Реферат уравнения и их системы

Линейные системы уравнений — реферат

Тема: «Линейные системы уравнений»

1. Уравнения, векторы, матрицы, алгебра

2. Умножение матриц как внешнее произведение векторов

3. Нормы векторов и матриц

4. Матрицы и определители

5. Собственные значения и собственные векторы

6. Ортогональные матрицы из собственных векторов

7. Функции с матричным аргументом

8. Вычисление проекторов матрицы

Пример использования числовых характеристик матриц

10. Оценка величины и нахождение собственных значений

1. Уравнения, векторы, матрицы, линейная алгебра

Многие из рассмотренных нами задач сводились к формированию систем линейных алгебраических или дифференциальных уравнений, которые требовалось решить. Пока системы включали в себя не более трех-четырех переменных, их несложно было решать известными классическими методами: методом определителей (Крамера) или методом исключения переменных (Гаусса). С появлением цифровых вычислительных машин порядок алгебраических уравнений, решаемых методом исключений вырос в несколько десятков раз. Однако выявилось множество причин, по которым решение таких систем получить не удавалось. Появившиеся различные модификации метода исключения не привели к существенным улучшениям ситуации с получением решений. Появление же систем с количеством переменных более многих сотен и тысяч заставили обратиться и развивать итерационные методы и методы эквивалентных векторно-матричных преобразований применительно к решению линейных систем алгебраических уравнений.

Основные теоретические результаты были получены путем обобщения известных классических методов функционального анализа и алгебры конечномерных линейных пространств на векторно-матричные представления систем линейных алгебраических и дифференциальных уравнений.

Общая форма записи линейной системы алгебраических уравнений с n неизвестными может быть представлена следующим образом:

Здесь – неизвестные,

– заданные числа,

– заданные числовые коэффициенты.

Последовательность записи уравнений в системе и обозначение неизвестных в последней не играет роли. В этом плане удобно при анализе и исследованиях системы использовать упорядоченную индексацию натурального ряда для неизвестных, значений правых частей и коэффициентов в уравнениях, однозначно привязывая, тем самым, каждое слагаемое и каждое уравнение к определенной позиции в общей записи. В результате можно выделить в данной записи уравнений три позиционно упорядоченных неделимых объекта:

список переменных – ,

список правых частей – и

матрицу коэффициентов – .

Первые два объекта в линейной алгебре называют вектором-строкой , а второй – квадратной матрицей.

Операции с векторами, матрицами должны быть определены так, чтобы однозначно отображать допустимые эквивалентные преобразования исходной системы алгебраических уравнений. В предельных случаях задания векторов и матриц: , – аддитивные и мультипликативные операции должны переходить в аналогичные операции со скалярными величинами.

Если рассмотреть i- тую строку исходной системы

,

то в ней кроме упорядоченного расположения компонент присутствует упорядоченное по индексу j размещение коэффициентов , которые могут рассматриваться как вектор-строка . Результатом суммы покомпонентного перемножения двух векторов-строк должно быть число. В линейной алгебре такая операция с векторами определена и названа скалярным или внутренним произведением векторов:

.

Скалярное произведение линейно, так как обладает основными свойствами линейных преобразований , и коммутативно.

Определение скалярного произведения позволяет переписать исходную систему уравнений в виде вектора с компонентами из скалярных произведений:

.

Вторая форма представления векторов в форме столбцов более наглядна в смысле зрительного установления покомпонентного равенства двух векторов: стоящего слева от знака равенства и справа. Эта форма, форма вектора-столбца принята за каноническую (основную).

Левый вектор-столбец в записи каждой строки содержит вектор неизвестных и естественно желание вынести его за прямые скобки. Оставшиеся коэффициенты упорядочены, как в матрице . Теперь для представления исходной системы уравнений в виде несложно определить векторно-матричную операцию , результатом которой является вектор с i- той компонентой, равной .

Аксиоматическое построение линейной (векторной) алгебры с рассмотренными базовыми операциями позволило установить важные и полезные свойства, как самих объектов алгебры, так и их алгебраических выражений.

2. Умножение векторов и матриц

Среди n- мерных векторов и векторных операций над ними важно выделить сумму n векторов, умноженных на числовые константы:

,

которая при произвольном выборе в частности может оказаться нулевым вектором (с нулевыми компонентами) или одним из суммируемых векторов . Если нулевой вектор при суммировании не нулевых векторов можно получить лишь в случае, когда все , то такие векторы в наборе называют линейно независимыми . Такими векторами в частности будут единичные векторы , у которых все компоненты нулевые, кроме единичной компоненты, расположенной на j- строке.

Линейно независимый набор единичных векторов с геометрической точки зрения можно рассматривать как n- мерную систему координат. Набор компонент любого вектора в этой n- мерной системе определяет координаты точки конца вектора, исходящего из начала координат, а также являются длинами проекций вектора на координатных осях.

Среди матриц размера и операций с ними в первую очередь необходимо отметить операцию умножения матрицы на матрицу. Необходимость введения операции умножения матриц возникает уже при первом взгляде на полученную векторную форму записи линейного уравнения . Векторы слева и справа имеют равные компоненты. Так как коэффициенты в строках матрицы в общем произвольны по величине, то соответствующие компоненты вектора x не обязаны быть равными компонентам вектора y . Последнее означает, что умножение вектора x на матрицу A вызвало изменение длины и направления вектора x . Если аналогичное преобразование выполняется над вектором правой части до решения уравнения, то вектор левой части должен быть преобразован так же:

.

Фактически мы имеем дело с заменой системы координат. Рассмотрим методику вычисления коэффициентов результирующей матрицы уравнения:

,

где – элемент матрицы С , равный скалярному произведению вектор-строки матрицы В на вектор-столбец матрицы А .

Произведение матриц в общем случае не коммутативно. Ассоциативный и распределительный законы в матричных выражениях выполняются.

3. Нормы векторов и матриц

Интерпретация упорядоченного набора чисел, как вектора в многомерном пространстве, позволяет говорить и о его длине. В прямоугольной системе координат по известным длинам проекций на координатные оси длину самого вектора вычисляют, как корень квадратный из суммы квадратов проекций:

,

где – компоненты вектора ,

– евклидова норма вектора, его длина.

В качестве нормы в литературе иногда используют квадрат длины вектора или другое выражение с компонентами вектора, лишь бы оно обладало свойствами расстояния: было положительным, линейным и удовлетворяло неравенству треугольника.

Деление вектора на величину его нормы называют нормированием , т.е. приведением вектора к единичной длине.

Норма матрицы в принципе тоже может быть определена в виде корня квадратного из суммы квадратов ее элементов или другими выражениями со свойствами расстояний. Однако в ряде случаев работы с векторно-матричными выражениями нормы векторов и матриц должны быть согласованными ввиду того, что результатом произведения матрицы на вектор является опять же вектор. Если выражение для нормы вектора принято, то

,

где функция sup говорит о том, что из всех отношений норм, стоящих в числителе и знаменателе, взятых при любом векторе x , кроме нулевого, выбирается наименьшее, т.е. это функция выбора нижней границы значений. Согласованная матричная норма для евклидовой нормы вектора удовлетворяет неравенству

.

Нормы вектора и матрицы служат, в основном, для сопоставительной оценки матриц и векторов, указывая на возможный диапазон представления строгих числовых характеристик. К числу последних, в первую очередь, нужно отнести определители матриц, собственные значения и собственные векторы матриц и ряд других.

4. Матрицы и определители

Упорядоченный набор коэффициентов из системы линейных алгебраических уравнений используется для получения числовой характеристики, величина которой инвариантна по отношению к эквивалентным преобразованиям системы. Речь идет об определителе матрицы. Важное свойство определителей матрицы обнаруживается в связи с вычислением произведения матриц:

Учитывая это свойство и зная, что определитель единичной матрицы det(E )=1, можно найти матрицу B и ее определитель из уравнения:

откуда следует, что и .

Из свойств определителей нелишне помнить и такие:

где – транспонированная матрица A ,

n – размер квадратной матрицы A ,

– матрица перестановки строк или столбцов,

s, c= 0,1,…, n – число выполненных перестановок строк и / или столбцов.

