приёма: сначала добавить к матрице А новую строку

с элементами a il + ka jl , вставив её после i -й строки, затем из полученной матрицы вычеркнуть j -ю строку. При первой операции ранг полученной матрицы будет равен рангу матрицы А согласно предложению 1, а при второй операции – согласно предложению 2.

Т е о р е м а д о к а з а н а.

Метод Гаусса вычисления ранга матрицы заключается в том, что путем элементарных преобразований можно привести данную матрицу А к виду

b 1 l b 1 2 … b 1 r … b 1 n

B = 0 b 22 … b 2r … b 2n

0 0 … b rr … b rn

в котором все диагональные элементы b 1 l , b 22 , …, b rr отличны от нуля, а элементы других строк, расположенные ниже диагональных, равны нулю.

Учитывая, что ранг не меняется при элементарных преобразованиях, имеем rang A = rang B .

Пример 1. Вычислить ранг матрицы

1 –2 –1 3

Р е ш е н и е. Выберем минор второго порядка, стоящий в верхнем левом углу:

М 2 = 1 –2 = 4.

Так как М 2 ≠ 0, то, следовательно, ранг матрицы не меньше двух. Составляем миноры третьего порядка, окаймляющие минор второго порядка отличный от нуля. Для этого добавим к М 2 третью строку и третий столбец:

М 3 = 2 0 1 = 2 + 4 + 2 – 8 = 0.

Заменим третий столбец четвертым:

М′ 3 = 2 0 –1 = –2 – 12 – 2 + 16 = 0.

В миноре М 3 заменим третью строку четвертой:

1 –2 –1

М″ 3 = 2 0 1 = –14 + 12 + 6 – 4 = 0.

В миноре М′ 3 заменим третью строку четвертой:

1 –2 3

М′″ 3 = 2 0 –1 = 14 – 36 – 6 + 28 = 0.

Все миноры третьего порядка, окаймляющие минор второго порядка, равны нулю. А это значит, что rang A = 2.

Пример 2. Найти ранг матрицы

1 2 3 4 5

Р е ш е н и е. Произведем следующие элементарные преобразования над матрицей А . Путем умножения элементов строк на числа и сложения их с соответствующими элементами других строк добьемся, чтобы все элементы первого столбца, кроме первого, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на два, получим

1 2 3 4 5

Применим теперь элементарные преобразования таким образом, чтобы в матрице В все элементы второго столбца, кроме первых двух, были бы нулями. Один нуль там уже имеется, поэтому, сложив четвертую строку со второй, умноженной на 2, получим

Оставив три строки матрицы С без изменения и сложив четвертую строку с третьей, умноженной на –1, получим

1 2 3 4 5

Очевидно, что ранг матрицы D равен трем, так как минор третьего порядка

1 2 5

а все миноры четвертого порядка, окаймляющие минор М , равны нулю. На основании теоремы 1.3. заключаем, что rang А = 3.

Глава II. Системы линейных уравнений.

2.1. Основные понятия

В самом общем случае система линейных уравнений имеет следующий вид:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (13)

a m1 x 1 + a m2 x 2 + …+ a mn x n = b m ;

где х 1 , х 2 , … , х n — неизвестные, значения которых подлежат нахождению. Как видно из структуры системы (2.1), в общем случае число неизвестных не обязательно должно быть равно числу уравнений самой системы. Числа а 11 , а 12 , … , а mn называются коэффициентами системы , а b 1 , b 2 , … , b m — её свободными членами. Для удобства коэффициенты системы а ij

( i = 1, 2, . . ., m ; j = 1, 2, . . .,n ) и свободные члены b i ( i=1, 2, . . .,m ) снабжены индексами. Первый индекс коэффициентов а ij соответствует номеру уравнения, а второй индекс – номеру неизвестной х i , при которой коэффициент поставлен. Индекс свободного члена b i соответствует номеру уравнения, в которое входит b i .

Дадим определения некоторых понятий, необходимых при изучении системы уравнений. Решением системы уравнений (13) называется всякая совокупность чисел α 1 , α 2 , α n , которая будучи поставлена в систему (13) на место неизвестных х 1 , х 2 , …, х n , обращает все уравнения системы в тождества. Система уравнений называется совместной , если она имеет хотя бы одно решение, и несовместной , если не имеет решений. Совместная система уравнений называется определенной , если она имеет одно единственное решение, и неопределенной , если она имеет по крайней мере два различных решения.

Две системы уравнений называются равносильными или эквивалентными , если они имеют одно и тоже множество решений.

2.2. Система n линейных уравнений с n

неизвестными. Правило Крамера.

Пусть дана система n линейных уравнений с n неизвестными:

a 11 x 1 + a 12 x 2 + …+ a 1n x n = b 1 ;

a 21 x 1 + a 22 x 2 + …+ a 2n x n = b 2 ; (14)

a n1 x 1 + a n2 x 2 + …+ a nn x n = b n ;

Определителем системы (14) называется определитель, составленный из коэффициентов а ij .

a 11 a 12 … a 1n

∆ = a 21 a 22 … a 2n

a n1 a n2 … a nn

Рассмотрим случай, когда ∆ ≠ 0. Докажем, что в этом случае система (14) является определенной, т.е. имеет одно единственное решение. Как и ранее, через А ij будем обозначать алгебраическое дополнение элемента а ij в определителе ∆.

Умножим каждое уравнение системы (14) на алгебраические дополнения элементов i -го столбца определителя ∆ , т.е. первое уравнение умножим на А 1i , второе – на А 2i и т.д., наконец, последнее уравнение – на А ni , а затем все полученные уравнения системы сложим. В результате будем иметь

( a 11 x 1 + a 12 x 2 + …+ a 1i x i + …+ a 1n x n ) A 1i + ( a 21 x 1 + a 22 x 2 + …+ a 2i x i +

+ …+ a 2n x n ) A 2i + …+ ( a n1 x 1 + a n2 x 2 + …+ a ni x i + …+ a n x nn ) A ni = b 1 A 1i + b 2 A 2i + …+ b n A ni

или, сгруппировав члены относительно известных x 1 , x 2 , …, x n , получим

( a 11 A 1i + a 21 A 2i + …+ a n1 A ni ) x 1 + … +

+ ( a 1i A 1i + a 2i A 2i + …+ a ni A ni ) x i + … +

+ ( a 1n A 1i + a 2n A 2i + …+ a nn A ni ) x n =

= b 1 A 1i + b 2 A 2i + …+ b n A ni . (15)

Коэффициент при неизвестной х i равен определителю ∆, а коэффициенты при всех других неизвестных равны нулю. Свободный

член уравнения (15) отличается от коэффициента при х 1 тем, что коэффициенты а 1i , а 2i , …, а ni заменены свободными членами

b 1 , b 2 , …, b n уравнения (14). Следовательно, выражение

b 1 A 1i + b 2 A 2i + …+ b n A ni есть определитель i -го порядка, отличающийся от определителя только i -м столбцом, который заменен столбцом свободных членов. Обозначив этот определитель ∆ x i , будем иметь

a 11 a 12 … b 1 … a 1n


источники:

http://ronl.org/referaty/matematika/141613/

http://www.bestreferat.ru/referat-46762.html

Название: Способы решения систем линейных уравнений
Раздел: Рефераты по математике
Тип: реферат Добавлен 22:42:34 10 июля 2005 Похожие работы
Просмотров: 13600 Комментариев: 22 Оценило: 14 человек Средний балл: 3.9 Оценка: 4 Скачать