Регрессия уравнение регрессии коэффициенты регрессии

Корреляция и регрессия

Линейное уравнение регрессии имеет вид y=bx+a+ε
Здесь ε — случайная ошибка (отклонение, возмущение).
Причины существования случайной ошибки:
1. Невключение в регрессионную модель значимых объясняющих переменных;
2. Агрегирование переменных. Например, функция суммарного потребления – это попытка общего выражения совокупности решений отдельных индивидов о расходах. Это лишь аппроксимация отдельных соотношений, которые имеют разные параметры.
3. Неправильное описание структуры модели;
4. Неправильная функциональная спецификация;
5. Ошибки измерения.
Так как отклонения εi для каждого конкретного наблюдения i – случайны и их значения в выборке неизвестны, то:
1) по наблюдениям xi и yi можно получить только оценки параметров α и β
2) Оценками параметров α и β регрессионной модели являются соответственно величины а и b, которые носят случайный характер, т.к. соответствуют случайной выборке;
Тогда оценочное уравнение регрессии (построенное по выборочным данным) будет иметь вид y = bx + a + ε, где ei – наблюдаемые значения (оценки) ошибок εi, а и b соответственно оценки параметров α и β регрессионной модели, которые следует найти.
Для оценки параметров α и β — используют МНК (метод наименьших квадратов).
Система нормальных уравнений.

Для наших данных система уравнений имеет вид:

10a + 356b = 49
356a + 2135b = 9485

Из первого уравнения выражаем а и подставим во второе уравнение
Получаем b = 68.16, a = 11.17

Уравнение регрессии:
y = 68.16 x — 11.17

1. Параметры уравнения регрессии.
Выборочные средние.

1.1. Коэффициент корреляции
Рассчитываем показатель тесноты связи. Таким показателем является выборочный линейный коэффициент корреляции, который рассчитывается по формуле:

Линейный коэффициент корреляции принимает значения от –1 до +1.
Связи между признаками могут быть слабыми и сильными (тесными). Их критерии оцениваются по шкале Чеддока:
0.1 Y фактором X весьма высокая и прямая.

1.2. Уравнение регрессии (оценка уравнения регрессии).

Линейное уравнение регрессии имеет вид y = 68.16 x -11.17
Коэффициентам уравнения линейной регрессии можно придать экономический смысл. Коэффициент уравнения регрессии показывает, на сколько ед. изменится результат при изменении фактора на 1 ед.
Коэффициент b = 68.16 показывает среднее изменение результативного показателя (в единицах измерения у ) с повышением или понижением величины фактора х на единицу его измерения. В данном примере с увеличением на 1 единицу y повышается в среднем на 68.16.
Коэффициент a = -11.17 формально показывает прогнозируемый уровень у , но только в том случае, если х=0 находится близко с выборочными значениями.
Но если х=0 находится далеко от выборочных значений x , то буквальная интерпретация может привести к неверным результатам, и даже если линия регрессии довольно точно описывает значения наблюдаемой выборки, нет гарантий, что также будет при экстраполяции влево или вправо.
Подставив в уравнение регрессии соответствующие значения x , можно определить выровненные (предсказанные) значения результативного показателя y(x) для каждого наблюдения.
Связь между у и x определяет знак коэффициента регрессии b (если > 0 – прямая связь, иначе — обратная). В нашем примере связь прямая.

1.3. Коэффициент эластичности.
Коэффициенты регрессии (в примере b) нежелательно использовать для непосредственной оценки влияния факторов на результативный признак в том случае, если существует различие единиц измерения результативного показателя у и факторного признака х.
Для этих целей вычисляются коэффициенты эластичности и бета — коэффициенты. Коэффициент эластичности находится по формуле:

Он показывает, на сколько процентов в среднем изменяется результативный признак у при изменении факторного признака х на 1%. Он не учитывает степень колеблемости факторов.
В нашем примере коэффициент эластичности больше 1. Следовательно, при изменении Х на 1%, Y изменится более чем на 1%. Другими словами — Х существенно влияет на Y.
Бета – коэффициент показывает, на какую часть величины своего среднего квадратичного отклонения изменится в среднем значение результативного признака при изменении факторного признака на величину его среднеквадратического отклонения при фиксированном на постоянном уровне значении остальных независимых переменных:

Т.е. увеличение x на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего Y на 0.9796 среднеквадратичного отклонения этого показателя.

1.4. Ошибка аппроксимации.
Оценим качество уравнения регрессии с помощью ошибки абсолютной аппроксимации.

Поскольку ошибка больше 15%, то данное уравнение не желательно использовать в качестве регрессии.