Если обратная матрица исходной системы уравнений определена, то, используя эквивалентные преобразования их векторно-матричной записи, решение уравнений можно представить в следующем виде:

Умножив вектор правых частей на обратную матрицу, получим вектор решения.

Классический способ вычисления обратной матрицы использует определители и осуществляется по формуле:

,

где – алгебраическое дополнение, а – минор матрицы A , получаемый вычислением определителя матрицы A , в которой вычеркнуты j- тая строка и i- тый столбец.

Такой способ вычисления определителя представляет в основном теоретический интерес, так как требует выполнения неоправданно большого числа операций.

Очень просто вычисляется определитель, если матрица диагональная или треугольная. В этом случае определитель равен произведению диагональных элементов. Кстати и решения уравнений, имеющих такие матрицы коэффициентов, получаются тривиально. Поэтому основные усилия разработчиков методов решения алгебраических уравнений направлены на поиск и обоснование эквивалентных преобразований матрицы с сохранением всех ее числовых характеристик, но имеющих в конце преобразований диагональную или треугольную форму.

5. Собственные значения и собственные векторы

Рассмотрим теоретические основы и методы, позволяющие выполнять эквивалентные матричные преобразования.

Найдем вектор, который под воздействием матрицы A изменяет только свою величину, но не направление. Для системы уравнений это означает, что вектор решения должен быть пропорционален с некоторым коэффициентом вектору правой части:

В результате несложных преобразований получены однородные векторно-матричные уравнения в столбцовой и в строчной формах с некоторым числовым параметром и неизвестным вектором-столбцом x и вектором-строкой , представляющих собственное состояние системы. Однородная система может иметь отличное от нуля решение лишь в том случае, когда определитель ее равен нулю. Это следует из формул получения решения методом определителей (Крамера), в которых и определитель знаменателя, и определитель числителя оказываются равными нулю.

Полагая, что решение все же существует, т.е. и , удовлетворить уравнению можно только за счет приравнивания нулю определителя однородной системы:

Раскрыв определитель и сгруппировав слагаемые при одинаковых степенях неизвестного параметра, получим алгебраическое уравнение степени n относительно :

Это уравнение называется характеристическим уравнением матрицы и имеет в общем случае n корней, возможно комплексных, которые называются собственными значениями матрицы и в совокупности составляют спектр матрицы . Относительно n корней различают два случая: все корни различные или некоторые корни кратные.

Важным свойством характеристического уравнения матрицы A является то, что согласно теореме Гамильтона-Кели, матрица A удовлетворяет ему:

где k- тая степень матрицы.

Подставляя каждое в однородную систему, получим векторно-матричные уравнения для нахождения векторов или векторов-строк . Эти векторы называются соответственно правыми собственными векторами и левыми собственными векторами матрицы.

Решение однородных уравнений имеет некоторую специфику. Если (как в равной мере и ) является решением, то, будучи умноженным на произвольную константу, оно тоже будет являться решением. Поэтому в качестве собственных векторов берут такие векторы, которые имеют норму, равную единице, и тогда:

Если все собственные числа различны, то собственные векторы матрицы A образуют систему n линейно независимых векторов таких, что

6. Ортогональные матрицы из собственных векторов

Из правых собственных векторов можно составить матрицу T, а из левых – матрицу , которые обладают уникальными свойствами по отношению к матрице A .

Умножив матрицу A слева на матрицу , а справа – на матрицу T , после несложных преобразований получим:

.

Каждое скалярное произведение в матрице, принимая во внимание линейную независимость собственных векторов, полученных для различных собственных значений, можно преобразовать так:

Поэтому, результатом преобразования матрицы A будет диагональная матрица с собственными значениями, расположенными на диагонали:

Если вместо A взять единичную матрицу и проделать аналогичные преобразования, то станет очевидным равенство , откуда следует . Последнее позволяет для преобразования матрицы A в диагональную обходиться только системой правых собственных векторов-столбцов:

Последнее показывает, что умножение матрицы A на слева и на S справа, где S – произвольная не особая матрица, преобразует ее в некоторую матрицу B , которая имеет определитель, равный определителю матрицы A . Такие преобразования матриц называют эквивалентными (подобными ).

Продолжая использовать T- матрицу, несложно получить следующие важные результаты:

.

7. Функции с матричным аргументом

Пусть теперь задана некоторая матричная функция от матрицы A :

.

С другой стороны очевидно и обратное

,

где – матрица с одной единицей на i -том месте диагонали ( ).

где проекторы матрицы A , образуемые умножением одноименных правых и левых собственных векторов по правилам умножения прямоугольных матриц с размерами соответственно и . Сумма проекторов .

Проекторы обладают свойствами идемпотентных матриц , т.е. матриц, все степени которых равны первой. Для невырожденных проекторов ( ) матрицы A ( ) справедливо:

Представление функции от матрицы A в виде взвешенной суммы проекций называется спектральным разложением матричной функции по собственным значениям матрицы A :

.

Если в качестве матричных функций взять и , то их спектральные разложения будут следующими:

8. Вычисление проекторов матрицы

Проекторы матрицы можно также вычислить, воспользовавшись интерполяционным многочленом Лагранжа с матричным аргументом:

По известному спектру проекторы матрицы можно найти и методом неопределенных коэффициентов. Для чего выбирают такие функции от матрицы A , которые вычисляются очевидным образом, например, такие:

Записывая разложение для каждой функции, получим следующую систему линейных уравнений относительно проекторов:

В случае, когда в спектре матрицы имеются кратные собственные значения, вычисление проекторов осуществляется по интерполяционным формулам Лагранжа, учитывающим еще и заданные значения производных в отдельных точках. Разложение матричной функции по значениям ее на спектре в этом случае имеет вид:

где – значения i -тых произ-водных функции в точках, соответствующих различным (не кратным) корням характеристического многочлена,

– число кратных корней ,

– проекторы кратных корней, в выражении которых содержатся

– проекторы различных корней.

9. Пример использования числовых характеристик матриц

Знание собственных значений матрицы и ее проекторов позволяет выполнять вычисления аналитических функций получающихся, например, при решениях систем линейных дифференциальных уравнений, при исследованиях эквивалентных матричных преобразований и пр.

Для примера построим матрицу с заданными собственными значениями и собственными векторами, основанными на векторах .

Сначала необходимо убедиться в линейной независимости исходных векторов и добиться того, чтобы левые и правые одноименные собственные векторы оказались ортогональными, т.е. . Проверка линейной независимости может быть объединена с процессом ортогонализации заданной системы векторов методом Грама-Шмидта .

Для заданных векторов построим систему векторов таких, что , следующим образом:

Откуда последовательно находятся коэффициенты :

Взаимной ортогональности векторов v можно было бы добиваться и так, чтобы каждый был ортогонален каждому , положив и приравняв нулю скалярные произведения :

Определитель этой системы называют определителем Грама :

,

где — матрица, в общем случае комплексно сопряженная с матрицей

, составленной из заданных векторов.

Если грамиан положителен, а он всегда неотрицателен, то векторы линейно независимы, а если равен нулю, то зависимы. Это один из способов проверки конкретного набора векторов на их линейную независимость.

Для заданного выше набора векторов определитель произведения матрицы X на транспонированную X * будет равен

Таким образом, заданная система векторов линейно независима. Для построения ортонормированной системы векторов последовательно вычислим коэффициенты и ортогональные векторы:

После нормирования векторы образуют правую систему собственных векторов. Транспонированная Т -матрица с этими векторами есть -матрица ( ); ее строки являются собственными левосторонними векторами:

.

Внешнее (матричное) произведение каждого нормированного вектора самого на себя дает нам проекторы искомой матрицы:

Умножая каждое собственное значение из заданного набора на свой проектор и суммируя, получим:

.

Аналогично получается обратная матрица:

.

С помощью этих же проекторов вычисляется любая аналитическая функция, аргументом которой является матрица A :

.

10. Оценка величины и нахождение собственных значений

Краткое рассмотрение основных теоретических положений линейной алгебры позволяет сделать следующие выводы: для успешного решения систем линейных алгебраических уравнений и вычислений матричных функций необходимо уметь находить ее собственные значения и собственные векторы.

