Решение алгебраических уравнений в радикалах

VMath

Инструменты сайта

Основное

Навигация

Информация

Действия

Содержание

Вспомогательная страница к разделу ПОЛИНОМ

Решение уравнений в радикалах

Можно ли выразить корни полинома $ f(x)=a_<0>x^n+a_1x^+\dots+a_n $ с комплексными коэффициентами $ a_<0>,a_1,\dots,a_n $ в виде «хороших» функций от этих коэффициентов? Вспомним, что для корней квадратного уравнения существует общая формула вычисления корней: $$x^2+ax+b=0 \ \Rightarrow \ \lambda_<1,2>=\frac<-a\pm \sqrt> <2>\ . $$ Эта формула включает в себя элементарные алгебраические операции $ +,- ,\times, \div $ и операцию извлечения квадратного корня. По аналогии можно сформулировать и общую задачу.

Задача. Найти выражения корней полинома степени $ n > 2 $ в виде функций его коэффициентов; при этом функции должны представлять конечную комбинацию элементарных алгебраических операций и операций извлечения корней произвольных (целых) степеней.

Поставленная задача называется задачей о разрешимости уравнения в радикалах 1) .

Оказывается, что любое уравнение третьей или четвертой степени разрешимо в радикалах. Перед тем, как изложить способы их решения, сделаем два упрощения. Первое из них заключается в том, что уравнение $ f_<>(x)=0 $ делится на старший коэффициент полинома $ f_<>(x) $.

Полином называется нормализованным, если его старший коэффициент равен $ 1_<> $. Операция деления полинома на его старший коэффициент называется нормализацией полинома.

Очевидно, что нормализованный полином имеет те же корни (и в тех же кратностях ), что и исходный. Для простоты обозначений, будем считать, что полином уже нормализован: $$ f(x)=x^n+a_1x^+\dots+a_n \, .$$

Второе упрощение заключается в замене переменной (подстановке): $ x=y +\alpha $. Ее результатом будет новый полином той же степени, что и исходный, относительно переменной $ y $: $ F(y)\equiv f(y+\alpha) $. Корни нового полинома связаны (cм. преобразование 2 ☞ ЗДЕСЬ ) с корнями старого по формуле $ \lambda_j = \Lambda_j+\alpha $; так что, найдя корни одного полинома, легко установим и корни другого. Подберем теперь параметр $ \alpha $ так, чтобы обратить в нуль коэффициент при $ y^ $ в полиноме $ F(y) $. Используя формулу бинома Ньютона, получаем $$ \begin f(x)&=&x^n+a_1x^+a_2x^+\dots+a_n= \\ &=&(y+\alpha)^n +a_1(y+\alpha)^+a_2(y+\alpha)^+\dots+a_n = \\ &=&y^n + C_n^1 \alpha y^ +C_n^2 \alpha^2 y^+\dots+ \alpha^n + \\ & & \ \qquad + a_1y^+a_1 C_^1 \alpha y^+\dots +a_1\alpha^ + \\ & & \quad \qquad \qquad +a_2y^ + \dots + a_n. \end $$ Понятно, что если положить $ \alpha= — a_1/n $, то коэффициент при $ y^ $ исчезнет. Для простоты обозначений будем считать, что полином уже предварительно подвергнут такому преобразованию: $ f(x)=x^n+a_2x^+\dots+a_n $.

Уравнение третьей степени: формула Кардано

Рассмотрим уравнение третьей степени: $$ x^3+p\,x+q=0 $$ Сделаем в этом уравнении замену переменной: $ x=u+v $, введя две неизвестные $ u_<> $ и $ v_<> $; получим: $$ u^3+v^3+3\,uv(u+v)+p(u+v)+q=0 \ . $$ Сгруппируем: $$ u^3+v^3+(3\,uv+p)(u+v)+q=0 \ . $$ Подчиним теперь неизвестные $ u_<> $ и $ v_<> $ условию $$ 3\,uv+p=0 \ \iff \ uv=-\frac

<3>\ . $$ Тогда предыдущее уравнение приведется к виду $$u^3+v^3=-q \ . $$ Итак, для определения неизвестных величин $ u_<> $ и $ v_<> $ мы получили систему уравнений $$ u^3+v^3=-q,\ uv=-\frac

<3>. $$ Возведя последнее уравнение в куб, получим $$ u^3v^3=-\frac <27>\ . $$ Два полученных равенства, связывающие $ u^ <3>$ и $ v^ <3>$, позволяет утверждать, что эти величины являются решениями квадратного уравнения: $$t^2+q\,t- \frac<27>=0 \ .$$

Выражение $$ \Delta = \frac<4>+\frac <27>$$ называется дискриминантом кубического уравнения.

Решив квадратное уравнение, получим: $$ u^3=-\frac<2>+ \sqrt<\Delta>,\ v^3=-\frac<2>— \sqrt <\Delta>\ . $$ В итоге имеем формулу для решений уравнения: $$ x=u+v=\sqrt[3]<-\frac<2>+\sqrt<\frac<4>+\frac<27>>>+ \sqrt[3]<-\frac<2>-\sqrt<\frac<4>+\frac<27>>> \ ; $$ она называется формулой Кардано.

Исторические заметки об открытии метода решения кубического уравнения ☞ ЗДЕСЬ.

Формула Кардано не очень удобна для практических вычислений. Дело в том, что корень кубический из комплексного числа принимает три различных значения. Решение же, представленное формулой Кардано, имеет в правой части комбинацию из двух кубических корней. Таким образом, получаем 9 всевозможных комбинаций из значений корней кубических. С другой стороны, основная теорема высшей алгебры утверждает, что кубическое уравнение должно иметь только три решения. Для того, чтобы установить соответствие между значениями $ u_<> $ и $ v_<> $, обратимся к условию $ uv=-p/3 $ . Согласно этому условию, задание значений для $ u_<> $ позволит однозначно восстановить $ v_<> $. Пусть $$ u_1=\sqrt[3]<-\frac<2>+\sqrt<\frac<4>+\frac<27>>> $$ какое-то одно из трех возможных значений корня кубического. Два оставшихся значения корня кубического получаются домножением $ u_1 $ на корни кубические из единицы (см. ☞ ЗДЕСЬ ): $$u_2=u_1\varepsilon_1, \ u_3=u_1\varepsilon_2 $$ при $$\varepsilon_1=\cos \frac<2\pi> <3>+ <\mathbf i>\sin \frac<2\pi><3>= -\frac<1><2>+ <\mathbf i>\frac<\sqrt<3>> <2>\ u \ \varepsilon_2=\cos \frac<4\pi> <3>+ <\mathbf i>\sin \frac<4\pi><3>= -\frac<1><2>— <\mathbf i>\frac< \sqrt<3>> < 2>\ . $$ Если теперь взять $$ v_1=-\frac