1.6. Коэффициент детерминации.
Квадрат (множественного) коэффициента корреляции называется коэффициентом детерминации, который показывает долю вариации результативного признака, объясненную вариацией факторного признака.
Чаще всего, давая интерпретацию коэффициента детерминации, его выражают в процентах.
R 2 = 0.98 2 = 0.9596, т.е. в 95.96 % случаев изменения x приводят к изменению у . Другими словами — точность подбора уравнения регрессии — высокая. Остальные 4.04 % изменения Y объясняются факторами, не учтенными в модели.

xyx 2y 2x·yy(x)(yi— y ) 2(y-y(x)) 2(xi— x ) 2|y — yx|:y
0.37115.60.1376243.365.7914.11780.892.210.18640.0953
0.39919.90.1592396.017.9416.02559.0615.040.1630.1949
0.50222.70.252515.2911.423.04434.490.11760.09050.0151
0.57234.20.32721169.6419.5627.8187.3240.780.05330.1867
0.60744.5.36841980.2527.0130.20.9131204.490.03830.3214
0.65526.80.429718.2417.5533.47280.3844.510.02180.2489
0.76335.70.58221274.4927.2440.8361.5426.350.00160.1438
0.87330.60.7621936.3626.7148.33167.56314.390.00490.5794
2.48161.96.1726211.61402158.0714008.0414.662.820.0236
7.23391.99.1833445.25545.2391.916380.18662.543.381.81

2. Оценка параметров уравнения регрессии.
2.1. Значимость коэффициента корреляции.

По таблице Стьюдента с уровнем значимости α=0.05 и степенями свободы k=7 находим tкрит:
tкрит = (7;0.05) = 1.895
где m = 1 — количество объясняющих переменных.
Если tнабл > tкритич, то полученное значение коэффициента корреляции признается значимым (нулевая гипотеза, утверждающая равенство нулю коэффициента корреляции, отвергается).
Поскольку tнабл > tкрит, то отклоняем гипотезу о равенстве 0 коэффициента корреляции. Другими словами, коэффициент корреляции статистически — значим
В парной линейной регрессии t 2 r = t 2 b и тогда проверка гипотез о значимости коэффициентов регрессии и корреляции равносильна проверке гипотезы о существенности линейного уравнения регрессии.

2.3. Анализ точности определения оценок коэффициентов регрессии.
Несмещенной оценкой дисперсии возмущений является величина:

S 2 y = 94.6484 — необъясненная дисперсия (мера разброса зависимой переменной вокруг линии регрессии).
Sy = 9.7287 — стандартная ошибка оценки (стандартная ошибка регрессии).
S a — стандартное отклонение случайной величины a.

Sb — стандартное отклонение случайной величины b.

2.4. Доверительные интервалы для зависимой переменной.
Экономическое прогнозирование на основе построенной модели предполагает, что сохраняются ранее существовавшие взаимосвязи переменных и на период упреждения.
Для прогнозирования зависимой переменной результативного признака необходимо знать прогнозные значения всех входящих в модель факторов.
Прогнозные значения факторов подставляют в модель и получают точечные прогнозные оценки изучаемого показателя. (a + bxp ± ε) где
Рассчитаем границы интервала, в котором будет сосредоточено 95% возможных значений Y при неограниченно большом числе наблюдений и X p = 1 (-11.17 + 68.16*1 ± 6.4554)
(50.53;63.44)
С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

Индивидуальные доверительные интервалы для Y при данном значении X.
(a + bx i ± ε)
где

xiy = -11.17 + 68.16xiεiyminymax
0.37114.1119.91-5.834.02
0.39916.0219.85-3.8335.87
0.50223.0419.673.3842.71
0.57227.8119.578.2447.38
0.60730.219.5310.6749.73
0.65533.4719.4913.9852.96
0.76340.8319.4421.460.27
0.87348.3319.4528.8867.78
2.48158.0725.72132.36183.79

С вероятностью 95% можно гарантировать, что значения Y при неограниченно большом числе наблюдений не выйдет за пределы найденных интервалов.

2.5. Проверка гипотез относительно коэффициентов линейного уравнения регрессии.
1) t-статистика. Критерий Стьюдента.
Проверим гипотезу H0 о равенстве отдельных коэффициентов регрессии нулю (при альтернативе H1 не равно) на уровне значимости α=0.05.
tкрит = (7;0.05) = 1.895

Поскольку 12.8866 > 1.895, то статистическая значимость коэффициента регрессии b подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Поскольку 2.0914 > 1.895, то статистическая значимость коэффициента регрессии a подтверждается (отвергаем гипотезу о равенстве нулю этого коэффициента).

Доверительный интервал для коэффициентов уравнения регрессии.
Определим доверительные интервалы коэффициентов регрессии, которые с надежность 95% будут следующими:
(b — tкрит Sb; b + tкрит Sb)
(68.1618 — 1.895 • 5.2894; 68.1618 + 1.895 • 5.2894)
(58.1385;78.1852)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.
(a — ta)
(-11.1744 — 1.895 • 5.3429; -11.1744 + 1.895 • 5.3429)
(-21.2992;-1.0496)
С вероятностью 95% можно утверждать, что значение данного параметра будут лежать в найденном интервале.

2) F-статистики. Критерий Фишера.
Проверка значимости модели регрессии проводится с использованием F-критерия Фишера, расчетное значение которого находится как отношение дисперсии исходного ряда наблюдений изучаемого показателя и несмещенной оценки дисперсии остаточной последовательности для данной модели.
Если расчетное значение с lang=EN-US>n-m-1) степенями свободы больше табличного при заданном уровне значимости, то модель считается значимой.

