Решать уравнения 6 класса с проверкой

Решение задач по математике онлайн

//mailru,yandex,google,vkontakte,odnoklassniki,instagram,wargaming,facebook,twitter,liveid,steam,soundcloud,lastfm, // echo( ‘

Калькулятор онлайн.
Решение уравнений и неравенств с модулями.

Этот математический калькулятор онлайн поможет вам решить уравнение или неравенство с модулями. Программа для решения уравнений и неравенств с модулями не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс получения результата.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Обязательно ознакомьтесь с правилами ввода функций. Это сэкономит ваше время и нервы.
Правила ввода функций >> Почему решение на английском языке? >>
С 9 января 2019 года вводится новый порядок получения подробного решения некоторых задач. Ознакомтесь с новыми правилами >> —> |x| или abs(x) — модуль x

Введите уравнение или неравенство с модулями
Решить уравнение или неравенство

Немного теории.

Уравнения и неравенства с модулями

В курсе алгебры основной школы могут встретится простейшие уравнения и неравенства с модулями. Для их решения можно применять геометрический метод, основанный на том, что \( |x-a| \) — это расстояние на числовой прямой между точками x и a: \( |x-a| = \rho (x;\; a) \). Например, для решения уравнения \( |x-3|=2 \) нужно найти на числовой прямой точки, удалённые от точки 3 на расстояние 2. Таких точек две: \( x_1=1 \) и \( x_2=5 \).

Решая неравенство \( |2x+7| 0 \), то уравнение \( |f(x)|=c \) равносильно совокупности уравнений: \( \left[\begin f(x)=c \\ f(x)=-c \end\right. \)
2) Если \( c > 0 \), то неравенство \( |f(x)| c \) равносильно совокупности неравенств: \( \left[\begin f(x) c \end\right. \)
4) Если обе части неравенства \( f(x) 0. Значит, |2х – 4| = (2х – 4), |х + 3| = (х + 3). Таким образом, на рассматриваемом промежутке заданное уравнение принимает вид: (2х – 4) + (х + 3) = 8. Решив это уравнение, находим: х = 3. Это значение принадлежит рассматриваемому промежутку, а потому является корнем заданного уравнения.
Итак, \(x_1=-1, \; x_2=3 \).

Второй способ
Преобразуем уравнение к виду 2|x – 2| + |x + 3| = 8. Переведём эту аналитическую модель на геометрический язык: нам нужно найти на координатной прямой такие точки М(х), которые удовлетворяют условию \( 2\rho(x; \;2)+ \rho(x; \;-3) =8 \) или
MA + 2MB = 8
( здесь A = A(–3), B = B(2) ).

Интересующая нас точка М не может находиться левее точки А, поскольку в этом случае 2MB > 10 и, следовательно, равенство MA + 2MB = 8 выполняться не может.
Рассмотрим случай, когда точка \( M_1(x) \) лежит между А и В. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(2 – х) = 8,
откуда находим: x = –1.
Рассмотрим случай, когда точка \( M_2(x) \) лежит правее точки B. Для такой точки равенство MA + 2MB = 8 принимает вид:
(х – (–3)) + 2(х – 2) = 8,
откуда находим: х = 3.
Ответ: –1; 3.

Пусть теперь требуется решить неравенство \( |f(x)| |f(x)| \). Отсюда сразу следует, что \( g(x) > 0 \). Воспользуемся тем, что при \( g(x) > 0 \) неравенство \( |f(x)| 0, \\ -g(x) 0 \\ f(x) -g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) > 0 \) обе части неравенства \( |f(x)| 0 \\ (f(x))^2 0 \\ x^2 — 3x + 2 -(2x — x^2) \end\right. \)
Решая эту систему, получаем:
\( \left\<\begin x(x — 2) 0 \\ (x^2 — 3x + 2)^2 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0 \end\right. \Rightarrow \)
\( \left\<\begin 0 0<,>5 \end\right. \)
Из последней системы находим: \( 0<,>5 g(x) \). Освободиться от знака модуля можно тремя способами.

Первый способ
Если \(f(x) \geqslant 0\), то \( |f(x)| = f(x) \) и заданное неравенство принимает вид \( f(x) > g(x) \).
Если \(f(x) g(x) \).
Таким образом, задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin f(x) \geqslant 0 \\ f(x) > g(x) \end\right. \) \( \left\<\begin f(x) g(x) \end\right. \)

Второй способ.
Рассмотрим два случая: \( g(x) \geqslant 0, \; g(x) g(x) \) выполняется для всех x из области определения выражения f(x).
Если \( g(x) \geqslant 0 \), то воспользуемся тем, что согласно утверждению 3) в самом начале данной теории неравенство \( |f(x)| > g(x) \) равносильно совокупности неравенств \( f(x) g(x) \).
Таким образом, заданное неравенство сводится к совокупности трёх систем:
\( \left\<\begin g(x) g(x) \end\right. \)

Третий способ.
Воспользуемся тем, что при \( g(x) \geqslant 0 \) неравенство \( |f(x)| > g(x) \) равносильно неравенству \( (|f(x)|)^2 > (g(x))^2 \). Это позволит свести неравенство \( |f(x)| > g(x) \) к совокупности систем:
\( \left\<\begin g(x) (g(x))^2 \end\right. \)

ПРИМЕР 5. Решить неравенство \( |x^2 — 3x + 2| \geqslant 2x — x^2 \)