<3u_1>\ , $$ то решения кубического уравнения можно выразить в виде комбинаций $ u_1 $ и $ v_1 $: $$ \begin \lambda_1&=&u_1+v_1, \\ \lambda_2&=&u_2+v_2=u_2-\frac<\displaystyle p><\displaystyle 3u_2>=u_1\varepsilon_1-\frac<\displaystyle p> <\displaystyle 3u_1\varepsilon_1>=u_1\varepsilon_1-\frac<\displaystyle p\varepsilon_2><\displaystyle 3u_1>=u_1\varepsilon_1+v_1\varepsilon_2,\\ \lambda_3&=&u_3+v_3=u_1\varepsilon_2+v_1\varepsilon_1 \ . \end $$ Окончательно получаем формулы для вычисления корней: $$ \left\< \begin \lambda_1&=&u_1+v_1, \\ \lambda_2&=&-\frac<\scriptstyle 1><\scriptstyle 2>(u_1+v_1) + <\mathbf i>\frac<\scriptstyle \sqrt<3>> <\scriptstyle 2>(u_1-v_1),\\ \lambda_3&=&-\frac<\scriptstyle 1><\scriptstyle 2>(u_1+v_1) — <\mathbf i>\frac<\scriptstyle \sqrt<3>> <\scriptstyle 2>(u_1-v_1), \end \right. $$ где $ u_ <1>$ — одно из значений корня кубического, а $ v_ <1>$ связано с ним соотношением $ v_1=-p/(3u_1) $.

Пример [1]. Решить уравнение $ x^3-6<\mathbf i>\,x^2-10\,x+8 <\mathbf i>=0 $.

Решение. Подстановка $ x=y+2 <\mathbf i>$ приводит уравнение к виду $$y^3+2\,y+4 <\mathbf i>=0 \ , $$ т.е. $ p=2,\,q=4 <\mathbf i>$. Далее $$\Delta=-\frac<100> <27>\ \Rightarrow \ \sqrt <\Delta>= \pm \frac<10 <\mathbf i>><3\sqrt<3>> \ \Rightarrow \ u_1=\sqrt[3]<\left(-2 + \frac<10><3\sqrt<3>> \right)<\mathbf i>> \ . $$ Одно из значений последнего корня: $$u_1=-<\mathbf i>\, \sqrt[3]<-2 + \frac<10><3\sqrt<3>>> \ , $$ это выражение можно упростить, если повезет заметить, что подкоренное выражение равно $ \left(-1+1/<\sqrt<3>>\right)^3 $: $$u_1=<\mathbf i>\left(1-\frac<1><\sqrt<3>>\right)\ \Rightarrow \ v_1=-\frac

<3u_1>= <\mathbf i>\left(1+\frac<1><\sqrt<3>>\right) \ . $$ Получаем: $$\mu_1=2\, <\mathbf i>,\ \mu_2=1- <\mathbf i>,\ \mu_3=-1- <\mathbf i>\ .$$ Значения корней исходного уравнения получатся «сдвигом» на $ 2 <\mathbf i>$.

Анализ формулы Кардано для полиномов с вещественными коэффициентами

Пусть коэффициенты $ p^<> $ и $ q^<> $ уравнения $ x^<3>+p\,x+q=0 $ вещественны. Тогда и дискриминант $$ \Delta = \frac<4>+\frac <27>$$ этого уравнения — тоже вещественное число. В зависимости от знака этого числа, уравнение будет иметь разное число вещественных корней.

I. Пусть $ \Delta>0 $. Тогда $ \sqrt <\Delta>$ является числом вещественным, и мы будем считать его положительным. В формуле для $ u_1=\sqrt[3]<-q/2+\sqrt<\Delta>> $ в качестве значения кубического корня возьмем единственное его вещественное значение: $$ u_1 \in \mathbb R \ \Rightarrow \ v_1 \in \mathbb R \ .$$

Согласно формулам $$ \begin \lambda_1&=&u_1+v_1, \\ \lambda_2&=&u_2+v_2=u_2-\frac<\displaystyle p><\displaystyle 3u_2>=u_1\varepsilon_1-\frac<\displaystyle p> <\displaystyle 3u_1\varepsilon_1>=u_1\varepsilon_1-\frac<\displaystyle p\varepsilon_2><\displaystyle 3u_1>=u_1\varepsilon_1+v_1\varepsilon_2,\\ \lambda_3&=&u_3+v_3=u_1\varepsilon_2+v_1\varepsilon_1 \ . \end $$ получим: корень $ \lambda_ <1>$ уравнения веществен, а $ \lambda_ <2>$ и $ \lambda_ <3>$ — мнимы и комплексно-сопряжены.

Пример. Решить уравнение $$ x^3-\frac<1> <2>\, x-\frac<1> <2>=0 . $$

Решение. Здесь $$p=-\frac<1><2>,\ q=-\frac<1><2>,\ \Delta=\frac<25><432>,\ u_1=\sqrt[3]<\frac<1><4>+\frac<5 \sqrt<3>><36>> \ , \ v_1=\sqrt[3]<\frac<1><4>-\frac<5 \sqrt<3>><36>> \ . $$ Единственный вещественный корень должен получаться в виде суммы чисел $ u_ <1>$ и $ v_ <1>$ — «сильно» иррациональных, судя по внешнему виду. Тем не менее, этот корень очевиден: $ \lambda = 1 $.

Объяснить эту кажущуюся несуразность можно если заметить, что выражения под кубическими корнями в $ u_ <1>$ и $ v_ <1>$ представимы в виде кубов: $$\frac<1><4>+\frac<5 \sqrt<3>><36>=\left(\frac<1> <2>+\frac<\sqrt<3>> <6>\right)^3 ,\quad \frac<1><4>-\frac<5 \sqrt<3>><36>=\left(\frac<1> <2>-\frac<\sqrt<3>> <6>\right)^3 \ .$$ Тогда и два оставшихся корня $ -1/2 \pm 1/2 \, \mathbf i $ получаются из общих формул. ♦

II. Пусть $ \Delta=0 $. Формулы для корней дают $$ \lambda_1=2 \sqrt[3] <-q/2>\ , \ \lambda_2= \sqrt[3] , \ , \lambda_3= \sqrt[3] \ , $$ т.е. уравнение имеет кратный корень кратности $ 2_<> $ если $ q\ne 0 $ и кратности $ 3_<> $ если $ q=0 $.

III. Пусть $ \Delta ♦

В только что рассмотренном примере формула Кардано позволяет получить вещественные корни полинома — даже если для их выражения приходится иметь дело с мнимыми числами. Попробуем, однако, применить тот же прием ко следующему примеру.

Пример [2]. Решить уравнение $ x^3-3\,x+1=0 $.