Для любой матрицы A с действительными компонентами и любого ненулевого вектора v существует отношение Рэлея, связывающее скалярное произведение векторов v и Av с минимальным и максимальным собственными значениями:

.

К высказанному необходимо сделать еще ряд замечаний, связанных со случаями, когда исходная матрица имеет кратные собственные значения или оказывается вырожденной.

Характеристическое уравнение матрицы A с кратным корнем можно записать в виде

.

На основании этой записи можно составить минимальное характеристическое уравнение , для которого матрица A также является корнем:

.

Особенности в части определения собственных значений и векторов обычно возникают в несимметричных матрицах ( ). Некоторые из них никакими подобными преобразованиями не удается свести к диагональной. Например, не поддаются диагонализации матрицы n- го порядка, которые не имеют n линейно независимых собственных векторов. Однако любая матрица A размера с помощью преобразования подобия может быть приведена к прямой сумме жордановых блоков или к канонической жордановой форме :

,

где A – произвольная матрица размера ;

– жорданов блок размера ;

V – некоторая невырожденная матрица размера .

Характеристическое уравнение жорданова блока размера независимо от количества единиц в верхней диагонали записывается в виде произведения одинаковых сомножителей и, следовательно, имеет только кратных корней:

.

Если выразить матрицу V в форме вектора с компонентами в виде векторов-столбцов , то из равенства AV=VJ для каждого жорданового блока следует соотношение

.

Здесь в зависимости от структуры верхней диагонали, в которой может быть либо ноль, либо единица. Если жордановы блоки имеют размер , то мы имеем случай симметричной матрицы или матрицы с различными собственными значениями.

При поиске решений систем линейных уравнений с несимметричными матрицами, последние стремятся теми или иными приемами свести к выражению с симметричными матрицами.

Один из возможных подходов к решению несимметричных линейных систем состоит в замене исходной системы эквивалентной системой:

.

Недостаток этого подхода состоит в том, что мера обусловленности произведения матрицы A на свою транспонированную, оцениваемая отношением , оказывается больше, чем у матрицы A .

Под мерой обусловленности понимают отношение наибольшего собственного значения матрицы к наименьшему. Это отношение влияет на скорость сходимости итерационных процедур при решении уравнений.

Итак, основными алгебраическими системами уравнений можно считать неоднородные системы уравнений с симметричными матрицами коэффициентов.

1. Вержбицкий В.М. Основы численных методов: Учебник для вузов – 3-е изд. М: Высшая школа, 2009. – 840 с.

2. Самарcкий А.А. Задачи и упражнения по численным методам. Изд. 3 Изд-во: КомКнига, ЛКИ, 2006. – 208 с.

3. Турчак Л.И., Плотников П.В. Основы численных методов. Изд-во: ФИЗМАТЛИТ®, 2003. – 304 с.

4. Хеннер Е.К., Лапчик М.П., Рагулина М.И. Численные методы. Изд-во: «Академия/Academia», 2004. – 384c.

Реферат: Уравнения и способы их решения

Министерство общего и профессионального образования РФ

Муниципальное образовательное учреждение

на тему: Уравнения и способы их решения

Выполнил: ученик 10 «А» класса

Проверила: учитель математики Исхакова Гульсум Акрамовна

Основная часть . 3

Список использованной литературы . 29

Уравнения. Алгебраически уравнения.

а) Основные определения.

б) Линейное уравненение и способ его решения.

в) Квадратные уравнения и способы его решения.

г) Двучленные уравнения способ их решения.

д) Кубические уравнения и способы его решения.

е) Биквадратное уравнение и способ его решения.

ё) Уравнения четвертой степени и способы его решения.

ж) Уравнения высоких степеней и способы из решения.

з) Рациональноное алгебраическое уравнение и способ его

и) Иррациональные уравнения и способы его решения.

к) Уравнения, содержащие неизвестное под знаком.

абсолютной величины и способ его решения.

а) Показательные уравнения и способ их решения.

б) Логарифмические уравнения и способ их решения.

Математическое образование, получаемое в общеобразовательной школе, является важнейшим компонентом общего образования и общей культуры современного человека. Практически все, что окружает современного человека – это все так или иначе связано с математикой. А последние достижения в физике, технике и информационных технологиях не оставляют никакого сомнения, что и в будущем положение вещей останется прежним. Поэтому решение многих практических задач сводится к решению различных видов уравнений, которые необходимо научиться решать.

Данная работа является попыткой обобщить и систематизировать изученный материал по выше указанной теме. Я расположил материал по степени его сложности, начиная с самого простого. В него вошли как известные нам виды уравнений из школьного курс алгебры, так и дополнительный материал. При этом я попытался показать виды уравнений, которые не изучаются в школьном курсе, но знание которых может понадобиться при поступлении в высшее учебное заведение. В своей работе при решении уравнений я не стал ограничиваться только действительным решением, но и указал комплексное, так как считаю, что иначе уравнение просто недорешено. Ведь если в уравнении нет действительных корней, то это еще не значит, что оно не имеет решений. К сожалению, из-за нехватки времени я не смог изложить весь имеющийся у меня материал, но даже по тому материалу, который здесь изложен, может возникнуть множество вопросов. Я надеюсь, что моих знаний хватит для того, чтобы дать ответ на большинство вопросов. Итак, я приступаю к изложению материала.

Математика. выявляет порядок,

симметрию и определенность,

а это – важнейшие виды прекрасного.

В те далекие времена, когда мудрецы впервые стали задумываться о равенствах содержащих неизвестные величины, наверное, еще не было ни монет, ни кошельков. Но зато были кучи, а также горшки, корзины, которые прекрасно подходили на роль тайников-хранилищ, вмещающих неизвестное количество предметов. «Ищется куча, которая вместе с двумя третями ее, половиной и одной седьмой составляет 37. «, — поучал во II тысячелетии до новой эры египетский писец Ахмес. В древних математических задачах Междуречья, Индии, Китая, Греции неизвестные величины выражали число павлинов в саду, количество быков в стаде, совокупность вещей, учитываемых при разделе имущества. Хорошо обученные науке счета писцы, чиновники и посвященные в тайные знания жрецы довольно успешно справлялись с такими задачами.

Дошедшие до нас источники свидетельствуют, что древние ученые владели какими-то общими приемами решения задач с неизвестными величинами. Однако ни в одном папирусе, ни в одной глиняной табличке не дано описания этих приемов. Авторы лишь изредка снабжали свои числовые выкладки скупыми комментариями типа: «Смотри!», «Делай так!», «Ты правильно нашел». В этом смысле исключением является «Арифметика» греческого математика Диофанта Александрийского (III в.) – собрание задач на составление уравнений с систематическим изложением их решений.

Однако первым руководством по решению задач, получившим широкую известность, стал труд багдадского ученого IX в. Мухаммеда бен Мусы аль-Хорезми. Слово «аль-джебр» из арабского названия этого трактата – «Китаб аль-джебер валь-мукабала» («Книга о восстановлении и противопоставлении») – со временем превратилось в хорошо знакомое всем слово «алгебра», а само сочинение аль-Хорезми послужило отправной точкой в становлении науки о решении уравнений.

уравнения. Алгебраические уравнения

В алгебре рассматриваются два вида равенств – тождества и уравнения.

Тождество – это равенство, которое выполняется при всех (допустимых) значениях входящих в него букв [1] ). Для записи тождества наряду со знаком также используется знак .

Уравнение – это равенство, которое выполняется лишь при некоторых значениях входящих в него букв. Буквы, входящие в уравнение, по условию задачи могут быть неравноправны: одни могут принимать все свои допустимые значения (их называют параметрами или коэффициентами уравнения и обычно обозначают первыми буквами латинского алфавита:, , . – или теми же буквами, снабженными индексами: , , . или , , . ); другие, значения которых требуется отыскать, называют неизвестными (их обычно обозначают последними буквами латинского алфавита: , , , . – или теми же буквами, снабженными индексами: , , . или , , . ).

В общем виде уравнение может быть записано так:

(, , . ).

В зависимости от числа неизвестных уравнение называют уравнением с одним, двумя и т. д. неизвестными.

Значение неизвестных, обращающие уравнение в тождество, называют решениями уравнения.