где m – число факторов в модели.
Оценка статистической значимости парной линейной регрессии производится по следующему алгоритму:
1. Выдвигается нулевая гипотеза о том, что уравнение в целом статистически незначимо: H0: R 2 =0 на уровне значимости α.
2. Далее определяют фактическое значение F-критерия:

где m=1 для парной регрессии.
3. Табличное значение определяется по таблицам распределения Фишера для заданного уровня значимости, принимая во внимание, что число степеней свободы для общей суммы квадратов (большей дисперсии) равно 1 и число степеней свободы остаточной суммы квадратов (меньшей дисперсии) при линейной регрессии равно n-2.
4. Если фактическое значение F-критерия меньше табличного, то говорят, что нет основания отклонять нулевую гипотезу.
В противном случае, нулевая гипотеза отклоняется и с вероятностью (1-α) принимается альтернативная гипотеза о статистической значимости уравнения в целом.
Табличное значение критерия со степенями свободы k1=1 и k2=7, Fkp = 5.59
Поскольку фактическое значение F > Fkp, то коэффициент детерминации статистически значим (Найденная оценка уравнения регрессии статистически надежна).

Проверка на наличие автокорреляции остатков.
Важной предпосылкой построения качественной регрессионной модели по МНК является независимость значений случайных отклонений от значений отклонений во всех других наблюдениях. Это гарантирует отсутствие коррелированности между любыми отклонениями и, в частности, между соседними отклонениями.
Автокорреляция (последовательная корреляция) определяется как корреляция между наблюдаемыми показателями, упорядоченными во времени (временные ряды) или в пространстве (перекрестные ряды). Автокорреляция остатков (отклонений) обычно встречается в регрессионном анализе при использовании данных временных рядов и очень редко при использовании перекрестных данных.
В экономических задачах значительно чаще встречается положительная автокорреляция, нежели отрицательная автокорреляция. В большинстве случаев положительная автокорреляция вызывается направленным постоянным воздействием некоторых неучтенных в модели факторов.
Отрицательная автокорреляция фактически означает, что за положительным отклонением следует отрицательное и наоборот. Такая ситуация может иметь место, если ту же зависимость между спросом на прохладительные напитки и доходами рассматривать по сезонным данным (зима-лето).
Среди основных причин, вызывающих автокорреляцию, можно выделить следующие:
1. Ошибки спецификации. Неучет в модели какой-либо важной объясняющей переменной либо неправильный выбор формы зависимости обычно приводят к системным отклонениям точек наблюдения от линии регрессии, что может обусловить автокорреляцию.
2. Инерция. Многие экономические показатели (инфляция, безработица, ВНП и т.д.) обладают определенной цикличностью, связанной с волнообразностью деловой активности. Поэтому изменение показателей происходит не мгновенно, а обладает определенной инертностью.
3. Эффект паутины. Во многих производственных и других сферах экономические показатели реагируют на изменение экономических условий с запаздыванием (временным лагом).
4. Сглаживание данных. Зачастую данные по некоторому продолжительному временному периоду получают усреднением данных по составляющим его интервалам. Это может привести к определенному сглаживанию колебаний, которые имелись внутри рассматриваемого периода, что в свою очередь может служить причиной автокорреляции.
Последствия автокорреляции схожи с последствиями гетероскедастичности: выводы по t- и F-статистикам, определяющие значимость коэффициента регрессии и коэффициента детерминации, возможно, будут неверными.

Обнаружение автокорреляции

1. Графический метод
Есть ряд вариантов графического определения автокорреляции. Один из них увязывает отклонения ei с моментами их получения i. При этом по оси абсцисс откладывают либо время получения статистических данных, либо порядковый номер наблюдения, а по оси ординат – отклонения ei (либо оценки отклонений).
Естественно предположить, что если имеется определенная связь между отклонениями, то автокорреляция имеет место. Отсутствие зависимости скоре всего будет свидетельствовать об отсутствии автокорреляции.
Автокорреляция становится более наглядной, если построить график зависимости ei от ei-1.

Основы линейной регрессии

Что такое регрессия?

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение, если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x, причём изменения в y вызываются именно изменениями в x, мы можем определить линию регрессии (регрессия y на x), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова «регрессия» исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей «регрессировал» и «двигался вспять» к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y – зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x, т.е. это «предсказанное значение y»

  • a – свободный член (пересечение) линии оценки; это значение Y, когда x=0 (Рис.1).
  • b – угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b.

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия.

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b – выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y – предсказанный y, Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Между и существует линейное соотношение: для любых пар данные должны аппроксимировать прямую линию. Если нанести на двумерный график остатки, то мы должны наблюдать случайное рассеяние точек, а не какую-либо систематическую картину.
  • Остатки нормально распределены с нулевым средним значением;
  • Остатки имеют одну и ту же вариабельность (постоянную дисперсию) для всех предсказанных величин Если нанести остатки против предсказанных величин от мы должны наблюдать случайное рассеяние точек. Если график рассеяния остатков увеличивается или уменьшается с увеличением то это допущение не выполняется;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

«Влиятельное» наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть «влиятельным» наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для «влиятельных» наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента

,

— оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.

Можно рассчитать 95% доверительный интервал для генерального углового коэффициента :

где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации, обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Подобным образом можно рассчитать более широкую область, внутри которой, как мы ожидаем, лежит наибольшее число (обычно 95%) наблюдений.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b 0 + b 1 P 2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 ( Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 ( Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на .40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на .65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся «внутри диапазона.»

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию ( -.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p .