Решение. Здесь $ \Delta=-\frac<3> <4>$ и $ u_1=\sqrt[3]<-\frac<1> <2>+ \frac<\sqrt<3>><2>\, \mathbf i> $. $$\sqrt[3]<-\frac<1> <2>+ \frac<\sqrt<3>><2>\, \mathbf i>= \alpha+ \mathbf i\, \beta \ \Rightarrow \ 4\, \alpha^3-3\, \alpha +\frac<1> <2>=0 \ . $$ Умножив последнее уравнение на $ 2_<> $ и сделав в нем замену переменной $ A = 2\alpha $ мы придем к уравнению $$A^3-3\, A +1 =0 \ , $$ т.е. вернемся к исходному уравнению!

Вывод: все корни полинома вещественны, но в радикалах их можно представить только с помощью мнимых чисел. ♦

Как разрешить этот парадокс?

Как получить вещественный вид для корней полинома? На помощь приходит альтернативный алгебраическому способ извлечения корня кубического из комплексного числа: способ, основанный на представлении этого числа в тригонометрической форме.

Теорема. В случае $ \Delta ♦

Пример. Решить уравнение из предыдущего примера: $ x^3-3\,x+1=0 $.

Решение. Здесь $ p=-3, q=1 $ и $ \displaystyle \varphi = \operatorname \left(- \frac<1> <2>\right) =\frac<2\,\pi> <3>$.

Ответ. $$ 2 \cos \frac<2\pi> <9>\approx 1.53208 \ ,\quad 2 \cos \frac<8\pi> <9>\approx -1.87938\ , \quad 2 \cos \frac <-4\pi> <9>\approx 0.34729 \ . $$ Проверка может быть выполнена применением формулы приведения для степени косинуса, приведенной ☞ ЗДЕСЬ.

Пример. Решить уравнение $ x^3-6\,x+3=0 $.

Решение. Здесь $ p=-6, q=3 $ и $ \displaystyle \varphi = \operatorname \left(- \frac<3><4\sqrt<2>> \right) \approx 2.1297861 $.

Ответ. $ \approx 2.145103,\ \approx -2.669079,\ \approx 0.523976 $.

Уравнение четвертой степени

рассмотрим в виде: $$ x^4+p\,x^2+q\,x+r=0 , $$ перепишем его в виде $$x^4=-p\,x^2-q\,x-r $$ и прибавим к обеим частям $ x^2t+t^2/4 $, где $ t $ — новая неизвестная: $$ x^4+x^2t+t^2/4=(t-p)\,x^2-q\,x +(t^2/4-r) \ . $$ Левая часть получившегося уравнения является полным квадратом: $$ \left(x^2+t/2 \right)^2 =(t-p)\,x^2-q\,x+(t^2/4-r) \ . $$ Подберем теперь значение $ t $ так, чтобы и правая часть стала полным квадратом.

Теорема. Для того, чтобы квадратный полином $ Ay^2+By+C $ был квадратом полинома первой степени, необходимо и достаточно, чтобы его дискриминант $ B^2-4\,AC $ был равен нулю.

Доказательство. Необходимость. Если $ Ay^2+By+C\equiv (ky+ \ell)^2 $, то $ A=k^2,\, B=2\,k\ell,\, C=\ell^2 $ и тогда очевидно $ B^2-4\,AC=0 $.

Применяя этот результат к правой части полученного уравнения, находим условие на параметр $ t $, при котором это выражение станет полным квадратом: $$ q^2-4\,(t-p)(t^2/4-r)=0\ \iff \ t^3-p\,t^2-4\,r\,t+(4\,pr-q^2)=0 $$ Это уравнение называется резольвентой Феррари для уравнения $ x^4+p\,x^2+q\,x+r=0 $.

Поскольку резольвента Феррари является уравнением кубическим, то его можно разрешить в радикалах по методу изложенному ВЫШЕ. Обозначим через $ t_1 $ какой-то из его корней. При этом значении $ t $ правая часть уравнения $$ \left(x^2+t/2 \right)^2 =(t-p)\,x^2-q\,x+(t^2/4-r) \ . $$ будет полным квадратом: $$ (t_1-p)\,x^2-q\,x+(t_1^2/4-r) \equiv \left(Kx+L \right)^2 \quad npu \quad \ K= \sqrt,\, L= -\frac<2\sqrt> \ . $$ Следовательно, уравнение это уравнение приобретает вид: $$ \left(x^2+ t_1/2 \right)^2 = \left(Kx+L \right)^2 $$ и разлагается на два квадратных: $$ x^2+t_1/2 =Kx+L \quad u \quad x^2+t_1/2 =-Kx-L \ . $$ Последние, по их решении, и дают четыре значения корней уравнения четвертой степени.

Если обозначить корни этих квадратных уравнений через $ x_1,x_2 $ и, соответственно, $ x_3,x_4 $, то они будут связаны с корнем $ t_ <1>$ резольвенты Феррари равенством $ t_1=x_1x_2+x_3x_4 $. В самом деле, это равенство следует из двух формул Виета: $ x_1x_2=t_1/2-L,\, x_3x_4=t_1/2+L $. Остальные корни резольвенты получаются в результате перестановок $ t_2=x_1x_3+x_2x_4,\, t_3=x_1x_4+x_2x_3 $.

Пример [2]. Решить уравнение $ x^4+4\,x-1=0 $ .

Решение. Здесь $ p=0,\,q=4,r=-1 $ и резольвента Феррари имеет вид $$t^3+4\,t-16=0 \ .$$ Последнее уравнение имеет корень $ t_1=2 $. Следовательно, исходное уравнение можно переписать в виде: $$ (x^2+1)^2 =\left(\sqrt<2>x- \sqrt<2>\right)^2 \ . $$ Оно распадается на два квадратных: $$ x^2+1=\sqrt<2>\, x- \sqrt <2>\ u \ x^2+1=-\sqrt<2>\, x + \sqrt <2>\ . $$

Преобразование Чирнгауза

Успех, достигнутый в решении уравнений третьей и четвертой степени побудил исследователей искать подобные формулы для уравнений высших степеней. Методология подхода была очевидна: свести решение уравнения $ n_<> $-й степени к решению уравнения $ (n-1)_<> $-й степени. Одну из возможных вариаций этого подхода поясним на примере.

Пример. Решить уравнение $ x^3+6\,x-2=0 $.