Решить уравнение – это значит найти множество его решений или доказать, что решений нет. В зависимости от вида уравнения множество решений уравнения может быть бесконечным, конечным и пустым.

Если все решения уравнения являются решениями уравнения , то говорят, что уравнение есть следствие уравнения , и пишут

.

и

называют эквивалентными , если каждое из них является следствие другого, и пишут

.

Таким образом, два уравнения считаются эквивалентными, если множество решений этих уравнений совпадают.

Уравнение считают эквивалентным двум (или нескольким) уравнениям , , если множество решений уравнения совпадает с объединением множеств решений уравнений , .

Н е к о т о р ы е э к в и в а л е н т н ы е у р а в н е н и я:

Уравнение эквивалентно уравнению , рассматриваемому на множестве допустимых значений искходного уравнения.

Уравнение эквивалентно уравнению , рассматриваемому на множестве допустимых значений искходного уравнения.

эквивалентно двум уравнениям и .

Уравнение эквивалентно уравнению .

Уравнение при нечетном n эквивалентно уравнению , а при четном n эквивалентно двум уравнениям и .

Алгебраическим уравнением называется уравнение вида

,

где – многочлен n-й степени от одной или нескольких переменных.

Алгебраическим уравнением с одним неизвестным называется уравнение, сводящееся к уравнению вида

++ . ++,

где n – неотрицательное целое число; коэффициенты многочлена , , , . , называются коэффициентами (или параметрами ) уравнения и считаются заданными; х называется неизвестным и является искомым. Число n называется степенью уравнения.

Значения неизвестного х, обращающие алгебраическое уравнение в тождество, называются корнями (реже решениями ) алгебраического уравнения.

Есть несколько видов уравнений, которые решаются по готовым формулам. Это линейное и квадратное уравнения, а также уравнения вида F(х), где F – одна из стандартных функций (степенная или показательная функция, логарифм, синус, косинус, тангенс или котангенс). Такие уравнения считаются простейшими. Так же существуют формулы и для кубического уравнения, но его к простейшим не относят.

Так вот, главная задача при решении любого уравнения – свести его к простейшим.

Все ниже перечисленные уравнения имеют так же и свое графическое решение, которое заключается в том, чтобы представить левую и правую части уравнения как две одинаковые функции от неизвестного. Затем строится график сначала одной функции, а затем другой и точка(и) пересечения двух графиков даст решение(я) исходного уравнения. Примеры графического решения всех уравнений даны в приложении.

Линейным уравнением называется уравнение первой степени.

, (1)

где a и b – некоторые действительные числа.

Линейное уравнение всегда имеет единственный корень , который находится следующим образом.

Прибавляя к обеим частям уравнения (1) число , получаем уравнение

, (2)

эквивалентное уравнению (1). Разделив обе части уравнения (2) на величину , получаем корень уравнения (1):

.

Алгебраическое уравнение второй степени.

, (3)

где , , – некоторые действительные числа, называется квадратным уравнением . Если , то квадратное уравнение (3) называется приведенным .

Корни квадратного уравнения вычисляются по формуле

,

Выражение называется дискриминантом квадратного уравнения.

если , то уравнение имеет два различных действительных корня;

если , то уравнение имеет один действительный корень кратности 2;

если , то уравнение действительных корней не имеет, а имеет два комплексно сопряженных корня:

, ,

Частными видами квадратного уравнения (3) являются:

1) Приведенное квадратное уравнение (в случае, если ), которое обычно записывается в виде

.

Корни приведенного квадратного уравнения вычисляются по формуле

. (4)

Эту формулу называют формулой Виета – по имени французского математика конца XVI в., внесшего значительный вклад в становление алгебраической символики.

2) Квадратное уравнение с четным вторым коэффициентом, которое обычно записывается в виде

( — целое число).

Корни этого квадратного уравнения удобно вычислять по формуле

. (5)

Формулы (4) и (5) являются частными видами формулы для вычисления корней полного квадратного уравнения.

Корни приведенного квадратного уравнения

связаны с его коэффициентами Формулами Виета

,

.

В случае, если приведенное квадратное уравнение имеет действительные корни, формулы Виета позволяют судить как о знаках, так и об относительной величине корней квадратного уравнения, а именно:

если , , то оба корня отрицательны;

если , , то оба корня положительны;

если , , то уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине больше положительного;

если , , уравнение имеет корни разных знаков, причем отрицательный корень по абсолютной величине меньше положительного корня.

Перепишем еще раз квадратное уравнение

(6)

и покажем еще один способ как можно вывести корни квадратного уравнения (6) через его коэффициенты и свободный член. Если

++, (7)

то корни квадратного уравнения вычисляются по формуле

,

, .

которая может быть получена в результате следующих преобразований исходного уравнения, а так же с учетом формулы (7).

,

Заметим, что , поэтому

,

.

,

но , из формулы (7) поэтому окончательно

.

Если положить, что +, то

,

Заметим, что , поэтому

,

,

но , поэтому окончательно

.

.

Уравнения n-й степени вида

(8)

называется двучленным уравнением . При и заменой [2] )

,

где — арифметическое значение корня, уравнение (8) приводится к уравнению

,

которое и будет далее рассматриваться.

Двучленное уравнение при нечетном n имеет один действительный корень . В множестве комплексных чисел это уравнение имеет n корней (из которых один действительный и комплексных):

( 0, 1, 2, . ). (9)

Двучленное уравнение при четном n в множестве действительных чисел имеет два корня , а в множестве комплексных чисел n корней, вычисляемых по формуле (9).

Двучленное уравнение при четном n имеет один действительный корней , а в множестве комплексных чисел корней, вычисляемых по формуле

( 0, 1, 2, . ). (10)

Двучленное уравнение при четном n имеет действительный корней не имеет. В множестве комплексных чисел уравнение имеет корней, вычисляемых по формуле (10).

Приведем краткую сводку множеств корней двучленного уравнения для некоторых конкретных значений n.

1) ().

Уравнение имеет два действительных корня .

2) ().

Уравнение имеет один дествительный корень и два комплексных корня

.

3) ().

Уравнение имеет два действительных корния и два комплексных корня .

4) ().

Уравнение действительных корней не имеет. Комплексные корни: .

5) ().

Уравнение имеет один дествительный корень и два комплексных корня

.

6) ().

Уравнение действительных корней не имеет. Комплексные корни:

, .

Если квадратные уравнения умели решать еще математики Вавилонии и Древней Индии, то кубические, т.е. уравнения вида

, где ,

оказались «крепким орешком». В конце XV в. профессор математики в университетах Рима и Милана Лука Пачоли в своем знаменитом учебнике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности» задачу о нахождении общего метода для решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов такой метод вскоре был найден.

Начнем с упрощения

Если кубическое уравнение общего вида

, где ,

разделить на , то коэффициент при станет равен 1. Поэтому в дальнейшем будем исходить из уравнения

. (11)

Так же как в основе решения квадратного уравнения лежит формула квадрата суммы, решение кубического уравнения опирается на формулу куба суммы:

Чтобы не путаться в коэффициентах, заменим здесь на и перегруппируем слагаемые:

. (12)

Мы видим, что надлежащим выбором , а именно взяв , можно добиться того, что правая часть этой формулы будет отличаться от левой части уравнения (11) только коэффициентом при и свободным членом. Сложим уравнения (11) и (12) и приведем подобные:

.

Если здесь сделать замену , получим кубическое уравнение относительно без члена с :

.

Итак, мы показали, что в кубическом уравнении (11) с помощью подходящей подстановки можно избавиться от члена, содержащего квадрат неизвестного. Поэтому теперь будем решать уравнение вида

. (13)

Давайте еще раз обратимся к формуле куба суммы, но запишем ее иначе:

.

Сравните эту запись с уравнением (13) и попробуйте установить связь между ними. Даже с подсказкой это непросто. Надо отдать должное математикам эпохи Возрождения, решившим кубическое уравнение, не владея буквенной символикой. Подставим в нашу формулу :

, или

.