Первый способ
Задача сводится к решению совокупности двух систем неравенств:
\( \left\<\begin x^2 — 3x + 2 \geqslant 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2 \end\right. \) \( \left\<\begin x^2 — 3x + 2 0 \), то заданное неравенство равносильно совокупности двух неравенств:
\( \left[\begin x^2 — 3x + 2 \geqslant 2x — x^2 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Таким образом, получаем совокупность неравенства и двух систем неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \geqslant 2x — x^2; \end\right. \) \( \left\<\begin 2x — x^2 > 0 \\ x^2 — 3x + 2 \leqslant -(2x — x^2) \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решив первую систему, получим: \( 0 0 \), то обе части заданного неравенства можно возвести в квадрат. Таким образом, получаем совокупность неравенства и системы неравенств:
\( 2x — x^2 \leqslant 0; \) \( \left\<\begin 2x — x^2 > 0 \\ (x^2 — 3x + 2)^2 \geqslant (2x — x^2)^2 \end\right. \)
Решив неравенство \( 2x — x^2 \leqslant 0 \), получим: \( x \leqslant 0,\; x \geqslant 2 \)
Решая систему, получаем последовательно:
\( \left\<\begin x(x — 2)

Обычные ур-ния по-шагам

Результат

Примеры уравнений

  • Линейные ур-ния
  • Квадратные ур-ния
  • Тригонометрические ур-ния
  • Ур-ния с модулем
  • Логарифмические ур-ния
  • Показательные ур-ния
  • Уравнения с корнями
  • Кубические и высших степеней ур-ния
  • Ур-ния с численным решением

Указанные выше примеры содержат также:

  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x), арккотангенс actan(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x), гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    asinh(x), acosh(x), atanh(x), actanh(x)
  • число Пи pi
  • комплексное число i

Правила ввода

Можно делать следующие операции

2*x — умножение 3/x — деление x^3 — возведение в степень x + 7 — сложение x — 6 — вычитание Действительные числа вводить в виде 7.5, не 7,5

Чтобы увидеть подробное решение,
помогите рассказать об этом сайте:

Решение линейных уравнений. 6-й класс

Разделы: Математика

Класс: 6

Цели урока:

  • повторить правила раскрытия скобок и приведения подобных слагаемых;
  • ввести определение линейного уравнения с одним неизвестным;
  • познакомить учащихся со свойствами равенств;
  • научить решать линейные уравнения;
  • научить решать задачи на «было − стало».

Оборудование: компьютер, проектор.

Ход урока

I. Проверка предыдущего домашнего задания.

II. Повторение теоретического материала.

  1. Как найти неизвестное слагаемое? [От суммы отнять известное слагаемое]
  2. Как найти неизвестное уменьшаемое? [К вычитаемому прибавить разность]
  3. Как найти неизвестное вычитаемое? [От уменьшаемого отнять разность]
  4. Как найти неизвестный множитель? [Произведение разделить на известный множитель]
  5. Как найти неизвестное делимое? [Делитель умножить на частное]
  6. Как найти неизвестный делитель? [Делимое разделить на частное]
  7. Как раскрыть скобки, перед которыми стоит знак плюс? [Опустить скобки и этот знак плюс, переписать слагаемые с теми же знаками]
  8. Как раскрыть скобки, перед которыми стоит знак минус? [Опустить скобки и этот знак минус, переписать слагаемые с противоположными знаками]
  9. Как выглядит распределительное свойство умножения? [(a+b)∙c=ac+bc]

III. Устные задания по слайдам.

(слайд 2, слайд 3).

1) Раскройте скобки:

3+(х+2); 3-(х+2); 3+(х-7); 3-(х-7); 3+(-х+5); 3-(-х+5); -4(-5-х); 9(; 9(; 2(7+9х); 4(2-3х); -6(9-5х); -3(1+4х).

2) Приведите подобные слагаемые:

6b-b; 9,5m+3m; a —a; m-m; -4x-x+3; 7x-6y-3x+8y.

3) Упростите выражение:

IV. Новая тема. Решение линейных уравнений.

До сегодняшнего урока мы не умели решать уравнения, в которых неизвестное находилось слева и справа от знака равенства: 3x+7=x+15. Некоторые из нас постоянно забывают правила нахождения неизвестного слагаемого, уменьшаемого, вычитаемого. Сегодня мы постараемся разрешить все эти затруднения.

Уравнение, которое можно привести к виду ax=b, где a и b − некоторые числа (a0), называется линейным уравнением с одним неизвестным.

Линейные уравнения обладают свойствами:

  1. Корни уравнения не изменяются, если обе части уравнения умножить или разделить на одно и то же число, не равное нулю (стр. 229 учебника).
  2. Корни уравнения не изменяются, если какое-нибудь слагаемое перенести из одной части уравнения в другую, изменив при этом его знак (стр. 230 учебника).

Рассмотрим план решения линейного уравнения:

х-1+(х+2)=-4(-5-х)-5
х-1+х+2=20+4х-5
х+х-4х=20-5+1-2
-2х=14
х=14:(-2)
х=-7
Ответ: -7.
1) раскрыть скобки, если они есть;
2) слагаемые, содержащие неизвестное, перенести в левую часть равенства, а не содержащие неизвестное − в правую;
3) привести подобные слагаемые;
4) найти неизвестный множитель.

Какими из свойств равенств мы воспользовались для решения уравнения? (вторым)

Рассмотрим примеры уравнений, при решении которых будет удобно воспользоваться и первым свойством.

х+3=х+5 │∙9 Удобно умножить на наименьшее общее кратное знаменателей дробей.

(х+3)∙9=(х+5)∙9 Далее − по плану.


источники:

http://mrexam.ru/equation

http://urok.1sept.ru/articles/627069