Решение. Обозначим неизвестные корни полинома $ f(x)=x^3+6\,x-2 $ через $ \lambda_1,\lambda_2, \lambda_3 $. Построим полином $ F_<>(y) $, корнями которого являются величины $$ \mu_j=\lambda_j^2+2\, \lambda_j+4 . $$ Выражение $$F(y)= (y-\mu_1)(y-\mu_2)(y-\mu_3)$$ является симметрическим полиномом относительно $ \lambda_1,\lambda_2 $ и $ \lambda_ <3>$. Следовательно, по теореме Гаусса о симметрических полиномах, коэффициенты $ F_<>(y) $ должны полиномиально выражаться через коэффициенты $ f_<>(x) $, т.е. быть числами целыми. Опуская промежуточные выкладки, приведем окончательный результат: $$F(y)\equiv y^3-108 .$$ Корни этого полинома легко определить: $$ \mu_1=3\sqrt[3]<4>,\ \mu_2= 3\sqrt[3] <4>\left(-\frac<1> <2>+\mathbf i \frac<\sqrt<3>> <2>\right),\ \mu_3= 3\sqrt[3]<4>\left(-\frac<1> <2>-\mathbf i \frac<\sqrt<3>> <2>\right) \ . $$ Теперь находим $ \lambda_ $ из квадратных уравнений $$\sqrt[3] <4>— \sqrt[3]<2>,\ -2-\sqrt[3] <4>+ \sqrt[3]<2>,\ $$ $$ \frac<1><2>\left(-\sqrt[3] <4>+ \sqrt[3]<2>\right) + \mathbf i \frac<\sqrt<3>> <2>\left(\sqrt[3] <4>+ \sqrt[3]<2>\right),\ -2 + \frac<1><2>\left(\sqrt[3] <4>— \sqrt[3]<2>\right) — \mathbf i \frac<\sqrt<3>> <2>\left(\sqrt[3] <4>+ \sqrt[3]<2>\right),\ $$ $$ \frac<1><2>\left(-\sqrt[3] <4>+ \sqrt[3]<2>\right) — \mathbf i \frac<\sqrt<3>> <2>\left(\sqrt[3] <4>+ \sqrt[3]<2>\right),\ -2 + \frac<1><2>\left(\sqrt[3] <4>— \sqrt[3]<2>\right) + \mathbf i \frac<\sqrt<3>> <2>\left(\sqrt[3] <4>+ \sqrt[3]<2>\right). $$ Подстановкой в исходное уравнение выделяем истинные его корни.

Подобное преобразование полинома $ f_<>(x) $ в полином $ F_<>(y) $ той же степени, имеющий корнями числа $ g(\lambda_1),\dots, g(\lambda_n) $ при произвольном полиноме $ g(x)\in \mathbb A[x] $, называется преобразованием Чирнгауза.

Биографические заметки о Чирнгаузе ☞ ЗДЕСЬ.

Задача. Найти такое преобразование Чирнгауза, которое преобразует исходный полином к виду $ y^n-a $. Корни последнего, очевидно, выражаются в радикалах. Если при этом, $ \deg g ♦

Следующий способ нахождения преобразования Чирнгауза является развитием метода Безу вычисления результанта.

Найдем остатки от деления $ x^kg(x) $ на $ f_<>(x) $ $$ g_k(x) = b_+b_x+\dots +b_x^+b_x^ \quad npu \quad k\in\ <0,1,\dots,n-1\>$$ (здесь изменен порядок нумерации коэффициентов по сравнению с тем, что указан при изложении ☞ метода Безу ) и составим матрицу из коэффициентов: $$ B=[b_]_^ \ . $$

Теорема [Эрмит]. Имеем:

Доказательство. Равенства $$y=g(x),\, xy=g(x)x,\, \dots, x^y=g(x)x^ \ ,$$ при подстановке корня $ \lambda_j $ полинома $ f(x) $ переходят в $$y=g_0(\lambda_j),\,\lambda_jy=g_1(\lambda_j),\dots, \lambda_j^y=g_(\lambda_j) \ .$$ Рассмотрим получившиеся уравнения как линейную однородную систему относительно столбца неизвестных $$X=[1,\lambda_j,\dots,\lambda_j^]^ <\top>\ . $$ Поскольку эта система имеет нетривиальное решение, то (на основании следствия к теореме Кронекера-Капелли ) определитель ее матрицы должен обращаться в нуль. ♦

Пример. Решить предыдущий пример по методу Эрмита.

Решение. Имеем $$g_0(x)\equiv g(x)=-1+x+x^2, \ g_1(x)=-3+x+x^2, \ g_2(x)=-3-x+x^2 $$ и, следовательно, $$F(y)=(-1)^3\left| \begin -1-y & 1 & 1 \\ -3 & 1-y & 1 \\ -3 & -1 & 1-y \end\right|=y^3-y^2+6\,y-4 \ . $$

Будем решать теперь вторую из сформулированных выше подзадач: подобрать преобразование Чирнгауза таким образом, чтобы обнулить как можно большее число коэффициентов у полинома $ F_<>(y) $.

Пример. Для полинома $ f(x)=x^3+a_1x^2+a_2x+a_3 \in \mathbb C[x] $ подобрать преобразование Чирнгауза вида $ y=x^2+b_1x+b_2\in \mathbb C[x] $ так, чтобы получившийся в результате преобразования полином имел вид $ F(y)=y^3+c_3 $.

Найти преобразование Чирнгауза, позволяющее решить в радикалах уравнение $ x^3+a_1x^2+\frac<1><3>\, a_1^2x+a_3=0 $.

Статья не закончена!

Разрешимость в радикалах

Успех достигнутый в решении уравнений третьей и четвертой степени побудил исследователей искать подобные формулы для уравнений высших степеней. Методология подхода очевидна из предыдущих пунктов: свести решение уравнения $ n_<> $-й степени к решению уравнения $ (n-1) $-й степени. Однако, несмотря на почти трехвековые усилия лучших математиков мира, решить уравнение пятой степени не удавалось. Наконец, в начале XIX века был получен отрицательный результат.

Теорема [Руффини, Абель]. Уравнение степени выше четвертой в общем случае неразрешимо в радикалах.

Пример. Уравнение $ x^5-4\, x -2=0 $ неразрешимо в радикалах.

Установить разрешимо или нет данное конкретное уравнение в радикалах возможно с помощью теории, развитой французским математиком Галуа.

Пример. Уравнение $ x^5+x+1=0 $ разрешимо в радикалах, поскольку $ x^5+x+1\equiv (x^2+x+1)(x^3-x^2+1) $.

Отрицательный характер результата теоремы Руффини-Абеля не должен слишком уж разочаровывать. Он означает только лишь то, что корни полинома нельзя представить в виде формулы, состоящей из конечного набора сравнительно простых функций. Тем не менее, если расширить класс допустимых в формуле функций (или допустить бесконечность числа операций), представление для корня можно найти. Cм., к примеру,

Наконец, для практических задач часто более важна не столько «красивая» аналитическая формула для корня, сколько приближенное его значение с требуемой точностью.

Задачи

Источники

[1]. Журавский А.М. Сборник задач по высшей алгебре. М.-Л.ГТТИ. 1933

[2]. Uspensky J.V. Theory of Equations. New York. McGraw-Hill. 1948

[3]. Калинина Е.А., Утешев А.Ю. Теория исключения: Учеб. пособие. СПб.: НИИ Химии СПбГУ, 2002. 72 с.

Проблема решения алгебраических уравнений в радикалах от евклидовых «Начал» до Н.Г. Абеля.

Предмет: Философия

Тип работы: Реферат

У вас нет времени или вам не удаётся понять эту тему? Напишите мне в whatsapp, согласуем сроки и я вам помогу!