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

Справка

Набор инструментов Пространственная статистика (Spatial Statistics) предоставляет эффективные инструменты количественного анализа пространственных структурных закономерностей. Инструмент Анализ горячих точек (Hot Spot Analysis) , например, поможет найти ответы на следующие вопросы:

  • Есть ли в США места, где постоянно наблюдается высокая смертность среди молодежи?
  • Где находятся «горячие точки» по местам преступлений, вызовов 911 (см. рисунок ниже) или пожаров?
  • Где находятся места, в которых количество дорожных происшествий превышает обычный городской уровень?

Анализ данных звонков в службу 911, показывающий горячие точки (красным), холодные точки (синим) и локализацию пожарных/полиции, ответственных за реагирование (зеленые круги)

Каждый из вопросов спрашивает «где»? Следующий логический вопрос для такого типа анализа – «почему»?

  • Почему в некоторых местах США наблюдается повышенная смертность молодежи? Какова причина этого?
  • Можем ли мы промоделировать характеристики мест, на которые приходится больше всего преступлений, звонков в 911, или пожаров, чтобы помочь сократить эти случаи?
  • От каких факторов зависит повышенное число дорожных происшествий? Имеются ли какие-либо возможности для снижения числа дорожных происшествий в городе вообще, и в особо неблагополучных районах в частности?

Пространственные отношения

Регрессионный анализ позволяет вам моделировать, проверять и исследовать пространственные отношения и помогает вам объяснить факторы, стоящие за наблюдаемыми пространственными структурными закономерностями. Вы также можете захотеть понять, почему люди постоянно умирают молодыми в некоторых регионах страны, и какие факторы особенно влияют на особенно высокий уровень диабета. При моделирование пространственных отношений, однако, регрессионный анализ также может быть пригоден для прогнозирования. Моделирование факторов, которые влияют на долю выпускников колледжей, на пример, позволяют вам сделать прогноз о потенциальной рабочей силе и их навыках. Вы также можете использовать регрессионный анализ для прогнозирования осадков или качества воздуха в случаях, где интерполяция невозможна из-за малого количества станций наблюдения (к примеру, часто отсутствую измерительные приборы вдоль горных хребтов и в долинах).

МНК (OLS) – наиболее известный метод регрессионного анализа. Это также подходящая отправная точка для всех способов пространственного регрессионного анализа. Данный метод позволяет построить глобальную модель переменной или процесса, которые вы хотите изучить или спрогнозировать (уровень смертности/осадки). Он создает уравнение регрессии, отражающее происходящий процесс. Географически взвешенная регрессия (ГВР) – один из нескольких методов пространственного регрессионного анализа, все чаще использующегося в географии и других дисциплинах. Метод ГВР (географически взвешенная регрессия) создает локальную модель переменной или процесса, которые вы прогнозируете или изучаете, применяя уравнение регрессии к каждому пространственному объекту в наборе данных. При подходящем использовании, эти методы являются мощным и надежным статистическим средством для проверки и оценки линейных взаимосвязей.

Линейные взаимосвязи могут быть положительными или отрицательными. Если вы обнаружили, что количество поисково-спасательных операций увеличивается при возрастании среднесуточной температуры, такое отношение является положительным; имеется положительная корреляция. Другой способ описать эту положительную взаимосвязь – сказать, что количество поисково-спасательных операций уменьшается при уменьшении среднесуточной температуры. Соответственно, если вы установили, что число преступлений уменьшается при увеличении числа полицейских патрулей, данное отношение является отрицательным. Также, можно выразить это отрицательное отношение, сказав, что количество преступлений увеличивается при уменьшении количества патрулей. На рисунке ниже показаны положительные и отрицательные отношения, а также случаи, когда две переменные не связаны отношениями:

Диаграммы рассеивания: положительная связь, отрицательная связь и пример с 2 не связанными переменными.

Корреляционные анализы, и связанные с ними графики, отображенные выше, показывают силу взаимосвязи между двумя переменными. С другой стороны, регрессионные анализы дают больше информации: они пытаются продемонстрировать степень, с которой 1 или более переменных потенциально вызывают положительные или негативные изменения в другой переменной.

Применения регрессионного анализа

Регрессионный анализ может использоваться в большом количестве приложений:

  • Моделирование числа поступивших в среднюю школу для лучшего понимания факторов, удерживающих детей в том же учебном заведении.
  • Моделирование дорожных аварий как функции скорости, дорожных условий, погоды и т.д., чтобы проинформировать полицию и снизить несчастные случаи.
  • Моделирование потерь от пожаров как функции от таких переменных как степень вовлеченности пожарных департаментов, время обработки вызова, или цена собственности. Если вы обнаружили, что время реагирования на вызов является ключевым фактором, возможно, существует необходимость создания новых пожарных станций. Если вы обнаружили, что вовлеченность – главный фактор, возможно, вам нужно увеличить оборудование и количество пожарных, отправляемых на пожар.