Теперь уже ясно: для того, чтобы найти корень уравнения (13), достаточно решить систему уравнений

или

и взять в качестве сумму и . Заменой , эта система приводится к совсем простому виду:

Дальше можно действовать по-разному, но все «дороги» приведут к одному и тому же квадратному уравнению. Например, согласно теореме Виета, сумма корней приведенного квадратного уравнения равна коэффициенту при со знаком минус, а произведение – свободному члену. Отсюда следует, что и — корни уравнения

.

Выпишем эти корни:

Переменные и равны кубическим корням из и , а искомое решение кубического уравнения (13) – сумма этих корней:

.

Эта формула известная как формула Кардано .

подстановкой приводится к «неполному» виду

, , . (14)

Корни , , «неполного» кубичного уравнения (14) равны

, ,

, ,

.

Пусть «неполное» кубичное уравнение (14) действительно.

а) Если («неприводимый» случай), то и

,

,

.

(b) Если , , то

, ,

, .

(с) Если , , то

, ,

, .

Во всех случаях берется действительное значение кубичного корня.

Алгебраическое уравнение четвертой степени.

,

где a, b, c – некоторые действительные числа, называется биквадратным уравнением . Заменой уравнение сводится к квадратному уравнению с последующим решением двух двучленных уравнений и ( и — корни соответствующего квадратного уравнения).

Если и , то биквадратное уравнение имеет четыре действительных корня:

, .

Если , [3] ), то биквадратное уравнение имеет два действительных корня и мнимых сопряженных корня:

.

Если и , то биквадратное уравнение имеет четыре чисто мнимых попарно сопряженных корня:

, .

Уравнения четвертой степени

Метод решения уравнений четвертой степени нашел в XVI в. Лудовико Феррари, ученик Джероламо Кардано. Он так и называется – метод Феррари .

Как и при решении кубического и квадратного уравнений, в уравнении четвертой степени

можно избавиться от члена подстановкой . Поэтому будем считать, что коэффициент при кубе неизвестного равен нулю:

.

Идея Феррари состояла в том, чтобы представить уравнение в виде , где левая часть – квадрат выражения , а правая часть – квадрат линейного уравнения от , коэффициенты которого зависят от . После этого останется решить два квадратных уравнения: и . Конечно, такое представление возможно только при специальном выборе параметра . Удобно взять в виде , тогда уравнение перепишется так:

. (15)

Правая часть этого уравнения – квадратный трехчлен от . Полным квадратом он будет тогда, когда его дискриминант равен нулю, т.е.

, или

.

Это уравнение называется резольвентным (т.е. «разрешающим»). Относительно оно кубическое, и формула Кардано позволяет найти какой-нибудь его корень . При правая часть уравнения (15) принимает вид

,

а само уравнение сводится к двум квадратным:

.

Их корни и дают все решения исходного уравнения.

Решим для примера уравнение

.

Здесь удобнее будет воспользоваться не готовыми формулами, а самой идеей решения. Перепишем уравнение в виде

и добавим к обеим частям выражение , чтобы в левой части образовался полный квадрат:

.

Теперь приравняем к нулю дискриминант правой части уравнения:

,

или, после упрощения,

.

Один из корней полученного уравнения можно угадать, перебрав делители свободного члена: . После подстановки этого значения получим уравнение

,

откуда . Корни образовавшихся квадратных уравнений — и . Разумеется, в общем случае могут получиться и комплексные корни.

подстановкой приводится к «неполному» виду

. (16)

Корни , , , «неполного» уравнения четвертой степени (16) равны одному из выражений

,

в которых сочетания знаков выбираются так, чтобы удовлетворялось условие

,

причем , и — корни кубичного уравнения

.

Уравнения высоких степеней

Разрешимость в радикалах

Формула корней квадратного уравнения известна с незапамятных времен, а в XVI в. итальянские алгебраисты решили в радикалах уравнения третьей и четвертой степеней. Таким образом, было установлено, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции (сложение, вычитание, умножение, деление) и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения данной степени () можно «обслужить» одной общей формулой. При подстановке в нее коэффициентов уравнения получим все корни – и действительные, и комплексные.

После этого естественно возник вопрос: а есть ли похожие общие формулы для решения уравнений пятой степени и выше? Ответ на него смог найти норвежский математик Нильс Хенрик Абель в начале XIX в. Чуть раньше этот результат был указан, но недостаточно обоснован итальянцем Паоло Руффини. Теорема Абеля-Руффини звучит так:

Общее уравнение степени при неразрешимо в радикалах.

Таким образом, общей формулы, применимой ко всем уравнениям данной степени , не существует. Однако это не значит, что невозможно решить в радикалах те или иные частные виды уравнений высоких степеней. Сам Абель нашел такое решение для широкого класса уравнений произвольно высокой степени – так называемых абелевых уравнений. Теорема Абеля-Руффини не исключает даже и того, что корни каждого конкретного алгебраического уравнения можно записать через его коэффициенты с помощью знаков арифметических операций и радикалов, в частности, что любое алгебраическое число, т.е. корень уравнения вида

, ,

с целыми коэффициентами, можно выразить в радикалах через рациональные числа. На самом деле такое выражение существует далеко не всегда. Это следует из теоремы разрешимости алгебраических уравнений, построенной выдающимся французским математиком Эваристом Галуа в его «Мемуаре об условиях разрешимости уравнений в радикалах» (1832 г.; опубликован в 1846 г.).

Подчеркнем, что в прикладных задачах нас интересует только приближенные значения корней уравнения. Поэтому его разрешимость в радикалах здесь обычно роли не играет. Имеются специальные вычислительные методы, позволяющие найти корни любого уравнения с любой наперед заданной точностью, ничуть не меньшей, чем дают вычисления по готовым формулам.

Уравнения, которые решаются

Хотят уравнения высоких степеней в общем случае неразрешимы в радикалах, да и формулы Кардано и Феррари для уравнений третьей и четвертой степеней в школе не проходят, в учебниках по алгебре, на вступительных экзаменах в институты иногда встречаются задачи, где требуется решить уравнения выше второй степени. Обычно их специально подбирают так, чтобы корни уравнений можно было найти с помощью некоторых элементарных приемов.

В основе одного из таких приемов лежит теорема о рациональных корнях многочлена:

Если несократимая дробь является корнем многочлена с целыми коэффициентами, то ее числитель является делителем свободного члена , а знаменатель — делителем старшего коэффициента .

Для доказательства достаточно подставить в уравнение и умножить уравнение на . Получим

.

Все слагаемые в левой части, кроме последнего, делятся на , поэтому и делится на , а поскольку и — взаимно простые числа, является делителем . Доказательство для аналогично.

С помощью этой теоремы можно найти все рациональные корни уравнения с целыми коэффициентами испытанием конечного числа «кандидатов». Например, для уравнения

,

старший коэффициент которого равен 1, «кандидатами» будут делители числа –2. Их всего четыре: 1, -1, 2 и –2. Проверка показывает, что корнем является только одно из этих чисел: .

Если один корень найден, можно понизить степень уравнения. Согласно теореме Безу,

остаток от деления многочлена на двучлен равен , т. е. .

Из теоремы непосредственно следует, что

Если — корень многочлена , то многочлен делится на , т. е. , где — многочлен степени, на 1 меньшей, чем .

Продолжая наш пример, вынесем из многочлена

множитель . Чтобы найти частное , можно выполнить деление «уголком»:

Но есть и более простой способ. Он станет понятен из примера:

Теперь остается решить квадратное уравнение . Его корни:

.

Метод неопределенных коэффициентов

Если у многочлена с целыми коэффициентами рациональных корней не оказалось, можно попробовать разложить его на множители меньшей степени с целыми коэффициентами. Рассмотрим, например, уравнение

.

Представим левую часть в виде произведения двух квадратных трехчленов с неизвестными (неопределенными) коэффициентами:

.

Раскроем скобки в правой части и приведем подобные:

.

Теперь, приравнивая коэффициенты при одинаковых степенях в обеих частях, получим систему уравнений

Попытка решить эту систему в общем виде вернула бы нас назад, к решению исходного уравнения. Но целые корни, если они существуют, нетрудно найти и подбором. Не ограничивая общности, можно считать, что , тогда последнее уравнение показывает, что надо рассмотреть лишь два варианта: , и . Подставляя эти пары значений в остальные уравнения, убеждаемся, что первая из них дает искомое разложение: . Этот способ решения называется методом неопределенных коэффициентов .