На странице рефераты по философии вы найдете много готовых тем для рефератов по предмету «Философия».

Дополнительные готовые рефераты на темы:

Введение

Предметом исследования в данной работе является решение уравнений в радикалах (история вопроса).

Объектом исследования в работе является жизнь и научная деятельность (а именно решение кубических уравнений в радикалах) итальянского математика эпохи Возрождения Джироламо Кардано. О котором так писал Г. Э. Лессинг (1729- 1781): «Этот исключительный гений поверг все будущие поколения в сомнения относительно него. Приходится верить, что величайший разум очень тесно связан с величайшим сумасбродством, или его характер останется неразрешимой загадкой» (Гутер, Полунов 1980: 40).

Цель работы заключается в том, чтобы выяснить, как был открыт метод решения кубических уравнений в радикалах Джироламо Кардано и какие события в его жизни, в жизни Италии и мира предшествовали этому.

Последний век эпохи Возрождения

XVI век — последний век эпохи Возрождения- этого «величайшего прогрессивного переворота из всех, пережитых до того времени человечеством» (Ф.Энгельс); век, когда, расшатывая религиозно- схоластические представления о мироздании, начала зарождаться новая наука, свободная от теологической опеки и обращенная к природе и человеку. В XVI веке европейские математики сумели, наконец, сравниться в мудрости с древними греками и превзойти их там, где успехи эллинов были не велики: в решении уравнений. Такой прорыв в неведомое стал итогом долгой культурной революции. Она началась в 14 веке, когда в Италии появились первые великие поэты Нового времени: Данте Алигьери (1265-1321) и Франческо Петрарка. Подобно Гомеру, они объявили своим современникам: пришла пора строить новый мир, равняясь на античные образцы и стараясь их превзойти!

XVI век — век Леонардо да Винчи, Тициана, Лодовико Ариосто, Микеланджело Буонарроти, Фернана Магеллана, Николая Коперника, Мартина Лютера, Эразма Роттердамского, Тихо Браге, Андрея Везалия, Франсуа Виета, Джордано Бруно и многих, многих других. Это и век Джироламо Кардано — итальянского математика, врача, философа, инженера и писателя.

Он жил в трудное для Италии время: страна, государственно раздробленная, придавленная прессом феодально-католической реакции, не раз подвергавшаяся нашествиям иностранных войск, переживала глубокий политический кризис. Городские коммуны Италии XIV-XVI веков были во многом похожи на полисы Эллады. На их улицах гремели столь же бурные политические споры и религиозные проповеди, а в залах университетов обычные лекции чередовались с публичными диспутами на самые разные темы. Существуют ли в природе те «универсалии», о которых писал Платон? Например, законны ли общие понятия «овощ» и «фрукт» — или существуют только репа и капуста, яблоко и персик? Возможны ли в геометрии новые теоремы, не известные Евклиду? Можно ли решить те геометрические задачи, которые были не под силу древним грекам — например, разделить любой угол на три равные части?

Когда распространилось книгопечатание, споры этого рода начали волновать не только узкий круг профессионалов. Теперь каждый образованный человек мог заглянуть в книгу Евклида или Архимеда и составить свое мнение об их открытиях. Итальянские художники XV века научились применять стереометрию в живописи. Они изобрели технику перспективы, благодаря которой плоские изображения пространственных тел кажутся неотличимы от реальных предметов. Особенно отличился в этой области Леонардо да Винчи из Флоренции (1452-1519). Следуя по стопам Архимеда, он применял геометрию к решению механических задач: например, Леонардо рассчитал и построил водолазный колокол, создал проекты подводной лодки и вертолета.

Ровесник Леонардо — профессор Сципион дель Ферро из Болоньи (1465-1526) посвятил всю жизнь решению различных алгебраических уравнений. Затруднения, связанные с неудобными обозначениями неизвестных величин и действий над ними, были огромны. Попробуйте, например, решить квадратное уравнение, не используя знаки (+), (-) и др., а заменяя их словами! Сципион преодолел эти трудности. Комбинируя решение квадратного уравнения с извлечением кубического корня, он сумел решить уравнение вида (х.. = рх + q). Оказалось, что оно имеет 3 разных корня, и что к нему сводится произвольное кубическое уравнение вида (ах.. + вх.. + сх + d = 0). Сейчас эти факты очевидны для каждого старшеклассника, видавшего график функции (у = х..) и понимающего, что такое линейная замена переменной в многочлене. Но итальянцы 16 века не ведали понятий «функция», «график» и «многочлен»!

Линейное преобразование Кардано

Кардано выполнил линейное преобразование, позволяющее привести кубическое уравнение к виду, свободному от члена 2-ой степени; указал на зависимость между корнями и коэффициентами уравнения, на делимость многочлена на разность x-a, если a-его корень. Кардано одним из первых в Европе допускал существование отрицательных корней уравнений.

Формула Феррари для корней многочлена степени 4 выглядит еще сложнее, поскольку в ней решение идет в два этапа. Сначала по уравнению степени 4 составляется вспомогательное кубическое уравнение, а потом по нему — квадратное уравнение.

Решение уравнений-многочленов степеней 3 и 4 стало крупным успехом новой европейской математики. Но за всякий успех приходится платить. Платой за удачи Кардано и Феррари оказалось появление МНИМЫХ чисел. Так были названы квадратные корни из отрицательных чисел. Они неизбежно возникают при решении кубического уравнения по способу Кардано, даже если такое уравнение имеет три действительных корня.

В середине 16 века европейские математики уже привыкли к целым и дробным, отрицательным и иррациональным числам. Любые два числа этих сортов можно сравнить по величине и изобразить точками на числовой прямой: (а) лежит справа от (в), если а Математические работы Кардано

Математические работы Кардано — «Практика общей арифметики и простые измерения», «Великое искусство, или О правилах алгебры», «Правила Ализа», «Великое искусство арифметики», «Новое сочинение об отношениях чисел», «Об игре в кости» и некоторые другие — собраны в четвертом томе лионского издания сочинений Миланца(1663).Он писал почти обо всем, что знала математика Возрождения, перемежая по своему обыкновению новые, собственные результаты с теми, которые уже были получены другими авторами. Однако ни в одной из областей математики его достижения не являются столь весомыми и неоспоримыми, как в алгебре.