Существует три первостепенных причины, по которым обычно используют регрессионный анализ:

  • Смоделировать некоторые явления, чтобы лучше понять их и, возможно, использовать это понимание для оказания влияния на политику и принятие решений о наиболее подходящих действиях. Основная цель – измерить экстент, который при изменениях в одной или более переменных связанно вызывает изменения и в другой. Пример. Требуется понять ключевые характеристики ареала обитания некоторых видов птиц (например, осадки, ресурсы питания, растительность, хищники) для разработки законодательства, направленного на защиту этих видов.
  • Смоделировать некоторые явления, чтобы предсказать значения в других местах или в другое время. Основная цель – построить прогнозную модель, которая является как устойчивой, так и точной. Пример: Даны прогнозы населения и типичные погодные условия. Каким будет объем потребляемой электроэнергии в следующем году?
  • Вы также можете использовать регрессионный анализ для исследования гипотез. Предположим, что вы моделируете бытовые преступления для их лучшего понимания и возможно, вам удается внедрить политические меры, чтобы остановить их. Как только вы начинаете ваш анализ, вы, возможно, имеете вопросы или гипотезы, которые вы хотите проверить:
    • «Теория разбитого окна» указывает на то, что испорченная общественная собственность (граффити, разрушенные объекты и т.д.) притягивает иные преступления. Имеется ли положительное отношение между вандализмом и взломами в квартиры?
    • Имеется ли связь между нелегальным использованием наркотических средств и взломами в квартиры (могут ли наркоманы воровать, чтобы поддерживать свое существование)?
    • Совершаются ли взломы с целью ограбления? Возможно ли, что будет больше случаев в домохозяйствах с большей долей пожилых людей и женщин?
    • Люди больше подвержены риску ограбления, если они живут в богатой или бедной местности?

    Вы можете использовать регрессионный анализ, чтобы исследовать эти взаимосвязи и ответить на ваши вопросы.

Термины и концепции регрессионного анализа

Невозможно обсуждать регрессионный анализ без предварительного знакомства с основными терминами и концепциями, характерными для регрессионной статистики:

Уравнение регрессии. Это математическая формула, применяемая к независимым переменным, чтобы лучше спрогнозировать зависимую переменную, которую необходимо смоделировать. К сожалению, для тех ученых, кто думает, что х и у это только координаты, независимая переменная в регрессионном анализе всегда обозначается как y, а зависимая – всегда X. Каждая независимая переменная связана с коэффициентами регрессии, описывающими силу и знак взаимосвязи между этими двумя переменными. Уравнение регрессии может выглядеть следующим образом (у – зависимая переменная, Х – независимые переменные, β – коэффициенты регрессии), ниже приводится описание каждого из этих компонентов уравнения регрессии):

Элементы Уравнения регрессии по методу наименьших квадратов

  • Зависимая переменная (y) – это переменная, описывающая процесс, который вы пытаетесь предсказать или понять (бытовые кражи, осадки). В уравнении регрессии эта переменная всегда находится слева от знака равенства. В то время, как можно использовать регрессию для предсказания зависимой величины, вы всегда начинаете с набора хорошо известных у-значений и используете их для калибровки регрессионной модели. Известные у-значения часто называют наблюдаемыми величинами.
  • Независимые переменные (X) это переменные, используемые для моделирования или прогнозирования значений зависимых переменных. В уравнении регрессии они располагаются справа от знака равенства и часто называются независимыми переменными. Зависимая переменная – это функция независимых переменных. Если вас интересует прогнозирование годового оборота определенного магазина, можно включить в модель независимые переменные, отражающие, например, число потенциальных покупателей, расстояние до конкурирующих магазинов, заметность магазина и структуру спроса местных жителей.
  • Коэффициенты регрессии (β) – это коэффициенты, которые рассчитываются в результате выполнения регрессионного анализа. Вычисляются величины для каждой независимой переменной, которые представляют силу и тип взаимосвязи независимой переменной по отношению к зависимой. Предположим, что вы моделируете частоту пожаров как функцию от солнечной радиации, растительного покрова, осадков и экспозиции склона. Вы можете ожидать положительную взаимосвязь между частотой пожаров и солнечной радиацией (другими словами, чем больше солнца, тем чаще встречаются пожары). Если отношение положительно, знак связанного коэффициента также положителен. Вы можете ожидать негативную связь между частотой пожаров и осадками (другими словами, для мест с большим количеством осадков характерно меньше лесных пожаров). Коэффициенты отрицательных отношений имеют знак минуса. Когда взаимосвязь сильная, значения коэффициентов достаточно большие (относительно единиц независимой переменной, с которой они связаны). Слабая взаимосвязь описывается коэффициентами с величинами около 0; β0 – это пересечение линии регрессии. Он представляет ожидаемое значение зависимой величины, если все независимые переменные равны 0.

P-значения. Большинство регрессионных методов выполняют статистический тест для расчета вероятности, называемой р-значением, для коэффициентов, связанной с каждой независимой переменной. Нулевая гипотеза данного статистического теста предполагает, что коэффициент незначительно отличается от нуля (другими словами, для всех целей и задач, коэффициент равен нулю, и связанная независимая переменная не может объяснить вашу модель). Маленькие величины р-значений отражают маленькие вероятности и предполагают, что коэффициент действительно важен для вашей модели со значением, существенно отличающимся от 0 (другими словами, маленькие величины р-значений свидетельствуют о том, что коэффициент не равен 0). Вы бы сказали, что коэффициент с р-значением, равным 0,01, например, статистически значимый для 99 % доверительного интервала; связанные переменные являются эффективным предсказателем. Переменные с коэффициентами около 0 не помогают предсказать или смоделировать зависимые величины; они практически всегда удаляются из регрессионного уравнения, если только нет веских причин сохранить их.