Если уравнение имеет вид , где и — многочлены, то замена сводит его решение к решению двух уравнений меньших степеней: и .

Возвратным алгебраическим уравнением называется уравнение четной степени вида

,

в которых коэффициенты, одинаково отстоят от концов, равны: , и т. д. Такое уравнение сводится к уравнению вдвое меньшей степени делением на и последующей заменой .

Рассмотрим, например, уравнение

.

Поделив его на (что законно, так как не является корнем), получаем

.

.

Поэтому величина удовлетворяет квадратному уравнению

,

решив которое можно найти из уравнения .

При решении возвратных уравнений более высоких степеней обычно используют тот факт, что выражение при любом можно представить как многочлен степени от .

Рациональные алгебраические уравнения

Рациональным алгебраическим уравнением называется уравнение вида

, (17)

где и — многочлены. Далее для определенности будем полагать, что — многочлен m-й степени, а — многочлен n-й степени.

Множество допустимых значений рационального алгебраического уравнения (17)

задается условием , т. е. , , . где , , . — корни многочлена .

Метод решения уравнения (17) заключается в следующем. Решаем уравнение

,

корни которого обозначим через

.

Сравниваем множества корней многочленов и . Если никакой корень многочлена не является корнем многочлена , то все корни многочлена являются корнями уравнения (17). Если какой-нибудь корень многочлена является корнем многочлена, то необходимо сравнить из кратности: если кратность корня многочлена больше кратности корня многочлена , то этот корень является корнем (17) с кратностью, равной разности кратностей корней делимого и делителя; в противном случае корень многочлена не является корнем рационального уравнения (17).

П р и м е р. Найдем действительные корни уравнения

,

где , .

Многочлен имеет два действительных корня (оба простые):

, .

Многочлен имеет один простой корень . Следовательно, уравнение имеет один действительный корень .

Решая то же самое уравнение в множестве комплексных чисел, получим, что уравнение имеет, кроме указанного действительного корня, два комплексно сопряженных корня:

, .

Уравнение, содержащее неизвестное (либо рациональное алгебраическое выражение от неизвестного) под знаком радикала, называют иррациональным уравнением . В элементарной математике решения иррациональных уравнений отыскивается в множестве действительных чисел.

Всякое иррациональное уравнение с помощью элементарных алгебраических операций (умножение, деление, возведение в целую степень обеих частей уравнения) может быть сведено к рациональному алгебраическому уравнению. При этом следует иметь в виду, что полученное рациональное алгебраическое уравнение может оказаться неэквивалентным исходному иррациональному уравнению, а именно может содержать «лишние» корни, которые не будут корнями исходного иррационального уравнения. Поэтому, найдя корни полученного рационального алгебраического уравнения, необходимо проверить, а будут ли все корни рационального уравнения корнями иррационального уравнения.

В общем случае трудно указать какой-либо универсальный метод решения любого иррационального уравнения, так как желательно, чтобы в результате преобразований исходного иррационального уравнения получилось не просто какое-то рациональное алгебраическое уравнение, среди корней которого будут и корни данного иррационального уравнения, а рациональное алгебраическое уравнение образованное из многочленов как можно меньшей степени. Желание получить то рациональное алгебраическое уравнение, образованное из многочленов как можно меньшей степени, вполне естественно, так как нахождение всех корней рационального алгебраического уравнения само по себе может оказаться довольно трудной задачей, решить которую полностью мы можем лишь в весьма ограниченном числе случаев.

Приведем некоторые стандартные, наиболее часто применяемые методы решения иррациональных алгебраических уравнений.

1) Одним из самых простых приемов решения иррациональных уравнений является метод освобождения от радикалов путем последовательного возведения обеих частей уравнения в соответствующую натуральную степень. При этом следует иметь в виду, что при возведении обеих частей уравнения в нечетную степень полученное уравнение, эквивалентное исходному, а при возведении обеих частей уравнения в четную степень полученное уравнение будет, вообще говоря, неэквивалентным исходному уравнению. В этом легко убедиться, возведя обе части уравнения

в любую четную степень. В результате этой операции получается уравнение

множество решений которого представляет собой объединение множеств решений:

и .

Однако, несмотря на этот недостаток, именно процедура возведения обеих частей уравнения в некоторую (часто четную) степень является самой распространенной процедурой сведения иррационального уравнения к рациональному уравнению.

П р и м е р 1. Решить уравнение

, (18)

где , , — некоторые многочлены.

В силу определения операции извлечения корня в множестве действительных чисел допустимые значения неизвестного определяются условиями

, .

Возведя обе части уравнения (18) в квадрат, получим уравнение

.

После повторного возведения в квадрат уравнение превращается в алгебраическое уравнение

. (19)

Так как обе части уравнения (18) возводились в квадрат, может оказаться, что не все корни уравнения (19) будет являться решениями исходного уравнения, необходима проверка корней.

2) Другим примером решения иррациональных уравнений является способ введения новых неизвестных, относительно которых получается либо более простое иррациональное уравнение, либо рациональное уравнение.

П р и м е р 2. Решить иррациональное уравнение

.

Множество допустимых значений этого уравнения:

.

Положив , после подстановки получим уравнение

или эквивалентное ему уравнение

,

которое можно рассматривать как квадратное уравнение относительно . Решая это уравнение, получим

, .

Следовательно, множество решений исходного иррационального уравнения представляет собой объединение множеств решений следующих двух уравнений:

, .

Возведя обе части каждого из этих уравнений в куб, получим два рациональных алгебраических уравнения:

, .

Решая эти уравнения, находим, что данное иррациональное уравнение имеет единственный корень .

В заключение заметим, что при решении иррациональных уравнений не следует начинать решение уравнение с возведения обеих частей уравнений в натуральную степень, пытаясь свести решение иррационального уравнения к решению рационального алгебраического уравнения. Сначала необходимо посмотреть, нельзя ли сделать какое-нибудь тождественное преобразование уравнения, которое может существенно упростить его решение.

П р и м е р 3. Решить уравнение

. (20)

Множество допустимых значений данного уравнения: . Сделаем следующие преобразования данного уравнения:

.

Далее, записывая уравнение в виде

,

при уравнение решений иметь не будет;

при уравнение может быть записано в виде

.

При данное уравнение решений не имеет, так как при любом , принадлежащем множеству допустимых значений уравнения, выражение, стоящее в левой части уравнения, положительно.

При уравнение имеет решение

.

Принимая во внимание, что множество допустимых решений уравнения определяется условием , получаем окончательно:

При решением иррационального уравнения (20) будет

.

При всех остальных значениях уравнение решений не имеет, т. е. множество его решений – пустое множество.

Уравнения, содержащие неизвестное под знаком абсолютной величины

Уравнения, содержащие неизвестное под знаком абсолютной величины, можно свести к уравнениям, не содержащим знака абсолютной величины, используя определение модуля. Так, например, решение уравнения

(21)

сводится к решению двух уравнений с дополнительными условиями.

1) Если , то уравнение (21) приводится к виду

. (22)

Решения этого уравнения: , . Условию удовлетворяет второй корень квадратного уравнения (22), и число 3 является корнем уравнения (21).

2) Если , уравнение (21) приводится к виду

.

Корнями этого уравнения будут числа и . Первый корень не удовлетворяет условию и поэтому не является решением данного уравнения (21).

Таким образом, решениями уравнения (21) будут числа 3 и .

Заметим, что коэффициенты уравнения, содержащего неизвестное под знаком абсолютной величины, можно подобрать таким образом, что решениями уравнения будут все значения неизвестного, принадлежащие некоторому промежутку числовой оси. Например, решим уравнение

. (23)

Рассмотрим числовую ось Ох и отметим на ней точки 0 и 3 (ноли функций, стоящих под знаком абсолютной величины). Эти точки разобьют числовую ось на три промежутка (рис. 1):

, , .

1) При уравнение (23) приводится к виду

.

В промежутке последнее уравнение решений не имеет.

Аналогично, при уравнение (23) приводится к виду

и в промежутке решений не имеет.

2) При уравнение (23) приводится к виду

,

т. е. обращается в тождество. Следовательно, любое значение является решением уравнения (23).