В первой главе «Великого искусства» Кардано называет создателем алгебры «Мохаммеда, сына араба Мусы». Очевидно, он имел в виду Мухаммеда ибн Муса ал — Хорезми (787ок.850), написавшего в 820 году «Краткую книгу об исчислении ал — джабра и ал — мукабалы». Название трактата ал — Хорезми соответствует методам решения уравнений: ал — джабр (восстановление) означает перенос отрицательного члена в другую часть уравнения с положительным знаком, действие ал — мукабалы (противопоставления) заключаются в уничтожении в обеих частях уравнения одинаковых членов (приведении подобных). Выполнив, например, преобразования уравнения произведем операции ал — джабр и ал — мукабала соответственно. В «Краткой книге» содержались методы решения уравнений первой и второй, которые автор приводил в числовой форме, но сопровождал геометрическими доказательствами, заимствованными арабской наукой у древних греков. Сочинение «Мохаммеда, сына араба Мусы», переведенное на латинский язык, пользовалось большой известностью в средневековой Европе. Поначалу переводчики полностью переписывали заглавие «Краткой книги», но постепенно вторая часть стала воспроизводиться все реже и, наконец, совсем исчезла. Осталось только слово «ал — джабр», которое затем превратилось в «алгебру». Аналогично слово «алгорифм» (алгоритм) произошло от «ал — Хорезми». Интересно, что «ал — джабр» имеет также смысл «исправление того, что сломано». Историк математики В.П.Шереметьевский указывал, что в народном испанском языке слово algebraista означает «костоправ».

Алгебраические термины, которые использовали переводчики ал — Хорезми, представляли собой латинские эквиваленты арабских слов, обозначающих те же понятия. Неизвестная называлась res (вещь) или radix (корень), квадрат неизвестной- census (имущество), куб- cubus (куб), постоянная в уравнении- numerus (числа). Позднее итальянские математики использовали вместо латинского res народное cosa и иногда именовали алгебру arte della cosa. Немцы в XV веке исказили cosa в coss, поэтому немецких алгебраистов называли также и «коссистами». Упоминается «коссическое искусство» или «косс» и в первой русской арифметике Л.Магницкого.

Спустя примерно 350 лет после смерти ал — Хорезми результаты арабских алгебраистов изложил в своей «Книге абака» сын купца Боначчи из Пизы Леонардо, известный в истории математики как Леонардо Пизанский, или Фибоначчи. Его сочинение во многом способствовало усилению интереса европейцев к алгебре и появлению других алгебраических работ. Европейская алгебра (как, впрочем, и арабская) вплоть до XV века не использовала символы, поэтому уравнения записывались в словесной форме. Например, запись уравнения выглядела так: census et radices aeguantur numeris (квадрат и корни равны числам). Символическая алгебра впервые появилась в книге «Сумма» Луки Пачоли.

В своей «Сумме» Лука Пачоли рассматривал правила решения уравнений первой и второй степени, а также некоторых частных видов уравнений четвертой степени. В соответствии с традицией, идущей от ал — Хорезми, он указывал для квадратных уравнений два корня, но отрицательный опускал; не рассматривались им также корни равные нулю. Что же касается уравнений третьей степени, то Пачоли отрицал возможность их решения. «Сумма» как бы подводила итоги результатам, полученным в алгебре до XV века. На это сочинение опирались в своем творчестве выдающиеся итальянские алгебраисты XV века — дель Ферро, Тарталья, Кардано и Бомбелли.

Список литературы

  1. Глав. ред. М. Д. Аксенова. Энциклопедия для детей. Том 11. Математика. – М.: Аванта+, 1998. – 688 с.
  2. Цыпкин А. Г. Под ред. С. А. Степанова. Справочник по математике для средней школы. – М.: Наука, 1980.- 400 с.
  3. Г. Корн и Т. Корн. Справаочник по математике для начуных работников и инженеров. – М.: Наука, 1970.- 720 с.

Заключение

Итак, предметом нашего исследования стало решение уравнений в радикалах (история вопроса). Мы рассмотрели, каким образом в эпоху Возрождения были решены уравнения третьей степени. Мы выяснили, что эти уравнения были решены в радикалах Джироламо Кардано — итальянским математиком, врачом, естествоиспытателем и изобретателем — одним из выдающимся ученым эпохи Возрождения. Формула Кардано для решения уравнений третьей степени в радикалах выглядит так:

Таким образом, объектом исследования нашей работы стала жизнь и научная деятельность (а именно решение кубических уравнений в радикалах) итальянского математика эпохи Возрождения Джироламо Кардано (1501- 1576).

Наша цель работы заключалась в том, чтобы выяснить, как был открыт метод решения кубических уравнений в радикалах Джироламо Кардано и какие события в его жизни, в жизни Италии и мира предшествовали этому. Этой цели я считаю, мы достигли. Задачи, которые ставили в работе мы также выполнили.

Мы описали жизнь Италии и мира того времени, когда жил и творил Джироламо Кардано. Описали жизнь самого Кардано.

Мы описали, как именно Джироламо пришел к решению кубических уравнений в радикалах.

Решение уравнений в радикалах очень важное открытие эпохи Возрождения. Оно прославило на века имя Джироламо Кардано. Кубические уравнения применяются в инженерии, в архитектурном деле, в механике и в других областях науки, в которых необходимо проводить сложные математические вычисления.

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

О теореме Абеля-Руффини без групп и теории Галуа

Историческая справка

Поиск решения алгебраических уравнений оказал колоссальное влияние на развитие математики. Формула решения общего кубического уравнения впервые была получена итальянскими математиками 16-го века. Это событие ставшее первопричиной рассмотрения комплексных чисел, считается одним из поворотных моментов в истории математики. Судьбы Джероламо Кардано, Никколо Тартальи, Сципиона дель Ферро и их поисков решения кубического уравнения заслуживают отдельного романа со своими интригами, скандалами и расследованиями. Столь яркие истории достаточно редки в математике.

Начиная с 19-го века поиск формул для решения уравнений произвольных степеней положил начало теории групп и абстрактной алгебре, которые преобразили практически все разделы современной математики. Думаю, многие, кто интересовался историей и развитием алгебры, знают, что формулы для решения общего алгебраического уравнения степени выше четвертой не существует. Как сообщается, первое доказательство этого факта было дано итальянским математиком Паоло Руффини в самом конце восемнадцатого века, оно составляло около 500 страниц и все же содержало некоторые пробелы. Хотя отдельные математики, как Огюстен Коши, и признавали данное доказательство, но ввиду столь большого объема и сложности изложения, оно так и не было принято математическим сообществом. Считается, что первое полное доказательство дано норвежским математиком Нильсом Абелем и содержалось в двух работах, изданных в 1824 и 1826 годах. С тех пор оно носит название теоремы Абеля или теоремы Абеля-Руффини.