R 2 /R-квадрат: Статистические показатели составной R-квадрат и выровненный R-квадрат вычисляются из регрессионного уравнения, чтобы качественно оценить модель. Значение R-квадрат лежит в пределах от 0 до 100 процентов. Если ваша модель описывает наблюдаемые зависимые переменные идеально, R-квадрат равен 1.0 (и вы, несомненно, сделали ошибку; возможно, вы использовали модификацию величины у для предсказания у). Вероятнее всего, вы увидите значения R-квадрат в районе 0,49, например, можно интерпретировать подобный результат как «Это модель объясняет 49 % вариации зависимой величины». Чтобы понять, как работает R-квадрат, постройте график, отражающий наблюдаемые и оцениваемые значения у, отсортированные по оцениваемым величинам. Обратите внимание на количество совпадений. Этот график визуально отображает, насколько хорошо вычисленные значения модели объясняют изменения наблюдаемых значений зависимых переменных. Просмотрите иллюстрацию. Выверенный R-квадрат всегда немного меньше, чем составной R-квадрат, т.к. он отражает всю сложность модели (количество переменных) и связан с набором исходных данных. Следовательно, выверенный R-квадрат является более точной мерой для оценки результатов работы модели.

Невязки. Существует необъяснимое количество зависимых величин, представленных в уравнении регрессии как случайные ошибки ε. Просмотрите иллюстрацию. Известные значения зависимой переменной используются для построения и настройки модели регрессии. Используя известные величины зависимой переменной (Y) и известные значений для всех независимых переменных (Хs), регрессионный инструмент создаст уравнение, которое предскажет те известные у-значения как можно лучше. Однако предсказанные значения редко точно совпадают с наблюдаемыми величинами. Разница между наблюдаемыми и предсказываемыми значениями у называется невязка или отклонение. Величина отклонений регрессионного уравнения – одно из измерений качества работы модели. Большие отклонения говорят о ненадлежащем качестве модели.

Создание регрессионной модели представляет собой итерационный процесс, направленный на поиск эффективных независимых переменных, чтобы объяснить зависимые переменные, которые вы пытаетесь смоделировать или понять, запуская инструмент регрессии, чтобы определить, какие величины являются эффективными предсказателями. Затем пошаговое удаление и/или добавление переменных до тех пор, пока вы не найдете наилучшим образом подходящую регрессионную модель. Т.к. процесс создания модели часто исследовательский, он никогда не должен становиться простым «подгоном» данных. Он должен учитывать теоретические аспекты, мнение экспертов в этой области и здравый смысл. Вы должным быть способны определить ожидаемую взаимосвязь между каждой потенциальной независимой переменной и зависимой величиной до непосредственного анализа, и должны задать себе дополнительные вопросы, когда эти связи не совпадают.

Примечание:

Если вы никогда не выполняли регрессионный анализ раньше, рекомендуем загрузить Руководство о регрессионному анализу и пройти шаги 1-5.

Особенности регрессионного анализа

Регрессия МНК (OLS) – это простой метод анализа с хорошо проработанной теорией, предоставляющий эффективные возможности диагностики, которые помогут вам интерпретировать результаты и устранять неполадки. Однако, МНК надежен и эффективен, если ваши данные и регрессионная модель удовлетворяют всем предположениям, требуемым для этого метода (смотри таблицу внизу). Пространственные данные часто нарушают предположения и требования МНК, поэтому важно использовать инструменты регрессии в союзе с подходящими инструментами диагностики, которые позволяют оценить, является ли регрессия подходящим методом для вашего анализа, а приведенная структура данных и модель может быть применена.

Как регрессионная модель может не работать

Серьезной преградой для многих регрессионных моделей является ошибка спецификации. Модель ошибки спецификации – это такая неполная модель, в которой отсутствуют важные независимые переменные, поэтому она неадекватно представляет то, что мы пытаемся моделировать или предсказывать (зависимую величину, у). Другими словами, регрессионная модель не рассказывает вам всю историю. Ошибка спецификации становится очевидной, когда в отклонениях вашей регрессионной модели наблюдается статистически значимая пространственная автокорреляция , или другими словами, когда отклонения вашей модели кластеризуются в пространстве (недооценки – в одной области изучаемой территории, а переоценки – в другой). Благодаря картографированию невязок регрессии или коэффициентов, связанных с географически взвешенной регрессией , можно обратить внимание на какие-то нюансы, которые вы упустили ранее. Запуск Анализа горячих точек по отклонениям регрессии также может раскрыть разные пространственные режимы, которые можно моделировать при помощи метода наименьших квадратов с региональными показателями или исправлять с использованием географически взвешенной регрессии. Предположим, когда вы картографируете отклонения вашей регрессионной модели, вы видите, что модель всегда заново предсказывает значения в горах, и, наоборот, в долинах, что может значить, что отсутствуют данные о рельефе. Однако может случиться так, что отсутствующие переменные слишком сложны для моделирования или их невозможно подсчитать или слишком трудно измерить. В этих случаях, можно воспользоваться ГВР (географически взвешенной регрессией) или другой пространственной регрессией, чтобы получить хорошую модель.

В следующей таблице перечислены типичные проблемы с регрессионными моделями и инструменты в ArcGIS:

Типичные проблемы с регрессией, последствия и решения

Ошибки спецификации относительно независимых переменных.