Уравнение, не сводящееся к алгебраическому уравнению с помощью алгебраических преобразований, называется трансцендентным уравнением [4] ).

Простешими трансцендентными уравнениями являются показательные, логарифмические и тригонометрические уравнения.

Показательным уравнением называется уравнение, в котором неизвестное входит только в показатели степеней при некоторых постоянных основаниях.

Простейшим показательным уравнением, решение которого сводится к решению алгебраического уравнения, является уравнение вида

, (24)

где и — некоторые положительные числа . Показательное уравнение (24) эквивалентно алгебраическому уравнению

.

В простейшем случае, когда , показательное уравнение (24) имеет решение

Множество решений показательного уравнения вида

, (25)

где — некоторый многочлен, находится следующим образом.

Вводится новая переменная , и уравнение (25) решается как алгебраическое относительно неизвестного . После этого решение исходного уравнения (25) сводится к решению простейших показательных уравнений вида (24).

П р и м е р 1. Решить уравнение

.

Записывая уравнение в виде

и вводя новую переменную , получаем кубическое уравнение относительно переменной :

.

Нетрудно убедиться, что данное кубическое уравнение имеет единственный рациональный корень и два иррациональных корня: и .

Таким образом, решение исходного уравнения сведено к решению простейших показательных уравнений:

, , .

Последнее из перечисленных, уравнений решений не имеет. Множество решений первого и второго уравнений:

и .

Н е к о т о р ы е п р о с т е й ш и е п о к а з а т е л ь н ы е у р а в н е н и я:

1) Уравнение вида

заменой сводится к квадратному уравнению

.

2) Уравнение вида

заменой сводится к квадратному уравнению

.

3) Уравнение вида

заменой сводится к квадратному уравнению

.

Логарифмическим уравнением называется уравнение, в котором неизвестное входит в виде аргумента логарифмической функции.

Простейшим логарифмическим уравнением является уравнение вида

, (26)

где — некоторое положительно число, отличное от единицы, — любое действительное число. Логарифмическое уравнение (26) эквивалентно алгебраическому уравнению

.

В простейшем случае, когда , логарифмическое уравнение (26) имеет решение

.

Множество решений логарифмического уравнения вида , где — некоторый многочлен указанного неизвестного, находится следующим образом.

Вводится новая переменная , и уравнение (25) решается как алгебраическое уравнение относительно . После этого решаются простейшие логарифмические уравнения вида (25).

П р и м е р 1. Решить уравнение

. (27)

Относительно неизвестного данное уравнение – квадратное:

.

Корни этого уравнения: , .

Решая логарифмические уравнения

, ,

получаем решения логарифмического уравнения (27): , .

В некоторых случаях, для того чтобы свести решение логарифмического уравнения к последовательному решению алгебраического и простейших логарифмических уравнений, необходимо предварительно сделать подходящие преобразования логарифмов, входящих в уравнение. Такими преобразованиями могут быть преобразование суммы логарифмов двух величин в логарифм произведения этих величин, переход от логарифма с одним основанием к логарифму с другим основанием и т. д.

П р и м е р 2. Решить уравнение

. (28)

Для того чтобы свести решение данного уравнения к последовательному решению алгебраического и простейших логарифмических уравнений, необходимо прежде всего привести все логарифмы к одному основанию (здесь, например, к основанию 2). Для этого воспользуемся формулой

,

в силу которой . Подставив в уравнение (28) вместо равную ему величину, получаем уравнение

.

Заменой это уравнение сводится к квадратному уравнению относительно неизвестного :

.

Корни этого квадратного уравнения: , . Решаем уравнения и :

,

,

П р и м е р 3. Решить уравнение

.

Преобразуя разность логарифмов двух величин в логарифм частного этих величин:

,

сводим данное уравнение к простейшему логарифмическому уравнению

.

Математика, как и любая другая наука не стоит на месте, вместе с развитием общества меняются и взгляды людей, возникают новые мысли и идеи. И XX век не стал в этом смысле исключением. Появление компьютеров внесло свои корректировки в способы решения уравнений и значительно их облегчило. Но компьютер не всегда может быть под рукой (экзамен, контрольная), поэтому знание хотя бы самых главных способов решения уравнений необходимо знать. Использование уравнений в повседневной жизни – редкость. Они нашли свое применение во многих отраслях хозяйства и практически во всех новейших технологиях.

В данной работе были представлены далеко не все, способы решения уравнений и даже не все их виды, а только самые основные. Я надеюсь, что мое сочинение может послужить неплохим справочным материалом при решении тех или иных уравнений. В заключении хотелось бы отметить, что при написании данного сочинения я не ставил себе цели показать все виды уравнений, а излагал лишь имеющийся у меня материал.

Список использованной литературы

Глав. ред. М. Д. Аксенова. Энциклопедия для детей. Том 11. Математика. – М.: Аванта+, 1998. – 688 с.

Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.

Г. Корн и Т. Корн. Справаочник по математике для начуных работников и инженеров. – М.: Наука, 1970.- 720 с.

Системы линейных уравнений

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 16:17, реферат

Описание

Цель исследования – сравнить различные методы решения систем линейных уравнений с несколькими переменными и выявить наиболее рациональные из них.
Задачи:
1) Изучить основные понятия по теме: «Системы линейных уравнений и методы их решения».
2) Проанализировать и отобрать задания по указанной теме.

Содержание

Введение. 2
Глава I. Историческая справка. 4
Глава II. Системы линейных уравнений. 5
2.1Системы линейных уравнений с двумя неизвестными. 5
2.2Основные методы решения систем линейных уравнений с 2-мя неизвестными..8
2.3Системы линейных уравнений с тремя неизвестными. 12
2.4Основные методы решения систем линейных уравнений с 3-мя неизвестными.14
Глава III. Определители 2-го, 3-го и n-го порядка. 17
3.1 Понятие определителей 2-го порядка. 17
3.2 Основные свойства определителей 2-го порядка. 19
3.3 Понятие определителей 3-го порядка. 21
3.4 Основные свойства определителей 3-го порядка. 23
Глава IV. Решение систем с двумя, тремя неизвестными с помощью определителя. 25
4.1 Метод Крамера. 25
4.2 Метод Гаусса. 27
Глава V. Результаты проведенного исследования. 30
Заключение. 35
Список литературы. 36
Приложение. Банк задач для самостоятельного решения. 37

Работа состоит из 1 файл

Алгебра.docx

Глава I. Историческая справка. . . . 4

Глава II. Системы линейных уравнений. . . . 5

2.1Системы линейных уравнений с двумя неизвестными. . 5

2.2Основные методы решения систем линейных уравнений с 2-мя неизвестными..8

2.3Системы линейных уравнений с тремя неизвестными. . 12

2.4Основные методы решения систем линейных уравнений с 3-мя неизвестными.14

Глава III. Определители 2-го, 3-го и n-го порядка. . . 17

3.1 Понятие определителей 2-го порядка. . . 17

3.2 Основные свойства определителей 2-го порядка. . 19

3.3 Понятие определителей 3-го порядка. . . 21

3.4 Основные свойства определителей 3-го порядка. . 23

Глава IV. Решение систем с двумя, тремя неизвестными с помощью определителя. 25

4.1 Метод Крамера. . . . 25

4.2 Метод Гаусса. . . . 27

Глава V. Результаты проведенного исследования. . . 30

Список литературы. . . . . 36

Приложение. Банк задач для самостоятельного решения. . ..37

Как сказал советский государственный деятель М.И. Калинин: «Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей работе».

Действительно, чем стремительнее развивает свой шаг прогресс, тем более зависимыми мы становится от точной науки. Математика повсюду. От кодирования данных для телефонных карт памяти, до сложнейших расчетов при прогнозировании погоды.
Среди работодателей, распахивающих двери дипломантам физматов, числятся крупные консалтинговые, страховые и финансовые компании. Ну и разумеется, компьютерные фирмы, публикующие львиную долю вакансий для математиков.

Таким образом, переоценить значение математики в нашей жизни очень трудно.