Если вы попытаетесь изучить это доказательство в его современном изложении, то окажется, что оно практически полность опирается на Теорию Галуа. Эварист Галуа был французским математиком 19-го века и современником Нильса Абеля. Помимо занятий математикой он вел активную политическую жизнь из-за чего несколько раз попадал в тюрьму. В возрасте всего двадцати лет был застрелен на дуэли, поводом для которой послужила любовная интрига, хотя есть предположения, что дуэль была подстроена его политическими противниками. Об этой истории написано достаточно много, кроме того, имеется перевод на русский язык его мемуаров и писем. Последнее письмо его другу Огюсту Шевалье было написано в ночь накануне дуэли, в нем он наспех излагает свои последние идеи. Несмотря на столь короткую жизнь, Эварист Галуа считается одним из родоначальников современной алгебры. Хотел бы заметить, что в популярном изложении создается некий романтический образ Галуа, как подростка-гения, который в одиночку, с нуля создал теорию групп и преобразил всю алгебру. Несомненно его идеи сыграли огромную роль, но если почитать его сочинения, то мы увидим, что он хорошо знал и опирался на знаменитые работы Лагранжа, Эйлера, Гаусса, Абеля, Якоби. Зачатки теории групп и перестановок появляются еще в работах Жозефа Луи Лагранжа по теории алгебраических уравнений, а также Карла Фридриха Гаусса в его знаменитых «Арифметических исследованиях». К тому же, теория Галуа в современном изложении была оформлена многими последующими математиками — Дедекиндом, Кронекером, Гильбертом, Артином и другими.

Мотивация данной статьи

Чуть менее года назад меня сильно увлекла статья об истории решения кубического уравнения и последующих безуспешных поисков формулы уравнения 5-й степени, длившихся почти триста лет. Сразу хочу отметить, что специального математического образования у меня нет и поэтому, попробовав прочесть современную версию доказательства теоремы Абеля-Руффини, я естественно ничего не понял. В моем сознании термины группа, кольцо и поле никак не ассоциировались с алгебраическими структурами. Но желание разобраться было столь велико, что я принялся за изучение курса высшей алгебры.

На первых этапах абстрактная алгебра была наверное самым сложным из того, что мне приходилось изучать ранее. Объем новых терминов и определений просто зашкаливал: группы, факторгруппы, моноиды, поля, кольца, тела, модули, идеалы, ядра, векторные пространства, биекции, сюръекции, инъекции, изоморфизмы, автоморфизмы, гомоморфизмы, эндоморфизмы и тд. Спустя несколько месяцев упорных занятий, я начал понимать формальную часть, но, к сожалению, интуитивного понимания, которое и являлось моей изначальной целью, я так и не достиг.

Дело в том, что практически все современные доказательства неразрешимости уравнений 5-й степени в радикалах сводятся к следующему. Рассматривается некоторое неприводимое уравнение, например x 5 -10x+2, после чего методами мат анализа определяется, что оно имеет три действительных и два комплексно-сопряженных корня. После чего заключается, что группой Галуа данного уравнения есть группа S5, которая не является разрешимой, и следовательно данное уравнение неразрешимо в радикалах. Доказательство теоремы Абеля-Руффини о неразрешимости общего уравнения также сводится к неразрешимости группы Sn. Для меня данные доказательства были слишком абстрактными и оторванными от конкретных уравнений. Когда я пытался представить их в терминах элементарных алгебраических операций, чтобы понять в чем заключается главная причина неразрешимости уравнений, у меня ничего не получалось. Возможно для тех, кто занимается этим достаточно долго, эти вещи могут казаться интуитивно понятными.

Немного иной подход описан в книге Алексеева «Теорема Абеля в задачах и решениях», основанной на лекциях Владимира Арнольда, но в изложенном там доказательстве помимо теории групп используются элементы комплексного анализа и Римановых поверхностей. Я также находил похожие статьи, использующие топологические аргументы в виде комбинаций петель и коммутаторов, но мне хотелось найти что-то чисто алгебраическое.

Параллельно изучая историю математики и понимая, что современная формулировка и доказательство сильно отличаются от того, как излагали свои идеи Лагранж, Руффини, Абель и Галуа, я решил прочесть первоисточники. К сожалению, на русский или английский по этой теме переведены лишь сочинения Галуа и одна из работ Абеля.

После некоторых поисков я наткнулся на статью 1845 года французского математика Пьера Лорана Ванцеля, в которой он переработал и сильно упростил доказательство Абеля-Руффини, о чем он пишет во введении. В этой работе, он так же упоминает мемуары Галуа и отмечает, что они будут опубликованы в скором времени. Для заметки — работы Галуа были опубликованы лишь в 1846 году Жозефом Лиувиллем, спустя почти 15 лет после смерти Галуа. Кстати, Пьер Лоран Ванцель, также был первым, кто доказал неразрешимость трисекции угла и удвоения куба с помощью циркуля и линейки — знаменитых задач стоявших еще со времен античности. Доказательства Ванцеля были изложены без использования абстрактной алгебры и теории Галуа, поскольку на тот момент они еще не были разработаны. Хотя работа и была доступна лишь на французском, которого я до этого практически не знал, но ввиду специфической темы, небольшого размера (всего 7 страниц) и наличия гугл переводчика, я справился достаточно быстро. По моему субъективному мнению, его доказательство теоремы Абеля-Руффини является наиболее простым для понимания.

Уже позже я нашел пример подобного доказательства основанного на работе Руффини в книге Чеботарёва “Основы Теории Галуа”. Далее я постараюсь кратко изложить принцип решения уравнений в радикалах и идею доказательства неразрешимости уравнения 5-й степени.

Решения уравнений в радикалах

Для дальнейшего понимания, потребуются минимальные пререквизиты:

Формулы Виета — напомню, что коэффициенты произвольного уравнения являются элементарными симметрическими функциями от его корней, то есть функциями, которые не меняют своего значения при любых перестановках корней. Примеры: x1 + x2 + x3, x1x2x3, x1x2 + x1x3 + x2x3.

Теорема о симметрических многочленах — каждую симметрическую функцию от корней, можно выразить с помощью элементарных симметрических функций (коэффициентов уравнения).

Первообразные корни n-й степени из единицы — комплексные величины не равные единице, но n-я степень которых, равна единице. Примеры: (-1) 2 = 1, (-1/2 + sqrt(-3)/2) 3 = 1, i 4 = 1 соответственно квадратный, кубический и биквадратный корни из единицы.

Основная теорема алгебры — гласит о том, что уравнение n-й степени с комплексными коэффициентами имеет ровно n комплексных корней с учетом кратности (корни могут быть одинаковые).

Первоначальная идея восходит к работе Жозефа Луи Лагранжа “Размышления о решении уравнений” 1770-1771 годов. Это достаточно объемное сочинение и я не нашел его перевода на русский или английский язык. Как указывается в разных источниках, в попытке найти формулу для уравнения 5-й степени, Лагранж проанализировал все имеющиеся к тому времени способы решения уравнений и выделил общий принцип, позволяющий решить уравнения 4-й и низших степеней. В этой же работе, изучая перестановки корней, он пришел к теореме, которая сейчас носит его имя. Принцип, открытый Лагранжем, заключался в том, чтобы найти выражения от корней заданного уравнения n-й степени, которые при всех возможных перестановках этих корней принимали n-1 значений, но в тоже время через них выражались первоначальные корни. На эти значения, можно составить уравнение n-1 степени и повторить операцию, тем самым сводя изначальное уравнение к цепочке уравнений меньших степеней, решив которые, можно получить корни первоначального уравнения. Рассмотрим один из примеров:

Пусть f(x) = x 4 + ax 3 + bx 2 + cx + d общее уравнение 4-й степени с произвольными коэффициентами a, b, c, d и x1, x2, x3, x4 его корни.