Когда ключевые независимые переменные отсутствуют в регрессионном анализе, коэффициентам и связанным с ними р-значениям нельзя доверять.

Создайте карту и проверьте невязки МНК и коэффициенты ГВР или запустите Анализ горячих точек по регрессионным невязкам МНК, чтобы увидеть, насколько это позволяет судить о возможных отсутствующих переменных.

МНК и ГВР – линейные методы. Если взаимосвязи между любыми независимыми величинами и зависимыми – нелинейны, результирующая модель будет работать плохо.

Создайте диаграмму рассеяния, чтобы выявить взаимосвязи между показателями в модели. Уделите особое внимание взаимосвязям, включающим зависимые переменные. Обычно криволинейность может быть устранена трансформированием величин. Просмотрите иллюстрацию. Альтернативно, используйте нелинейный метод регрессии.

Существенные выбросы могут увести результаты взаимоотношений регрессионной модели далеко от реальности, внося ошибку в коэффициенты регрессии.

Создайте диаграмму рассеяния и другие графики (гистограммы), чтобы проверить экстремальные значения данных. Скорректировать или удалить выбросы, если они представляют ошибки. Когда выбросы соответствуют действительности, они не могут быть удалены. Запустить регрессию с и без выбросов, чтобы оценить, как это влияет на результат.

Нестационарность. Вы можете обнаружить, что входящая переменная, может иметь сильную зависимость в регионе А, и в то время быть незначительной или даже поменять знак в регионе B (см. рисунок).

Если взаимосвязь между вашими зависимыми и независимыми величинами противоречит в пределах вашей области изучения, рассчитанные стандартные ошибки будут искусственно раздуты.

Инструмент МНК в ArcGIS автоматически тестирует проблемы, связанные с нестационарностью (региональными вариациями) и вычисляет устойчивые стандартные значения ошибок. Просмотрите иллюстрацию. Когда вероятности, связанные с тестом Koenker, малы (например, Географически взвешенная регрессия .

Мультиколлинеарность. Одна или несколько независимых переменных излишни. Просмотрите иллюстрацию.

Мультиколлинеарность ведет к переоценке и нестабильной/ненадежной модели.

Инструмент МНК в ArcGIS автоматически проверяет избыточность. Каждой независимой переменной присваивается рассчитанная величина фактора, увеличивающего дисперсию. Когда это значение велико (например, > 7,5), избыток является проблемой и излишние показатели должны быть удалены из модели или модифицированы путем создания взаимосвязанных величин или увеличением размера выборки. Просмотрите иллюстрацию.

Противоречивая вариация в отклонениях. Может произойти, что модель хорошо работает для маленьких величин, но становится ненадежна для больших значений. Просмотрите иллюстрацию.

Когда модель плохо предсказывает некоторые группы значений, результаты будут носить ошибочный характер.

Инструмент МНК в ArcGIS автоматически выполняет тест на несистемность вариаций в отклонениях (называемая гетероскедастичность или неоднородность дисперсии) и вычисляет стандартные ошибки, которые устойчивы к этой проблеме. Когда вероятности, связанные с тестом Koenker, малы (например, 0,05), необходимо учитывать устойчивые вероятности, чтобы определить, является ли независимая переменная статистически значимой или нет. Просмотрите иллюстрацию.

Пространственно автокоррелированные отклонения. Просмотрите иллюстрацию.

Когда наблюдается пространственная кластеризация в отклонениях, полученных в результате работы модели, это означает, что имеется переоценённый тип систематических отклонений, модель работает ненадежно.

Запустите инструмент Пространственная автокорреляция (Spatial Autocorrelation) по отклонениям, чтобы убедиться, что в них не наблюдается статистически значимой пространственной автокорреляции. Статистически значимая пространственная автокорреляция практически всегда является симптомом ошибки спецификации (отсутствует ключевой показатель в модели). Просмотрите иллюстрацию.

Нормальное распределение систематической ошибки. Просмотрите иллюстрацию.

Когда невязки регрессионной модели распределены ненормально со средним, близким к 0, р-значения, связанные с коэффициентами, ненадежны.

Инструмент МНК в ArcGIS автоматически выполняет тест на нормальность распределения отклонений. Когда статистический показатель Jarque-Bera является значимым (например, 0,05), скорее всего в вашей модели отсутствует ключевой показатель (ошибка спецификации) или некоторые отношения, которые вы моделируете, являются нелинейными. Проверьте карту отклонений и возможно карту с коэффициентами ГВР, чтобы определить, какие ключевые показатели отсутствуют. Просмотр диаграмм рассеяния и поиск нелинейных отношений.

Типичные проблемы с регрессией и их решения

Важно протестировать модель на каждую из проблем, перечисленных выше. Результаты могут быть на 100 % неправильны, если игнорируются проблемы, упомянутые выше.

Примечание:

Если вы никогда не выполняли регрессионный анализ раньше, рекомендуем загрузить Руководство по регрессионному анализу.

Пространственная регрессия

Для пространственных данных характерно 2 свойства, которые затрудняют (не делают невозможным) применение традиционных (непространственных) методов, таких как МНК:

  • Географические объекты довольно часто пространственно автокоррелированы. Это означает, что объекты, расположенные ближе друг к другу более похожи между собой, чем удаленные объекты. Это создает переоцененный тип систематических ошибок для традиционных моделей регрессии.
  • География важна, и часто наиболее важные процессы нестационарны. Эти процессы протекают по-разному в разных частях области изучения. Эта характеристика пространственных данных может относиться как к региональным вариациям, так и к нестационарности.