Для наиболее полного овладения этой наукой необходимо детально и углубленно изучать каждую тему. Одной из важных тем курса математики VII-XI классов можно назвать тему: «Системы уравнений», так как к решению систем уравнений сводятся как текстовые задачи, с которыми учащиеся встречаются в курсе математики, так и многие физические задачи. Но в школьном курсе системы уравнений рассматриваются не достаточно глубоко. А на выпускных экзаменах в школе и вступительных экзаменах в ВУЗы встречаются задачи, связанные с решением систем уравнений, в том числе и задачи, содержащие параметры, решение которых известными методами довольно громоздкое. И зачастую они вызывают затруднение у поступающих. Чтобы избежать этих затруднений следует лучше изучить тему: «Системы линейных уравнений и методы их решения».
Цель исследования – сравнить различные методы решения систем линейных уравнений с несколькими переменными и выявить наиболее рациональные из них.

Гипотеза исследования — системы линейных уравнений с некратными или представляющими собой обыкновенные дроби коэффициентами, а также содержащие параметры, удобнее решать с помощью определителей.
Задачи:
1) Изучить основные понятия по теме: «Системы линейных уравнений и методы их решения».

2) Проанализировать и отобрать задания по указанной теме.

3) Рассмотреть способы решения систем линейных уравнений и выбрать наиболее рациональные.

4) Составить банк задач для самостоятельной работы.

Проблема: Выявление рациональных методов решения систем линейных уравнений с несколькими переменными (решение систем линейных уравнений с несколькими переменными известными методами довольно громоздкое, особенно для систем содержащих параметр)

Объект исследования: Системы линейных уравнений

Предмет исследования: Методы решения систем линейных уравнений

Характеристика материала исследования: Рассматривались системы линейных уравнений с несколькими переменными, предлагаемые для подготовки к единому государственному экзамену, а также задания, предлагаемые на вступительных экзаменах в ВУЗ.

Использованные методы: Анализ, сравнение, обобщение.

Новизна работы: Удалось выявить методы решения систем линейных уравнений с несколькими переменными, отличные от известных, которые оказались наиболее рациональными при решении.

Практическая значимость: Данную работу можно использовать в качестве учебного пособия как для самостоятельной подготовки учащихся к выпускному и вступительному экзаменам по математике, так и для решения задач на уроках и факультативах

Глава I. Историческая справка.

В алгебре под определителем понимается функция, зависящая от n-значения, которое обозначает скалярную величину и представляется в соотношении с конкретным параметром (nxn) квадратной матрицы.

С точки зрения истории, феномен определителя стал изучаться раньше чем сами матрицы. Первоначально, определитель был представлен как собственно система линейных уравнений. Определитель «определял» имеет система одно или несколько возможных решений (в случае, когда определитель являлся ненулевым).
Впервые определители начали использовать в китайских учебниках по математике. В Европе же, парные определители подверглись поверхностным исследованиям Кордано в конце 16в., и в большей степени со стороны Лейбница.
В Японии определители использовались с целью изучения исключения переменной в системах алгебраических уравнений более высокого порядка.

В Европе Крамер (1750г) добавил к уже проведенным исследованиям в этой области, так называемое положение о системах уравнений. И только лишь в 1771г Вандермонд впервые представил определители в виде независимых функций, а в 1772г Лаплас сделал популярным среди математиков общий метод разложения определителя на дополнительные миноры.
Лагранж — первый, кто начал изучение определителей в рамках теории исключения. Гаусс в 1801г начал использовать феномен определителя в теории чисел. Он ввел в обиход термин «детерминант» (Лаплас называл его «результантом»), хотя и не в том понимании, которое присуще современной математике, тем не менее, в качестве дополнения к такому понятию как дискриминант.

Еще одной важной фигурой в проведении исследований математического феномена детерминанта или определителя, стал прусский математик Якоби. В своих работах исследователь большое количество времени посвятил изучению функционального определителя, который впоследствии стали называть определителем Якоби.

В результате заинтересованности подобного феномена и исследования его свойств с давних времен, в современной математике стали известны такие понятия как осесимметричный определитель, пер-симметрический определитель, отклонения в значениях определителей и др.

Глава II. Системы линейных уравнений.

2.1 Системы линейных уравнений с двумя неизвестными.

  1. Системы двух линейных уравнений с двумя неизвестными имеют вид:

где х, у – неизвестные, f1, f2, g1, g2 – действительные числа.

Если левые и правые части уравнений системы являются многочленами от х и у или их можно представить в виде отношения многочленов, то систему называют алгебраической.

Решением системы называется пора чисел х0, у0, при подстановке которых соответственно вместо х и у каждое уравнение системы становится верным числовым равенством. Множество решений может быть, в частности, пустым. В этом случае говорят, что система не имеет решений (несовместна).

Решить систему – значит найти все ее решения или установить, что система не имеет решений.

  1. Процесс решения системы обычно состоит в последовательном переходе с помощью некоторых преобразований от данной системы к другим, более простым. При этом нужно внимательно следить за тем, чтобы не потерять решения. Что касается посторонних для данной системы решений, которые могут появиться при преобразовании системы, то их обычно отсеивают с помощью проверки.

Если в результате преобразования системы (1) получена система

такая, что каждое решение системы (1) является решением системы (2), то система (2) называется следствием системы (1). Аналогично, уравнение

называют следствием системы (1), если равенство

верно для каждой пары чисел x0,y0, образующих решение системы (1).

Если система (2) является следствием системы (1), а система (1) также является следствием системы (2), то эти системы называются равносильными. Иначе говоря, системы называются равносильными, если множества их решений совпадают. В частности, две системы, не имеющие решений, являются равносильными.

Используя определения равносильности и следствия, можно утверждать, что:

    1. Если в системе уравнений заменить какое-либо уравнение равносильным ему, а остальные уравнения оставить без изменения, то полученная при этом система будет равносильна исходной;
    2. Если к данной системе присоединить уравнение, являющееся следствием этой системы, то полученная система будет равносильна исходной;
    3. Если какое-либо уравнение данной системы заменить его следствием, а остальные уравнения оставить без изменения, то полученная система будет следствием исходной.
  1. При решении систем уравнений нередко приходится применять такие преобразования систем, как умножение обеих частей уравнения на одно и то же число (или одну и ту же функцию), почленное сложение, вычитание, умножение и деление уравнений системы, возведение обеих частей уравнения в n-ю степень.

Сформулируем утверждения, связанные с этими преобразованиями, опустив в записи системы неизвестные.

полученная почленным сложением и вычитанием уравнений системы (1), равносильна системе (1).

является следствием системы (1). Если же функции f2 и g2 принимают неотрицательные значения в области определения системы (1), т.е. на множестве, где определены функции f2 и g2 , то система (3) равносильна системе (1).

  1. Если не существует таких пар чисел x и y, при которых обе функции f2 и g2 одновременно обращаются в нуль, то система

является следствием системы (1), а при дополнительном требовании, что одновременно не обращаются в нуль функции f2 и g2, система (5) равносильна системе (1).

Эти свойства преобразований систем, доказательство которых легко можно получить самостоятельно, широко применяются при решении систем с двумя и тремя переменными.

  1. Введем еще одно понятие, играющее важную роль при решении систем уравнений.

Пусть система уравнений имеет вид

Будем говорить, что система (6) равносильна совокупности систем

если каждое решение системы (6) является решением хотя бы одной из систем (7), (8) и всякое решение каждой из систем (7), (8) есть решение системы (6).

Это означает, что множество решений системы (6) совпадает с объединением множеств решений систем (7) и (8). Поэтому вместо слов «система (6) равносильна совокупности систем (7) и (8)» говорят, что «система (6) распадается на системы (7) и (8)».

Обычно это понятие применяется в случае, когда левую часть одного из уравнений системы (6) удается разложить на множители. Пусть, например, f1=fg, где f и g – многочлены (или функции, которые определены на одном и том же множестве). Тогда система


источники:

http://www.bestreferat.ru/referat-261398.html

http://www.freepapers.ru/24/sistemy-linejnyh-uravnenij/217275.1404228.list1.html

Название: Уравнения и способы их решения
Раздел: Рефераты по математике
Тип: реферат Добавлен 01:21:12 28 февраля 2011 Похожие работы
Просмотров: 2859 Комментариев: 36 Оценило: 12 человек Средний балл: 3.8 Оценка: 4 Скачать