Напомним, что его коэффициенты — это элементарные симметрические функции от корней, в чем можно убедиться просто раскрыв скобки в выражении (x — x1)(x -x2)(x — x3)(x — x4):

Так как корни являются произвольными, то существует 4! = 24 различных вариантов их расположения, но можно составить выражение x1x2 + x3x4, которое принимает всего три разных значения при всех 24-х перестановках корней:

На эти три значения мы можем составить уже кубическое уравнение, корнями которого они и будут являться. Таким образом, мы сводим решение уравнения 4-й степени к уравнению 3-й степени. Для решения кубического уравнения мы можем воспользоваться резольвентой Лагранжа (y1 + wy2 + w 2 y3) 3 , где w — это кубический корень из единицы. Данное выражение принимает всего два разных значения при всех возможных 3! = 6 перестановках. Оно будет сохранять значение при циклических перестановках и менять знак при любой транспозиции. Получим:

Теперь составим квадратное уравнение на z1 и z2:

z1+z2 и z1z2 — будут симметрическими функциями от корней нашего изначального уравнения f(x), следовательно, по теореме о симметрических многочленах, напрямую выражаться через коэффициенты a, b, c, d. Решив квадратное уравнение мы получим значения z1, z2. После чего, извлекая кубические корни из z1, z2, и складывая с коэффициентом b, сможем выразить y1. Далее, c помощью y1 и коэффициентов a, b, d, решив два квадратных уравнения, мы доберемся до корней x1, x2, x3, x4 изначального уравнения.

Данный пример показывает, что произвольное уравнение 4-й степени решается путем составления вспомогательных кубического и квадратных уравнений. Далее я приведу рассуждение, почему подобный прием невозможен для общего уравнения 5-й степени.

Неразрешимость уравнения 5-й степени

Итак, мы хотим показать, что ни один корень общего уравнения 5-й степени не может быть выражен через его коэффициенты путем решения цепочки вспомогательных двучленных уравнений низших степеней.

Пусть f(x) = x 5 + ax 4 + bx 3 + cx 2 + xd + e общее уравнение 5-й степени с произвольными коэффициентами a, b, c, d, e и x1, x2, x3, x4, x5 его корни. Обозначим за y1 первый радикал входящий в значение x1 в порядке вычисления. Пусть y1 n = p, где p будет какой-то симметрической функцией от корней и, следовательно, напрямую выражаться через коэффициенты a, b, c, d, e. Заметим, что y1 уже не будет симметрической, а лишь рациональной функцией g от корней — g(x1, x2, x3, x4, x5). Следовательно, g должно менять значение при перестановке любых двух корней. Тогда эти значения будут являться корнями уравнения y1 n = p, которые имеют вид g, zg, z 2 g, z 3 g … z n-1 g, где z — первообразный корень n-й степени из единицы (z n =1). Рассмотрим произвольную транспозицию, например (x1, x2), тогда

если мы применим ее еще раз, то получим:

Из этого следует, что z 2 = 1, то есть z должен быть квадратным корнем из единицы (z = -1) и соответственно первый радикал y1 будет квадратным. Поясним: так как корни являются произвольными, то g должно сохранять значение при любых четных перестановках корней и менять знак при нечетных. Теперь покажем, что значение функции g не будет меняться при циклической перестановке трех корней (x1, x2, x3). Здесь стоит пояснить, что циклическая перестановка (x1, x2, x3) четная и может быть представлена, как произведение транспозиций (x1, x2)(x2, x3). То есть, функция g не поменяет своего значения при данной перестановке. Еще заметим, что функция g не изменится при циклической перестановке пяти корней, так как она так же раскладывается в произведение четного количества транспозиций. Присоединяя радикал y1 к выражениям от коэффициентов с помощью базовых арифметических операций, мы будем получать симметрические функции относительно всех циклов на трех и пяти корнях и вообще любых четных перестановок, но при перестановке содержащей нечетное количество транспозиций, y1 будет менять знак. Дальнейшее присоединение квадратных радикалов не даст нам ничего нового. Теперь предположим, что мы пришли к радикалу, который меняет свое значение лишь при тройных циклах. Обозначим его y2, тогда y2 n = q, где q — это рациональная функция от коэффициентов a, b, c, d, e и радикала y1.

В данном случае z 3 = 1, то есть z здесь будет кубическим корнем из единицы.

Теперь произведем циклическую перестановку 5-и корней

Так как z должен быть кубическим корнем из единицы, как мы выяснили ранее, то единственным вариантом будет z = 1 и g должна быть инвариантна при любой из этих циклических перестановок. Но тогда она должна быть инвариантна и при циклической перестановке x3,x2,x5,x1,x4 -> x2,x5,x1,x4,x3. Отсюда, одной транспозицией мы можем получить, что

но, выше мы уже видели, что

а из этого следует

что приводит нас к противоречию, так как мы предполагали, что g меняет значение при циклической перестановке трех корней (x1, x2, x3).

Еще одним вариантом, было бы показать что все четные перестановки на пяти корнях порождаются тройными циклами, то есть, если есть тройные циклы, то никаких выражений от корней, которые бы сохраняли набор значений при всех четных перестановках, не существует. Если теперь перевести это на теоретико-групповой язык, то получается, что группа общего уравнения пятой степени есть симметрическая группа S5, в которой существует 5! = 120 различных перестановок пяти корней. Далее, путем присоединения квадратного корня из дискриминанта, мы можем понизить ее до знакопеременной группы четных перестановок A5, которая содержит 120/2 = 60 перестановок. Но A5 является простой группой, в которой нет никаких нетривиальных нормальных подгрупп, которым бы соответствовали выражения от корней сохраняющие значения при определенных перестановках, из чего следует, что присоединение любых дополнительных радикалов не приблизит нас к решению.

Заключение

Поводом для написания данной статьи послужило желание структурировать свои мысли по этой теме и представить идеи о неразрешимости уравнений в радикалах без привлечения абстрактной алгебры и теории Галуа. По моему мнению, в подавляющем большинстве современных изложений теряется связь между областью, в которой происходит доказательство и конкретными уравнениями. Если у кого-то есть замечания, дополнения или ссылки на подобные элементарные изложения, буду рад услышать.


источники:

http://lfirmal.com/%D0%BF%D1%80%D0%BE%D0%B1%D0%BB%D0%B5%D0%BC%D0%B0-%D1%80%D0%B5%D1%88%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B0%D0%BB%D0%B3%D0%B5%D0%B1%D1%80%D0%B0%D0%B8%D1%87%D0%B5%D1%81%D0%BA%D0%B8%D1%85-%D1%83%D1%80%D0%B0/

http://habr.com/ru/post/568552/