Настоящие методы пространственной регрессии были разработаны, чтобы устойчиво справляться с этими двумя характеристиками пространственных данных и даже использовать эти свойства пространственных данных, чтобы улучшать моделирование взаимосвязей. Некоторые методы пространственной регрессии эффективно имеют дело с 1 характеристикой (пространственная автокорреляция), другие – со второй (нестационарность). В настоящее время, нет методов пространственной регрессии, которые эффективны с обеими характеристиками. Для правильно настроенной модели ГВР пространственная автокорреляция обычно не является проблемой.

Существует большая разница в том, как традиционные и пространственные статистические методы смотрят на пространственную автокорреляцию. Традиционные статистические методы видят ее как плохую вещь, которая должна быть устранена, т.к. пространственная автокорреляция ухудшает предположения многих традиционных статистических методов. Для географа или ГИС-аналитика, однако, пространственная автокорреляция является доказательством важности пространственных процессов; это интегральная компонента данных. Удаляя пространство, мы удаляем пространственный контекст данных; это как только половина истории. Пространственные процессы и доказательство пространственных взаимосвязей в данных представляют собой особый интерес, и поэтому пользователи ГИС с радостью используют инструменты пространственного анализа данных. Однако, чтобы избежать переоцененный тип систематических ошибок в вашей модели, вы должны определить полный набор независимых переменных, которые эффективно опишут структуру ваших данных. Если вы не можете определить все эти переменные, скорее всего, вы увидите существенную пространственную автокорреляцию среди отклонений модели. К сожалению, вы не можете доверять результатам регрессии, пока все не устранено. Используйте инструмент Пространственная автокорреляция , чтобы выполнить тест на статистически значимую пространственную автокорреляцию для отклонений в вашей регрессии.

Как минимум существует 3 направления, как поступать с пространственной автокорреляцией в невязках регрессионных моделей.

  1. Изменять размер выборки до тех пор, пока не удастся устранить статистически значимую пространственную автокорреляцию. Это не гарантирует, что в анализе будет полностью устранена проблема пространственной автокорреляции, но она значительно меньше, когда пространственная автокорреляция удалена из зависимых и независимых переменных. Это традиционный статистический подход к устранению пространственной автокорреляции и только подходит, если пространственная автокорреляция является результатом избыточности данных.
  2. Изолируйте пространственные и непространственные компоненты каждой входящей величины, используя методы фильтрации в пространственной регрессии. Пространство удалено из каждой величины, но затем его возвращают обратно в регрессионную модель в качестве новой переменной, отвечающей за пространственные эффекты/пространственную структуру. ArcGIS в настоящее время не предоставляет возможности проведения подобного рода анализа.
  3. Внедрите пространственную автокорреляцию в регрессионную модель, используя пространственные эконометрические регрессионные модели. Пространственные эконометрические регрессионные модели будут добавлены в ArcGIS в следующем релизе.

Глобальные модели, подобные МНК, создают уравнения, наилучшим образом описывающие общие связи в данных в пределах изучаемой территории. Когда те взаимосвязи противоречивы в пределах территории изучения, МНК хорошо моделирует эти взаимосвязи. Когда те взаимосвязи ведут себя по-разному в разных частях области изучения, регрессионное уравнение представляет средние результаты, и в случае, когда те взаимосвязи представляют 2 экстремальных значения, глобальное среднее не моделирует хорошо эти значения. Когда ваши независимые переменные испытывают нестационарность (региональные вариации), глобальные модели не подходят, а необходимо использовать устойчивые методы регрессионного анализа. Идеально, можно определить полный набор независимых переменных, чтобы справиться с региональными вариациями в ваших зависимых переменных. Если вы не сможете определить все пространственные переменные, вы снова заметите статистически значимую пространственную автокорреляцию в ваших отклонениях и/или более низкие, чем ожидалось, значения R-квадрат . К сожалению, вы не можете доверять результатам регрессии, пока все не устранено.

Существует как минимум 4 способа работы с региональными вариациями в МНК регрессионных моделях:

  1. Включить переменную в модель, которая объяснит региональные вариации. Если вы видите, что ваша модель всегда «перепредсказывает» на севере и «недопредсказывает» на юге, добавьте набор региональных значений:1 для северных объектов, и 0 для южных объектов.
  2. Используйте методы, которые включают региональные вариации в регрессионную модель, такие как географически взвешенная регрессия .
  3. Примите во внимание устойчивые стандартные отклонения регрессии и вероятности, чтобы определить, являются ли коэффициенты статистически значимыми. См. Интерпретация результатов МНК. ГВР рекомендуется
  4. Изменить/сократить размер области изучения так, чтобы процессы в пределах новой области изучения были стационарными (не испытывали региональные вариации).

Для большей информации по использованию регрессионных инструментов, см.:


источники:

http://statistica.ru/theory/osnovy-lineynoy-regressii/

http://desktop.arcgis.com/ru/arcmap/10.3/tools/spatial-statistics-toolbox/regression-analysis-basics.htm